Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.054
Filtrar
1.
Odontology ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970721

RESUMO

The aim of this study was to compare the level of bone mass in digital orthopantomograms in two populations (medieval and current) using two radiomorphometric indexes, and to correlate the mandibular bone mass value, in the medieval mandible population, with stable isotope data δ13C and δ15N. An observational, cross-sectional, and analytical study on mandibles from two diachronic groups, 15 mandibles from the medieval settlement of La Torrecilla (Granada, Spain) and 15 mandibles from current patients at the Faculty of Dentistry of the University of Granada (Spain), matched by age and sex was conducted. The bone mass density was determined using the Mandibular Cortical Width Index (MCW) and the Mandibular Panoramic Index (PMI) in digital panoramic radiographs. In the medieval group, the values of bone mass density were correlated with those of two stable isotopes (δ13C and δ15N). The mean value of MCW in mm in the medieval group was 3.96 ± 0.60 (mean ± standard deviation) and in the current group was 4.02 ± 1.01. The PMI was 0.33 ± 0.06 and 0.35 ± 0.08 in the medieval and current groups respectively, with similar results in both groups (p = 0.820 and p = 0.575). A negative correlation was found between both morphometric indices and the δ15N isotope (rs = 0.56, p = 0.030 and rs = 0.61, p = 0.016, respectively). The bone mass density in mandibles belonging to the two compared populations, determined by two quantitative radiomorphometric indices, is similar. Within the medieval population, there is an inverse correlation between the δ15N value and bone mass density.

2.
Glob Chang Biol ; 30(7): e17410, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38978457

RESUMO

Forests are the largest carbon sink in terrestrial ecosystems, and the impact of nitrogen (N) deposition on this carbon sink depends on the fate of external N inputs. However, the patterns and driving factors of N retention in different forest compartments remain elusive. In this study, we synthesized 408 observations from global forest 15N tracer experiments to reveal the variation and underlying mechanisms of 15N retention in plants and soils. The results showed that the average total ecosystem 15N retention in global forests was 63.04 ± 1.23%, with the soil pool being the main N sink (45.76 ± 1.29%). Plants absorbed 17.28 ± 0.83% of 15N, with more allocated to leaves (5.83 ± 0.63%) and roots (5.84 ± 0.44%). In subtropical and tropical forests, 15N was mainly absorbed by plants and mineral soils, while the organic soil layer in temperate forests retained more 15N. Additionally, forests retained more N 15 H 4 + $$ {}^{15}\mathrm{N}{\mathrm{H}}_4^{+} $$ than N 15 O 3 - $$ {}^{15}\mathrm{N}{\mathrm{O}}_3^{-} $$ , primarily due to the stronger capacity of the organic soil layer to retain N 15 H 4 + $$ {}^{15}\mathrm{N}{\mathrm{H}}_4^{+} $$ . The mechanisms of 15N retention varied among ecosystem compartments, with total ecosystem 15N retention affected by N deposition. Plant 15N retention was influenced by vegetative and microbial nutrient demands, while soil 15N retention was regulated by climate factors and soil nutrient supply. Overall, this study emphasizes the importance of climate and nutrient supply and demand in regulating forest N retention and provides data to further explore the impacts of N deposition on forest carbon sequestration.


Assuntos
Florestas , Isótopos de Nitrogênio , Nitrogênio , Solo , Nitrogênio/análise , Nitrogênio/metabolismo , Solo/química , Isótopos de Nitrogênio/análise , Atmosfera/química , Sequestro de Carbono , Árvores/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/química
3.
Magn Reson Chem ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004604

RESUMO

Indazole scaffold have two interconvertible tautomeric forms. Regioselectivities were determined for N-benzylations and alkylation of some non-substituted and substituted indazoles, under basic conditions (K2CO3) in DMF. The ratio of regioisomers occurrence between N1:N2 is almost equal. Their structures were established through a combination of NOESY and 1H-13C/15N HMBC NMR methods. Additionally, pyrazolo[3,4-b]pyridines have also three possible tautomeric forms; primarily 1H and 2H, with 7H isomers being rare. Pyrazolo[4,3-b]pyridines have only known two possible tautomeric forms so far; 1H and 2H.

