Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(24): e2312778, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38421936

RESUMO

Hydrogenation of biomass-derived chemicals is of interest for the production of biofuels and valorized chemicals. Thermochemical processes for biomass reduction typically employ hydrogen as the reductant at elevated temperatures and pressures. Here, the authors investigate the direct electrified reduction of 5-hydroxymethylfurfural (HMF) to a precursor to bio-polymers, 2,5-bis(hydroxymethyl)furan (BHMF). Noting a limited current density in prior reports of this transformation, a hybrid catalyst consisting of ternary metal nanodendrites mixed with a cationic ionomer, the latter purposed to increase local pH and facilitate surface proton diffusion, is investigated. This approach, when implemented using Ga-doped Ag-Cu electrocatalysts designed for p-d orbital hybridization, steered selectivity to BHMF, achieving a faradaic efficiency (FE) of 58% at 100 mA cm-2 and a production rate of 1 mmol cm-2 h-1, the latter a doubling in rate compared to the best prior reports.

2.
J Agric Food Chem ; 71(32): 12300-12310, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37530036

RESUMO

During beer and wine production, Maillard reaction products (MRPs) are formed, which have a particular influence on the taste and aroma of the fermented beverages. Compared to beer, less is known about individual Maillard compounds and especially corresponding yeast metabolites in wine. In this study, 36 selected wines (Amarone, Ripasso, red, and white wines) were analyzed by HPLC-UV and GC-MS concerning the amounts of 3-deoxyglucosone (3-DG), 3-deoxygalactosone (3-DGal), methylglyoxal (MGO), glyoxal (GO), 5-hydroxymethylfurfural (HMF), and furfural (FF). 3-DG was found to be the dominant compound with values from 3.3 to 35.1 mg/L. The contents of 3-DGal, MGO, GO, HMF, and FF were in a single digit range. In addition to MRPs, the yeast metabolites originating from 3-DG, namely, 3-deoxyfructose and 3-deoxy-2-ketogluconic acid, 2,5-bis(hydroxymethyl)furan and 5-formyl-2-furancarboxylic acid, both formed from HMF, and the FF metabolites furfuryl alcohol and furan-2-carboxylic acid were detected and quantitated in wines for the first time. The amounts were between 0.1 and 53.5 mg/L with especially high contents of the oxidation products. Differences between red and white wines indicate that enological parameters like grape variety, production method, and aging may have an influence on the MRP contents in wines.


Assuntos
Saccharomyces cerevisiae , Vinho , Reação de Maillard , Óxido de Magnésio , Aldeído Pirúvico/análise , Glioxal , Produtos Finais de Glicação Avançada
3.
Front Chem ; 11: 1200469, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408562

RESUMO

Selective electrochemical hydrogenation (ECH) of biomass-derived unsaturated organic molecules has enormous potential for sustainable chemical production. However, an efficient catalyst is essential to perform an ECH reaction consisting of superior product selectivity and a higher conversion rate. Here, we examined the ECH performance of reduced metal nanostructures, i.e., reduced Ag (rAg) and reduced copper (rCu) prepared via electrochemical or thermal oxidation and electrochemical reduction process, respectively. Surface morphological analysis suggests the formation of nanocoral and entangled nanowire structure formation for rAg and rCu catalysts. rCu exhibits a slight enhancement in ECH reaction performance in comparison to the pristine Cu. However, the rAg exhibits more than two times higher ECH performance without compromising the selectivity for 5-(HydroxyMethyl) Furfural (HMF) to 2,5-bis(HydroxyMethyl)-Furan (BHMF) formation in comparison to the Ag film. Moreover, a similar ECH current density was recorded at a reduced working potential of 220 mV for rAg. This high performance of rAg is attributed to the formation of new catalytically active sites during the Ag oxidation and reduction processes. This study demonstrates that rAg can potentially be used for the ECH process with minimum energy consumption and a higher production rate.

