Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 473: 134589, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38772114

RESUMO

Epidemiological evidence indicates that exposure to halogenated polycyclic aromatic hydrocarbons (HPAHs) is associated with many adverse effects. However, the mechanisms of metabolic disorder of HPAHs remains limited. Herein, effects of pyrene (Pyr), and its halogenated derivatives (1-chloropyrene (1-Cl-Pyr), 1-bromopyrene (1-Br-Pyr)) on endogenous metabolic pathways were investigated, in human hepatoma (HepG2) and HepG2-derived cell lines expressing various human cytochrome P450s (CYPs). Non-targeted metabolomics results suggested that 1-Br-Pyr and Pyr exposure (625 nM) induced disruption in glutathione and riboflavin metabolism which associated with redox imbalance, through abnormal accumulation of oxidized glutathione, mediated by bioactivation of CYP2E1. Conversely, CYP2C9-mediated 1-Cl-Pyr significantly interfered with glutathione metabolism intermediates, including glycine, L-glutamic acid and pyroglutamic acid. Notably, CYP1A1-mediated Pyr-induced perturbation of amino acid metabolism which associated with nutrition and glycolipid metabolism, resulting in significant upregulation of most amino acids, whereas halogenated derivatives mediated by CYP1A2 substantially downregulated amino acids. In conclusion, this study suggested that Pyr and its halogenated derivatives exert potent effects on endogenous metabolism disruption under the action of various exogenous metabolic enzymes (CYPs). Thus, new evidence was provided to toxicological mechanisms of HPAHs, and reveals potential health risks of HPAHs in inducing diseases caused by redox and amino acid imbalances.


Assuntos
Aminoácidos , Sistema Enzimático do Citocromo P-450 , Glutationa , Humanos , Glutationa/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Aminoácidos/metabolismo , Células Hep G2 , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pirenos/metabolismo , Pirenos/toxicidade
2.
Sci Total Environ ; 829: 154637, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35307418

RESUMO

The toxicity of pyrene (Pyr) and its chlorinated species have not be comprehensively and clearly elucidated. In this study, an integrated approach of metabolomics and transcriptomics were applied to evaluate the hepatotoxicity of Pyr and 1-chloropyrene (1-Cl-Pyr) at human exposure level, using human L02 hepatocytes. After 24 h exposure to Pyr and 1-Cl-Pyr at 5-500 nM, cell viability was not significantly changed. Transcriptomics results showed that exposure to Pyr and 1-Cl-Pyr at 5 and 50 nM obviously altered the gene expression profiles, but did not significantly induce the expression of genes strongly related to the activation of aryl hydrocarbon receptor (AhR), such as CYP1A1, CYP1B1, AHR, ARNT. Pyr and 1-Cl-Pyr both induced a notable metabolic perturbation to L02 cells. Glycerophospholipid metabolism was found to be the most significantly perturbed pathway after exposure to Pyr and 1-Cl-Pyr, indicating their potential damage to the cell membrane. The other significantly perturbed pathways were identified to be oxidative phosphorylation (OXPHOS), glycolysis, and fatty acid ß oxidation, all of which are related to energy production. Exposure to Pyr at 5 and 50 nM induced the up-regulation of fatty acid ß oxidation and OXPHOS. The similar result was observed after exposure to 5 nM 1-Cl-Pyr. In contrast, exposure to 50 nM 1-Cl-Pyr induced the down-regulation of OXPHOS by inhibiting the activity of complex I. The obtained results suggested that the modes of action of Pyr and 1-Cl-Pyr on energy production remarkably varied not only with molecular structure change but also with exposure concentration.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hidrocarbonetos Policíclicos Aromáticos , Citocromo P-450 CYP1A1/metabolismo , Ácidos Graxos/toxicidade , Humanos , Metabolômica , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Pirenos/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...