4.
J Environ Manage ; 366: 121837, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39008926

RESUMO

Implementing continue straw returning practices and optimizing nitrogen application can mitigate nitrogen losses and enhance nitrogen use efficiency (NUE) in dryland. 15N-labeled technique offers a robust approach for tracking fertilizer nitrogen fate and assessing nitrogen use efficiency. Based on the continue (>6 yr) experiment, we conducted a two-year experiment (2020 and 2021) to evaluate the effects of straw returning and nitrogen management under plastic film mulching on 15N recovery rates, N2O emissions and maize yield with three treatments: no straw returning with 225 kg N·ha-1 under plastic film mulching (RP-N225), straw returning with 225 kg N·ha-1 under plastic film mulching (RPS-N225), and straw returning with 20% nitrogen reduction (180 kg N·ha-1) under plastic film mulching (RPS-N180). After six years, both continue straw returning with plastic film mulching increased uptake of fertilizer nitrogen, had higher 15N recovery rates than RP-N225, leading to increased 15N accumulation in grain and aboveground biomass, ultimately enhancing yield. The RPS-N225 treatment exhibited the highest spring maize yield and nitrogen harvest index. The RPS-N180 treatment significantly increased maize yield more than RP-N225 and had the highest NUE, partial factor productivity of nitrogen fertilizer, and nitrogen uptake efficiency, with improvements ranging from 1.7 to 2.4%, 19.3-29.6%, and 17.3-27.5%, respectively, compared to the other treatments. Moreover, RPS-N225 resulted in significantly higher cumulative N2O emissions and yield-scaled N2O emissions than the other treatments, whereas the RPS-N180 treatment significantly decreased yield-scaled N2O emissions compared to RP-N225. Hence, combining continue straw returning with appropriate nitrogen reduction can effectively increase maize yield and yield-scaled N2O emissions. By offering insights into optimizing nitrogen fertilizer management after continue maize straw return, this study is contributed to widespread adoption of straw return practices and sustainable agricultural development in semi-arid areas.

5.
Mar Pollut Bull ; 206: 116701, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38991612

RESUMO

This study developed an estimation method for the N2O budget using 15N stable isotope labeling techniques, a dual-layer model and a box model, which was used to elucidate the underlying dynamics of N2O accumulation in Zhanjiang Bay. The results showed that although the net input of N2O during the rainy season was 2.36 times higher than that during the dry season, the overall N2O concentration was only 66.6 % of that during the dry season due to the extended water residence time in the dry season. Our findings highlighted that water residence time was the key factor for the N2O emission, and a longer water residence time was unfavorable for the efflux of N2O through hydrodynamic processes and was more conducive to the production and accumulation of N2O within the bay. This research enhanced our comprehension of N2O dynamics and provided crucial insights for refining nitrogen management strategies and mitigation efforts.

6.
Mar Environ Res ; 199: 106627, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38968803

RESUMO

DNA metabarcoding and stable isotope analysis have significantly advanced our understanding of marine trophic ecology, aiding systematic research on foraging habits and species conservation. In this study, we employed these methods to analyse faecal and blood samples, respectively, to compare the trophic ecology of two Red-billed Tropicbird (Phaethonaethereus; Linnaeus, 1758) colonies on Mexican islands in the Pacific. Trophic patterns among different breeding stages were also examined at both colonies. Dietary analysis reveals a preference for epipelagic fish, cephalopods, and small crustaceans, with variations between colonies and breeding stages. Isotopic values (δ15N and δ13C) align with DNA metabarcoding results, with wider niches during incubation stages. Differences in diet are linked to environmental conditions and trophic plasticity among breeding stages, influenced by changing physiological requirements and prey availability. Variations in dietary profiles reflect contrasting environmental conditions affecting local prey availability.