4.
ChemSusChem ; 15(13): e202200237, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35363424

RESUMO

Catalytic transfer hydrogenation (CTH) with alcohols has been increasingly employed as effective tool for biomass upgrading, however, relying predominantly on secondary alcohols. Herein, for the first time skeletal CuZnAl catalysts were employed for the activation of a primary alcohol, ethanol, for the hydrogenation 5-hydroxymethylfurfual (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF) under a mild condition. The catalysts were extensively characterized to reveal the structure characteristics and surface compositions. Over 90 % yield of BHMF were obtained over the optimal CuZnAl-0.5 catalyst at the reaction temperatures of 100-120 °C. Reaction kinetics indicated a competitive adsorption between HMF and ethanol on the catalyst surface, with the activation of ethanol being the rate-determining step (apparent activation energy Ea =70.9 kJ mol-1 ). Preliminary adsorption investigation using combined attenuated total reflectance infrared spectroscopy and density functional theory calculation proposed a η2 -(O,O)-aldehyde, furoxy perpendicular configuration of HMF on catalyst surface. The catalyst was further applied to the CTH of various aldehydes to the corresponding alcohols with high yields, demonstrating the broad applicability of the current system.


Assuntos
Etanol , Furaldeído , Catálise , Furaldeído/análogos & derivados , Furaldeído/química , Hidrogenação
5.
J Colloid Interface Sci ; 615: 346-356, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35144235

RESUMO

In this work, the development of noble metal-free NiTiO3/ZnIn2S4 (1:0.25 (S1), 1:0.5 (S2), 1:1 (S3), and 1:2 (S4)) heterojunction photocatalysts possessing optimal band edge positions suitable for efficient production of H2 from water and in situ reduction of biomass derivative, 5-hydroxymethylfurfural (HMF) to value-added 2,5-Bis(hydroxymethyl)furan (BHMF) in the absence of any external reducing agent is presented. The electron microscopy analysis of these heterojunctions revealed that ZnIn2S4 nanosheets are decorated uniformly over the surface of NiTiO3 microrods. Interestingly, heterojunction, S3 having NiTiO3/ZnIn2S4 (1:1) showed the best photocatalytic activity with a high H2 generation rate of 4.43 mmol g-1h-1 which is about eight times higher than that of pure ZnIn2S4. Further, the photocatalytic H2 evolution activity of S3 was coupled with in situ reduction of biomass derivative, HMF to obtain value-added chemical, BHMF with > 99% yield along with 100% selectivity. This high photocatalytic activity of S3 is aided by the Z-scheme heterojunction between NiTiO3 and ZnIn2S4. Moreover, photocatalyst, S3, showed excellent photostability and retained the catalytic activity for several cycles of reuse. Overall, this work represents a unique demonstration of H2 generation and high yield production of an important commodity chemical, BHMF from biomass-derivative and provides a greener path for harvesting solar energy and its conversion to chemical energy.


Assuntos
Luz , Energia Solar , Furanos , Metais , Água
6.
Bioresour Technol ; 344(Pt B): 126299, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34748976

RESUMO

2,5-Bis(hydroxymethyl)furan (BHMF) is one kind of important upgraded derivatives of biobased 5-hydroxymethylfuran (5-HMF). This study verified the feasibility of one-pot chemoenzymatic conversion of biobased D-fructose to BHMF by cascade catalysis with deep eutectic solvent Lactic acid:Betaine (LA:B) and reductase biocatalyst in LA:B - H2O. Using D-fructose (36.0 g/L) as feedstock, the yield of 5-HMF reached 91.6% in DES LA:B - H2O (15:85, v:v) at 150 °C for 1.5 h. Using D-fructose (2 mol D-fructose/mol 5-HMF) as cosubstrate, commercial 5-HMF (125 mM) was converted into BHMF at 90.7% yield by whole-cells of Pseudomonas putida S12 within 24 h at 30 °C and pH 8.0. In addition, Pseudomonas Putida S12 could efficiently transform D-fructose-valorized 5-HMF into BHMF [98.4% yield, based on 5-HMF; 90.1% yield, based on substrate D-fructose] in DES LA:B - H2O. An efficient chemoenzymatic valorization of D-fructose to BHMF was developed in a benign reaction system.