Assuntos
Código de Barras de DNA Taxonômico , Cadeia Alimentar , Animais , Isótopos de Carbono/análise , Dieta , Isótopos de Nitrogênio/análise , Aves/fisiologia , México
7.
J Agric Food Chem ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990326

RESUMO

Interactions between phenolic compounds and the allergen Mal d 1 are discussed to be the reason for better tolerance of apple cultivars, which are rich in polyphenols. Because Mal d 1 is susceptible to proteolytic digestion and allergenic symptoms are usually restricted to the mouth and throat area, the release of native Mal d 1 during the oral phase is of particular interest. Therefore, we studied the release of Mal d 1 under different in vitro oral digestion conditions and revealed that only 6-15% of the total Mal d 1 present in apples is released. To investigate proposed polyphenol-Mal d 1 interactions, various analytical methods, e.g., isothermal titration calorimetry, 1H-15N-HSQC NMR, and untargeted mass spectrometry, were applied. For monomeric polyphenols, only limited noncovalent interactions were observed, whereas oligomeric polyphenols and browning products caused aggregation. While covalent modifications were not detectable in apple samples, a Michael addition of epicatechin at cysteine 107 in r-Mal d 1.01 was observed.

8.
Mar Pollut Bull ; 206: 116715, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39024910

RESUMO

The contribution of non-indigenous species to the transfer of contaminants in invaded food webs represents an active research area. Here we measured trace metals and CN stable isotopes in five populations of the invasive Atlantic blue crab Callinectes sapidus and in baseline bivalve species from Spain, Italy and Greece. They were used to estimate trophic transfer effects and the trophic position and isotopic niche of C. sapidus. Maximum trophic transfer effects occurred where the crab showed the largest isotopic niches and highest trophic positions; furthermore, the consistency of trace metal profiles between bivalves and crabs co-varied with the trophic position of the latters. Omnivory may influence the success of an invasive species, but also limit its effectiveness for biomonitoring. However, our results indicated that stable isotopes analysis provides a clarifying background where to cast patterns of contamination of the blue crab as well as of other omnivorous biomonitor species.

9.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38849295

RESUMO

The differential soil microbial assimilation of common nitrogen (N) fertilizer compounds into the soil organic N pool is revealed using novel compound-specific amino acid (AA) 15N-stable isotope probing. The incorporation of fertilizer 15N into individual AAs reflected the known biochemistry of N assimilation-e.g. 15N-labelled ammonium (15NH4+) was assimilated most quickly and to the greatest extent into glutamate. A maximum of 12.9% of applied 15NH4+, or 11.7% of 'retained' 15NH4+ (remaining in the soil) was assimilated into the total hydrolysable AA pool in the Rowden Moor soil. Incorporation was lowest in the Rowden Moor 15N-labelled nitrate (15NO3-) treatment, at 1.7% of applied 15N or 1.6% of retained 15N. Incorporation in the 15NH4+ and 15NO3- treatments in the Winterbourne Abbas soil, and the 15N-urea treatment in both soils was between 4.4% and 6.5% of applied 15N or 5.2% and 6.4% of retained 15N. This represents a key step in greater comprehension of the microbially mediated transformations of fertilizer N to organic N and contributes to a more complete picture of soil N-cycling. The approach also mechanistically links theoretical/pure culture derived biochemical expectations and bulk level fertilizer immobilization studies, bridging these different scales of understanding.


Assuntos
Fertilizantes , Isótopos de Nitrogênio , Nitrogênio , Microbiologia do Solo , Fertilizantes/análise , Nitrogênio/metabolismo , Isótopos de Nitrogênio/metabolismo , Isótopos de Nitrogênio/análise , Solo/química , Bactérias/metabolismo , Aminoácidos/metabolismo , Nitratos/metabolismo , Compostos de Amônio/metabolismo
10.
Sci Rep ; 14(1): 14746, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926400

RESUMO

The determination of δ13C and δ15N values is a common method in archaeological isotope analysis-in studying botanical and human remains, dietary practices, and less typically soils (to understand methods of agricultural cultivation, including fertilization). Stable isotope measurements are also commonly used in ecological studies to distinguish different ecosystems and to trace diachronic processes and biogeochemical mechanisms, however, the application of this method in geochemical prospection, for determining historic land-use impact, remains unexplored. The study at hand focuses on a deserted site of a Cistercian manor, dating from the thirteenth to fifteenth centuries. Isotopic measurements of anthropogenically influenced soils have been compared to approximately 400 archaeobotanical, soil, and sediment samples collected globally. The results reveal the potential of isotope measurements in soil to study the impact of past land use as isotope measurements identify specific types of agricultural activities, distinguishing crop production or grazing. δ13C and δ15N ratios also likely reflect fertilization practices and-in this case-the results indicate the presence of cereal cultivation (C3 cycle plants) and fertilization and that the site of the medieval manor was primarily used for grain production rather than animal husbandry.


Assuntos
Isótopos de Carbono , Florestas , Isótopos de Nitrogênio , Solo , Isótopos de Carbono/análise , República Tcheca , História , Isótopos de Nitrogênio/análise , Solo/química
11.
PeerJ ; 12: e17457, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854793

RESUMO

For many species, the relationship between space use and diet composition is complex, with individuals adopting varying space use strategies such as territoriality to facilitate resource acquisition. Coyotes (Canis latrans) exhibit two disparate types of space use; defending mutually exclusive territories (residents) or moving nomadically across landscapes (transients). Resident coyotes have increased access to familiar food resources, thus improved foraging opportunities to compensate for the energetic costs of defending territories. Conversely, transients do not defend territories and are able to redirect energetic costs of territorial defense towards extensive movements in search of mates and breeding opportunities. These differences in space use attributed to different behavioral strategies likely influence foraging and ultimately diet composition, but these relationships have not been well studied. We investigated diet composition of resident and transient coyotes in the southeastern United States by pairing individual space use patterns with analysis of stable carbon (δ13C) and nitrogen (δ15N) isotope values to assess diet. During 2016-2017, we monitored 41 coyotes (26 residents, 15 transients) with GPS radio-collars along the Savannah River area in the southeastern United States. We observed a canopy effect on δ13C values and little anthropogenic food in coyote diets, suggesting 13C enrichment is likely more influenced by reduced canopy cover than consumption of human foods. We also observed other land cover effects, such as agricultural cover and road density, on δ15N values as well as reduced space used by coyotes, suggesting that cover types and localized, resident-like space use can influence the degree of carnivory in coyotes. Finally, diets and niche space did not differ between resident and transient coyotes despite differences observed in the proportional contribution of potential food sources to their diets. Although our stable isotope mixing models detected differences between the diets of resident and transient coyotes, both relied mostly on mammalian prey (52.8%, SD = 15.9 for residents, 42.0%, SD = 15.6 for transients). Resident coyotes consumed more game birds (21.3%, SD = 11.6 vs 13.7%, SD = 8.8) and less fruit (10.5%, SD = 6.9 vs 21.3%, SD = 10.7) and insects (7.2%, SD = 4.7 vs 14.3%, SD = 8.5) than did transients. Our findings indicate that coyote populations fall on a feeding continuum of omnivory to carnivory in which variability in feeding strategies is influenced by land cover characteristics and space use behaviors.