Assuntos
Pseudomonas putida , Betaína , Solventes Eutéticos Profundos , Frutose , Furaldeído , Furanos , Ácido Láctico , Solventes
7.
J Fungi (Basel) ; 7(12)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34947029

RESUMO

The establishment of lignocellulosic biorefineries is dependent on microorganisms being able to cope with the stressful conditions resulting from the release of inhibitory compounds during biomass processing. The yeast Kluyveromyces marxianus has been explored as an alternative microbial factory due to its thermotolerance and ability to natively metabolize xylose. The lignocellulose-derived inhibitors furfural and 5-hydroxymethylfurfural (HMF) are considered promising building-block platforms that can be converted into a wide variety of high-value derivatives. Here, several K. marxianus strains, isolated from cocoa fermentation, were evaluated for xylose consumption and tolerance towards acetic acid, furfural, and HMF. The potential of this yeast to reduce furfural and HMF at high inhibitory loads was disclosed and characterized. Our results associated HMF reduction with NADPH while furfural-reducing activity was higher with NADH. In addition, furans' inhibitory effect was higher when combined with xylose consumption. The furan derivatives produced by K. marxianus in different conditions were identified. Furthermore, one selected isolate was efficiently used as a whole-cell biocatalyst to convert furfural and HMF into their derivatives, furfuryl alcohol and 2,5-bis(hydroxymethyl)furan (BHMF), with high yields and productivities. These results validate K. marxianus as a promising microbial platform in lignocellulosic biorefineries.

8.
J Agric Food Chem ; 69(43): 12807-12817, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34672546

RESUMO

Glycation and caramelization reactions in malt lead to the formation of 1,2-dicarbonyl compounds, which come in contact with yeast during fermentation. In the present study, the metabolic fate of 5-hydroxymethylfurfural (HMF) and 1,2-dicarbonyl compounds (3-deoxyglucosone, 3-deoxygalactosone, 3-deoxypentosone, 3,4-dideoxyglucosone-3-ene) was assessed in the presence of Saccharomyces cerevisiae. HMF is degraded very fast by yeast with the formation of 2,5-bis(hydroxymethyl)furan (BHMF). By contrast, only 7-30% of 250 µM dicarbonyl compounds is degraded within 48 h. The respective deoxyketoses, 3-deoxyfructose (3-DF), 3-deoxytagatose, 3-deoxypentulose, and 3,4-dideoxyfructose, were identified as metabolites. While 17.8% of 3-deoxyglucosone was converted to 3-deoxyfructose, only about 0.1% of 3-deoxypentosone was converted to 3-deoxypentulose during 48 h. Starting with the parent dicarbonyl compounds, the synthesis of all deoxyketose metabolites was achieved by applying a metal-catalyzed reduction in the presence of molecular hydrogen. In a small set of commercial beer samples, BHMF and all deoxyketoses were qualitatively detected. 3-DF was quantitated in the four commercial beer samples at concentrations between 0.4 and 10.1 mg/L.


Assuntos
Cerveja , Saccharomyces cerevisiae , Cerveja/análise , Fermentação , Furaldeído/análogos & derivados , Furaldeído/análise
9.
ACS Appl Mater Interfaces ; 13(20): 23675-23688, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33974392