Assuntos
Coiotes , Isótopos de Nitrogênio , Coiotes/fisiologia , Animais , Isótopos de Nitrogênio/análise , Isótopos de Carbono/análise , Carnivoridade , Dieta , Territorialidade , Sudeste dos Estados Unidos , Comportamento Alimentar/fisiologia
12.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892074

RESUMO

Global warming poses a threat to plant survival, impacting growth and agricultural yield. Protein turnover, a critical regulatory mechanism balancing protein synthesis and degradation, is crucial for the cellular response to environmental changes. We investigated the effects of elevated temperature on proteome dynamics in Arabidopsis thaliana seedlings using 15N-stable isotope labeling and ultra-performance liquid chromatography-high resolution mass spectrometry, coupled with the ProteinTurnover algorithm. Analyzing different cellular fractions from plants grown under 22 °C and 30 °C growth conditions, we found significant changes in the turnover rates of 571 proteins, with a median 1.4-fold increase, indicating accelerated protein dynamics under thermal stress. Notably, soluble root fraction proteins exhibited smaller turnover changes, suggesting tissue-specific adaptations. Significant turnover alterations occurred with redox signaling, stress response, protein folding, secondary metabolism, and photorespiration, indicating complex responses enhancing plant thermal resilience. Conversely, proteins involved in carbohydrate metabolism and mitochondrial ATP synthesis showed minimal changes, highlighting their stability. This analysis highlights the intricate balance between proteome stability and adaptability, advancing our understanding of plant responses to heat stress and supporting the development of improved thermotolerant crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Marcação por Isótopo , Isótopos de Nitrogênio , Proteoma , Plântula , Arabidopsis/metabolismo , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Marcação por Isótopo/métodos , Isótopos de Nitrogênio/metabolismo , Proteoma/metabolismo , Algoritmos , Proteômica/métodos , Temperatura , Resposta ao Choque Térmico
13.
Plants (Basel) ; 13(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891257

RESUMO

The rapid restoration and renewal of the moso bamboo logging zone after strip logging has emerged as a key research area, particularly regarding whether nutrient accumulation and utilization in reserve zones can aid in the restoration and regeneration of the logging zone. In this study, a dynamic 15N isotope tracking experiment was conducted by injecting labeled urea fertilizer into bamboo culms. Logging zones and reserve zones of 6 m, 8 m, and 10 m widths were established. The conventional selective logging treatment served as a control (Con). Measurements were taken in May and October to assess the differences in nitrogen accumulation ability, utilization rates, and nutrient content across different organs in bamboo forests at different growth stages and under different treatments. Principal component analysis was conducted to evaluate and determine the importance of each indicator and strip logging treatment comprehensively. The results showed that various bamboo organs exhibited higher nitrogen accumulation and utilization rates during the peak growth period compared to the late growth period. Leaves had the highest nitrogen accumulation and utilization rates than the other organs. The average C content in various bamboo organs under different logging treatments exhibited subtle differences, irrespective of variation in logging width treatments. Bamboo culm exhibited the highest carbon accumulation. The C content in various bamboo organs was higher during the peak growth period than in the late growth period. The nitrogen content peaked in the leaves during the two growth stages and was significantly higher compared to the other organs. Most bamboo organs in the logging zones exhibited relatively higher nitrogen content than in the reserve zone and Con group. The P content was highest in bamboo leaves compared with other organs across the different strip logging treatments. Principal component analysis revealed relatively high absolute values of the coefficients for the C content, bamboo stump C content, and culm Ndff%. Log8 and Res10 zones had the highest comprehensive evaluation scores, indicating that Log8 and Res10 had the best effect on the promotion of nitrogen utilization and nutrient accumulation in various organs of moso bamboo.

14.
Mar Pollut Bull ; 204: 116528, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833950

RESUMO

Anthropogenic input of excess nutrients stimulates massive nitrous oxide (N2O) production in estuaries with distinct seasonal variations. Here, nitrogen isotopic and isotopomeric signatures were utilized to investigate the seasonal dynamics of N2O production and nitrification at the middle reach of the eutrophic Pearl River Estuary in the south of China. Elevated N2O production primarily via ammonia oxidation (> 1 nM-N d-1) occurred from April to November, along with increased temperature and decreased dissolved oxygen concentration. This consistently oxygenated water column showed active denitrification, contributing 20-40 % to N2O production. The water column microbial N2O production generally constituted a minor fraction (10-15 %) of the estuarine water-air interface efflux, suggesting that upstream transport and tidal dilution regulated the dissolved N2O inventory in the middle reach of the estuary. Nitrification (up to 3000 nM-N d-1) played a critical role in bioavailable nitrogen conversion and N2O production, albeit with N2O yields below 0.05 %.


Assuntos
Monitoramento Ambiental , Estuários , Isótopos de Nitrogênio , Óxido Nitroso , Estações do Ano , Óxido Nitroso/análise , China , Isótopos de Nitrogênio/análise , Nitrificação , Eutrofização , Rios/química
15.
Sci Total Environ ; 944: 173652, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38825209

RESUMO

Straw incorporation with nitrogen (N) fertilization is crucial for enhancing soil fertility and minimizing negative environmental impacts by altering the magnitude and direction of soil N transformation processes. However, the response of soil N transformations to long-term carbon (C) and N inputs, and their primary driving factors, remain poorly understood. Thus, a 15N tracing study was conducted to investigate the effects of straw incorporation (AS) and straw removal (NS) with N levels of 0, 150 and 250 kg N ha-1 per season (N0, N150 and N250) on gross N transformation rates in the North China Plain after 6-year trial. Results indicated that at N0, AS significantly increased soil microbial immobilization of nitrate (NO3--N, INO3) and autotrophic nitrification rates (ONH4) compared to NS. With N fertilization, AS increased gross N immobilization (Itotal), ammonium-N immobilization (NH4+-N, INH4), net NH4+-N immobilization (InetNH4) and net NH4+-N absorption rates (AnetNH4). Specifically, at N150, AS significantly increased recalcitrant organic N mineralization rate (MNrec), while significantly reducing ONH4, labile organic N mineralization (MNlab), and gross N mineralization rates (Mtotal). At N250, AnetNH4, MNlab, MNrec and ONH4 under AS were significantly higher than under NS. Nitrogen application significantly increased ONH4, Itotal and INO3 under two straw management practices, and enhanced INH4 and InetNH4 under AS. Compared to N250, N150 significantly increased INH4 and InetNH4 under AS, while decreasing Mtotal. Opposite results were observed under NS. Meanwhile, NO3--N and dissolved organic carbon (DOC) were master factors controlling immobilization, total nitrogen (TN), hydrolysable NH4+-N (HNN) and stable organic N significantly affected AnetNH4, while labile organic N were the key environmental factors affecting MNrec, all of which positively influenced the rates of assimilation, mineralization and clay mineral adsorption. Overall, this study provides new insights into reducing N fertilization under straw incorporation by quantifying soil N transformation processes.


Assuntos
Agricultura , Fertilizantes , Nitrogênio , Solo , China , Nitrogênio/análise , Solo/química , Agricultura/métodos , Nitrificação , Microbiologia do Solo , Monitoramento Ambiental , Água Subterrânea/química
16.
Front Plant Sci ; 15: 1382934, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835866