RESUMO

The electrochemical transformation of biomass-derived compounds (e.g., aldehyde electroreduction to alcohols) is gaining increasing interest due to the sustainability of this process that can be exploited to produce value-added products from biowastes and renewable electricity. In this framework, the electrochemical conversion of 5-hydroxymethylfurfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF) is studied. Nanostructured Ag deposited on Cu is an active and selective electrocatalyst for the formation of BHMF in basic media. However, this catalyst deserves further research to elucidate the role of the morphology and size of the coated particles in its performance as well as the actual catalyst surface composition and its stability. Herein, Ag is coated on Cu open-cell foams by electrodeposition and galvanic displacement to generate different catalyst morphologies, deepening on the particle growth mechanism, and the samples are compared with bare Ag and Cu foams. The chemical-physical and electrochemical properties of the as-prepared and spent catalysts are correlated to the electroactivity in the HMF conversion and its selectivity toward the formation of BHMF during electroreduction. AgCu bimetallic nanoparticles or dendrites are formed on electrodeposited and displaced catalysts, respectively, whose surface is Cu-enriched along with electrochemical tests. Both types of bimetallic AgCu particles evidence a superior electroactive surface area as well as an enhanced charge and mass transfer in comparison with the bare Ag and Cu foams. These features together with a synergistic role between Ag and Cu superficial active sites could be related to the twofold enhanced selectivity of the Ag/Cu catalysts for the selective conversion of HMF to BHMF, that is, >80% selectivity and ∼ 100% conversion, and BHMF productivity values (0.206 and 0.280 mmol cm-2 h-1) ca. 1.5-3 times higher than those previously reported.

10.
Biotechnol Bioeng ; 115(9): 2148-2155, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29733430

RESUMO

The compound 5-hydroxymethylfurfural (HMF) has attracted much attention due to its versatility as an important bio-based platform chemical. Here, we engineered Raoultella ornithinolytica BF60 as a whole-cell biocatalyst for a highly efficient synthesis of 2,5-furandicarboxylic acid (FDCA) from HMF. Specifically, various expression cassettes of key genes, such as hmfH (gene encoding HMF/furfural oxidoreductase [HmfH]) and hmfo (gene encoding HMF oxidase), were designed and constructed for fine-tuning FDCA synthesis from HMF. The FDCA titer reached 108.9 mM with a yield of 73% when 150 mM HMF was used as the substrate. This yield was 16% higher than that without balancing key gene expression in FDCA synthetic pathways. Additionally, to strengthen HmfH expression at the translational level, ribosomal binding site (RBS) sequences, which were computationally designed using the RBS calculator, were assembled into HmfH expression cassettes. The HmfH expression in the presence of these sequences enhanced FDCA titer to 139.6 mM with a yield of 93%. Next, previously unknown candidate genes, such as aldR, dkgA, akR, AdhP1, and AdhP2, which encode enzymes that catalyze the reactions leading to the formation of the undesired product 2,5-bis(hydroxymethyl)furan (HMF alcohol) from HMF, were identified by RNA-sequencing-based transcriptomics. Combinatorial deletion of these five candidate genes led to an 88% reduction in HMF alcohol formation and 12% enhancement in FDCA production (175.6 mM). Finally, FDCA synthesis was further improved by the substrate pulse-feeding strategy, and 221.5 mM FDCA with an 88.6% yield was obtained. The combinatorial synthetic pathway fine-tuning and comparative transcriptomics approach may be useful for improving the biocatalysis efficiency of other industrially useful compounds.


Assuntos
Ácidos Dicarboxílicos/metabolismo , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Furanos/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Enzimas/genética , Enzimas/metabolismo , Furaldeído/análogos & derivados , Furaldeído/metabolismo , Expressão Gênica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
J Microbiol Biotechnol ; 28(12): 1999-2008, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30661342

RESUMO

The compound 2,5-furandicarboxylic acid (FDCA), an important bio-based monomer for the production of various polymers, can be obtained from 5-hydroxymethylfurfural (HMF). However, efficient production of FDCA from HMF via biocatalysis has not been well studied. In this study, we report the identification of key genes that are involved in FDCA synthesis and then the engineering of Raoultella ornithinolytica BF60 for biocatalytic oxidation of HMF to FDCA using its resting cells. Specifically, previously unknown candidate genes, adhP3 and alkR, which were responsible for the reduction of HMF to the undesired product 2,5-bis(hydroxymethyl)furan (HMF alcohol), were identified by transcriptomic analysis. Combinatorial deletion of these two genes resulted in 85.7% reduction in HMF alcohol formation and 23.7% improvement in FDCA production (242.0 mM). Subsequently, an aldehyde dehydrogenase, AldH, which was responsible for the oxidation of the intermediate 5-formyl-2-furoic acid (FFA) to FDCA, was identified and characterized. Finally, FDCA production was further improved by overexpressing AldH, resulting in a 96.2% yield of 264.7 mM FDCA. Importantly, the identification of these key genes not only contributes to our understanding of the FDCA synthesis pathway in R. ornithinolytica BF60 but also allows for improved FDCA production efficiency. Moreover, this work is likely to provide a valuable reference for producing other furanic chemicals.