RESUMO

Objectives: Bamboo is a globally significant plant with ecological, environmental, and economic bene-fits. Choosing suitable native tree species for mixed planting in bamboo forests is an effective measure for achieving both ecological and economic benefits of bamboo forests. However, little is currently known about the impact of bamboo forests on nitrogen cycling and utilization efficiency after mixing with other tree species. Therefore, our study aims to compare the nitrogen cycling in pure bamboo forests with that in mixed forests. Methods: Through field experiments, we investigated pure Qiongzhuea tumidinoda forests and Q. tumidinoda-Phellodendron chinense mixed forests, and utilized 15N tracing technology to explore the fertilization effects and fate of urea-15N in different forest stands. Results: The results demonstrated the following: 1) in both forest stands, bamboo culms account for the highest biomass percentage (42.99%-51.86%), while the leaves exhibited the highest nitrogen concentration and total nitrogen uptake (39.25%-44.52%/29.51%-33.21%, respectively) Additionally, the average nitrogen uptake rate of one-year-old bamboo is higher (0.25 mg kg-1 a-1) compared to other age groups. 2) the urea-15N absorption in mixed forests (1066.51-1141.61 g ha-1, including 949.65-1000.07 g ha-1 for bamboo and 116.86-141.54 g ha-1 for trees) was significantly higher than that in pure forests (663.93-727.62 g ha-1, P<0.05). Additionally, the 15N recovery efficiency of culms, branches, leaves, stumps, and stump roots in mixed forests was significantly higher than that in pure forests, with increases of 43.14%, 69.09%, 36.84%, 51.63%, 69.18%, 34.60%, and 26.89%, respectively. 3) the recovery efficiency of urea-15N in mixed forests (45.81%, comprising 40.43% for bamboo and 5.38% for trees) and the residual urea-15N recovery rate in the 0-60 cm soil layer (23.46%) are significantly higher compared to those in pure forests (28.61%/18.89%). This could be attributed to the nitrogen losses in mixed forests (30.73%, including losses from ammonia volatilization, runoff, leaching, and nitrification-denitrification) being significantly lower than those in pure forests (52.50%). Conclusion: These findings suggest that compared to pure bamboo forests, bamboo in mixed forests exhibits higher nitrogen recovery efficiency, particularly with one-year-old bamboo playing a crucial role.

17.
Water Res ; 260: 121911, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38875859

RESUMO

At present, nitrogen (N) leaching from bioretention systems (BRSs) has become a key issue, imposing constraints on their application, a consequence of N dynamics of both inflow and legacy N at different time scales. In this study, the distinct sources (IL: immediate leaching, FL: fast leaching, SL: slow leaching) and the principal transformation processes of different N species (i.e., NH4+, NO3- and DON) leaching originating from inflow and legacy of BRSs were firstly unveiled by various 15N species labeling (i.e., 15N-NH4+, 15N-NO3- and 15N-DON). Results indicate that: NH4+ leaching was primarily caused by FL from influent organic N and SL from influent NH4+, with mineralization being the main transformation process influencing NH4+ leaching; NO3- leaching primarily originated from SL, with the major proportion attributed to the influent organic N in SL, autotrophic and heterotrophic nitrification were the main influencing factors; DON leaching primarily originated from SL, with similar proportions coming from influent organic N, NH4+, and NO3-, inorganic N assimilation was the principal transformation process affecting DON leaching. This study provides an effective framework for apportioning the leaching sources of different N species, providing valuable insights for the implementation of both inflow and legacy N leaching control measures.

18.
Angew Chem Int Ed Engl ; : e202403144, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773847

RESUMO

Magnetic resonance with hyperpolarized contrast agents is one of the most powerful and noninvasive imaging platforms capable for investigating in vivo metabolism. While most of the utilized hyperpolarized agents are based on 13C nuclei, a milestone advance in this area is the emergence of 15N hyperpolarized contrast agents. Currently, the reported 15N hyperpolarized agents mainly utilize the dissolution dynamic nuclear polarization (d-DNP) protocol. The parahydrogen enhanced 15N probes have proven to be elusive and have been tested almost exclusively in organic solvents. Herein, we designed a reaction based reactive oxygen sensor 15N-boronobenzyl-2-styrylpyridinium (15N-BBSP) which can be hyperpolarized with para-hydrogen. Reactive oxygen species plays a vital role as one of the essential intracellular signalling molecules. Disturbance of the H2O2 level usually represents a hallmark of pathophysiological conditions. This H2O2 probe exhibited rapid responsiveness toward H2O2 and offered spectrally resolvable chemical shifts. We also provide strategies to bring the newly developed probe from the organic reaction solution into a biocompatible injection buffer and demonstrate the feasibility of in vivo 15N signal detection. The present work manifests its great potential not only for reaction based reactive sensing probes but also promises to serve as a platform to develop other contrast agents.

19.
Tree Physiol ; 44(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38769932

RESUMO

Forest trees adopt effective strategies to optimize nitrogen (N) use through internal N recycling. In the context of more recurrent environmental stresses due to climate change, the question remains of whether increased frequency of drought or defoliation threatens this internal N recycling strategy. We submitted 8-year-old beech trees to 2 years of either severe drought (Dro) or manual defoliation (Def) to create a state of N starvation. At the end of the second year before leaf senescence, we labeled the foliage of the Dro and Def trees, as well as that of control (Co) trees, with 15N-urea. Leaf N resorption, winter tree N storage (total N, 15N, amino acids, soluble proteins) and N remobilization in spring were evaluated for the three treatments. Defoliation and drought did not significantly impact foliar N resorption or N concentrations in organs in winter. Total N amounts in Def tree remained close to those in Co tree, but winter N was stored more in the branches than in the trunk and roots. Total N amount in Dro trees was drastically reduced (-55%), especially at the trunk level, but soluble protein concentrations increased in the trunk and fine roots compared with Co trees. During spring, 15N was mobilized from the trunk, branches and twigs of both Co and Def trees to support leaf growth. It was only provided through twig 15N remobilization in the Dro trees, thus resulting in extremely reduced Dro leaf N amounts. Our results suggest that stress-induced changes occur in N metabolism but with varying severity depending on the constraints: within-tree 15N transport and storage strategy changed in response to defoliation, whereas a soil water deficit induced a drastic reduction of the N amounts in all the tree organs. Consequently, N dysfunction could be involved in drought-induced beech tree mortality under the future climate.


Assuntos
Secas , Fagus , Folhas de Planta , Estações do Ano , Árvores , Fagus/fisiologia , Fagus/metabolismo , Fagus/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Árvores/fisiologia , Árvores/metabolismo , Nitrogênio/metabolismo , Ciclo do Nitrogênio
20.
Bioorg Chem ; 148: 107429, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38728910

RESUMO

Cannabinoids bind to cannabinoid receptors CB1 and CB2 and their antitumoral activity has been reported against some various cancer cell lines. Some synthetic cannabinoids possessing indole rings such as JWH-015 and JWH-133 particularly bind to the cannabinoid CB2 receptor and it was reported that they inhibit the proliferation and growth of various cancer cells without their psychoactive effects. However, the pharmacological action mechanisms of the cannabinoids are completely unknown. In this study, we report the synthesis of some new cannabinoidic novel indoles and evaluate their anticancer activity on various cancerous and normal cell lines (U87, RPMI 8226, HL60 and L929) using several cellular and molecular assays including MTT assay, real-time q-PCR, scratch assay, DAPI assay, Annexin V-PE/7AAD staining, caspase3/7 activity tests. Our findings indicated that compounds 7, 10, 13, 16, and 17 could reduce cell viability effectively. Compound 17 markedly increased proapoptotic genes (BAX, BAD, and BIM), tumor suppressor gene (p53) expression levels as well as the BAX/BCL-2 ratio in U87 cells. In addition, 17 inhibited cell migration. Based on these results, 17 was chosen for determining the mechanism of cell death in U87 cells. DAPI and Annexin V-7AAD staining results showed that 17 induced apoptosis, moreover activated caspase 3/7 significantly. Hence, compound 17, was selected as a lead compound for further pharmacomodulation. To rationalize the observed biological activities of 17, our study also included a comprehensive analysis using molecular docking and MD simulations. This integrative approach revealed that 17 fits tightly into the active site of the CB2 receptor and is involved in key interactions that may be responsible for its anti-proliferative effects.


Assuntos
Antineoplásicos , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Indóis , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Indóis/farmacologia , Indóis/química , Indóis/síntese química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Relação Dose-Resposta a Droga , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Modelos Moleculares , Sobrevivência Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Acetamidas/farmacologia , Acetamidas/síntese química , Acetamidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...