Assuntos
Vias Biossintéticas/genética , Ácidos Dicarboxílicos/metabolismo , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Furanos/metabolismo , Engenharia Genética , Aldeído Oxirredutases/genética , Proteínas de Bactérias/genética , Biocatálise , Furaldeído/análogos & derivados , Furaldeído/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Cinética , Redes e Vias Metabólicas/genética
12.
Bioresour Technol ; 247: 1215-1220, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28943097

RESUMO

Biocatalytic upgrading of bio-based platform chemical 5-hydroxymethylfurfural (5-HMF) to 2,5-bis(hydroxymethyl)furan (BHMF) is currently of great interest due to the product specificity, mild reaction and high efficiency. In this work, 200mM 5-HMF could be effectively biotransformed to BHMF at 90.6% with highly 5-HMF-tolerant recombinant E. coli CCZU-K14 whole cells at pH 6.5 and 30°C under the optimum reaction conditions (cosubstrate glucose 1.0mol glucose/(mol 5-HMF), D-xylose 400mM, l-glutamic acid 250mM, Mg2+ 1.5mM, 0.2mol ß-cyclodextrin/(mol 5-HMF), CTAB (cetyltrimethyl ammonium bromide) 12.5mM, and 0.1g wet cells/mL). It was found that E. coli CCZU-K14 was highly tolerant to 5-HMF (up to 400mM). Effective bioreduction of biomass-derived 5-HMF (≤200) to BHMF was successfully demonstrated in this study. In conclusion, this strategy showed high potential application for the synthesis of BHMF.


Assuntos
Escherichia coli , Furaldeído/análogos & derivados , Furanos , Biomassa
13.
Lett Appl Microbiol ; 63(1): 38-44, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27163966

RESUMO

UNLABELLED: 2,5-Bis(hydroxymethyl)furan monoacetate (BHMF-OAc) compound was isolated from the culture filtrate secreted by Streptomyces sp. CEN26, an endophytic actinomycete found in the root nodes of Centella asiatica (L.) Urban. The compound was purified using various chromatographic techniques and bioassay-guided fractionation. The compound was then identified through a structural characterization using (1) H, (13) C-NMR and MS analysis. After the purification and identification process, a series of experiments were conducted in order to test whether the compound affected conidial germination of Alternaria brassicicola. Findings show that the compound inhibited and deformed the conidial germination of A. brassicicola. Its minimal inhibitory concentrations of MIC90 and MIC50 were found to be 100 and 25 ppm respectively. Further experimentation show that the aforementioned concentrations of MIC90 and MIC50 completely suppressed the appressorium formation of the fungal pathogen. Therefore, the BHMF-OAc compound does have antifungal properties that help protect plants from infection by A. brassicicola. SIGNIFICANCE AND IMPACT OF THE STUDY: Endophytic Streptomyces sp. CEN26 produces 2,5-bis(hydroxymethyl)furan monoacetate (BHMF-OAc), which is a compound that inhibits the infection process of Alternaria brassicicola in cabbage. Such an antifungal property would allow for the use of the BHMF-OAc as an alternative to chemical fungicides.


Assuntos
Alternaria/efeitos dos fármacos , Antifúngicos/farmacologia , Brassica/microbiologia , Fungicidas Industriais/farmacologia , Furanos/farmacologia , Doenças das Plantas/microbiologia , Streptomyces/metabolismo , Antifúngicos/isolamento & purificação , Centella/microbiologia , Fungicidas Industriais/isolamento & purificação , Furanos/isolamento & purificação , Testes de Sensibilidade Microbiana , Esporos Fúngicos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...