Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Cell Signal ; 5(2): 51-56, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726221

RESUMO

In the quest for improving the clinical outcome of patients with metastatic genitourinary cancers, including metastatic renal cell carcinoma (mRCC), the emphasis often is on finding new targeted therapies. However, two studies by Jordan et al. (Oncogenesis 2020) and Wang et al. (Cancer Cell Int 2022) demonstrate the feasibility of improving the efficacy of a modestly effective drug Sorafenib against mRCC by attacking a mechanism hijacked by RCC cells for inactivating Sorafenib. The studies also identified hyaluronic acid synthase -3 (HAS3) as a bonafide target of Sorafenib in RCC cells. The studies demonstrate that an over-the-counter drug Hymecromone (4-methylumbelliferone) blocks inactivation of Sorafenib in RCC cells and improves its efficacy against mRCC through the inhibition of HAS3 expression and HA signaling. In the broader context, improving the efficacy of "old and failed drugs" that have favorable safety profiles should increase the availability of effective treatments for patients with advanced cancers.

2.
Molecules ; 29(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257254

RESUMO

A representative naturally occurring coumarin, 4-methylumbelliferone (5), was exposed to 50 kGy of gamma ray, resulting in four newly generated dihydrocoumarin products 1-4 induced by the gamma irradiation. The structures of these new products were elucidated by interpretation of spectroscopic data (NMR, MS, [α]D, and UV). The unusual bisdihydrocoumarin 4 exhibited improved tyrosinase inhibitory capacity toward mushroom tyrosinase with IC50 values of 19.8 ± 0.5 µM as compared to the original 4-methylumbelliferone (5). A kinetic analysis also exhibited that the potent metabolite 4 had non-competitive modes of action. Linkage of the hydroxymethyl group in the C-3 and C-4 positions on the lactone ring probably enhances the tyrosinase inhibitory effect of 4-methylumbelliferone (5). Thus, the novel coumarin analog 4 is an interesting new class of tyrosinase inhibitory candidates that requires further examination.


Assuntos
Agaricales , Monofenol Mono-Oxigenase , Himecromona , Cinética , Cumarínicos/farmacologia
3.
Matrix Biol ; 123: 34-47, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783236

RESUMO

Pancreatic ß-cell dysfunction and death are central to the pathogenesis of type 2 diabetes (T2D). We identified a novel role for the inflammatory extracellular matrix polymer hyaluronan (HA) in this pathophysiology. Low concentrations of HA were present in healthy pancreatic islets. However, HA substantially accumulated in cadaveric islets of T2D patients and islets of the db/db mouse model of T2D in response to hyperglycemia. Treatment with 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis, or the deletion of the main HA receptor CD44, preserved glycemic control and insulin concentrations in db/db mice despite ongoing weight gain, indicating a critical role for this pathway in T2D pathogenesis. 4-MU treatment and the deletion of CD44 likewise preserved glycemic control in other settings of ß-cell injury including streptozotocin treatment and islet transplantation. Mechanistically, we found that 4-MU increased the expression of the apoptosis inhibitor survivin, a downstream transcriptional target of CD44 dependent on HA/CD44 signaling, on ß-cells such that caspase 3 activation did not result in ß-cell apoptosis. These data indicated a role for HA accumulation in diabetes pathogenesis and suggested that it may be a viable target to ameliorate ß-cell loss in T2D. These data are particularly exciting, because 4-MU is already an approved drug (also known as hymecromone), which could accelerate translation of these findings to clinical studies.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Camundongos , Animais , Humanos , Ácido Hialurônico/metabolismo , Diabetes Mellitus Tipo 2/genética , Himecromona/farmacologia , Ilhotas Pancreáticas/metabolismo , Obesidade/genética , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo
4.
Alcohol Clin Exp Res (Hoboken) ; 47(8): 1544-1559, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37332093

RESUMO

BACKGROUND: Chronic ethanol overconsumption promotes alcohol-associated liver disease (ALD), characterized by hepatocyte injury, inflammation, hepatic stellate cell (HSC) activation, and fibrosis. Hyaluronan (HA) concentration is greater in livers and blood from advanced ALD patients than patients with advanced non-ALD. In the liver, HSCs are the major HA producers. The relationship between ethanol, HA, and HSC activation is incompletely understood. Thus, here, we tested the hypothesis that ethanol enhances HSC activation in a HA-dependent manner. METHODS: Liver tissue microarrays (TMAs) containing steatotic livers from donors with or without a history of alcohol consumption were used to measure HA and collagen content. Mice were fed a moderate (2%, v/v) ethanol-containing diet or pair-fed control diet for 2 days, after which they were given a single carbon tetrachloride (CCl4 ) injection. To inhibit HA synthesis, we provided 4-methylumbelliferone (4MU) daily. We used LX2 cells, a human HSC cell line, to determine the impact ethanol had on LPS responses, with or without concurrent 4MU exposure. RESULTS: CCl4 induced liver injury, but it did not differ between ethanol or control diet fed mice with or without 4MU treatment. Ethanol feeding enhanced CCl4 -induced hepatic HA content, which was paralleled by HA synthase (Has)2 transcript abundance; 4MU treatment normalized both. Consistently, HSC activation, assessed by measuring αSMA mRNA and protein, was induced by CCl4 exposure, enhanced by ethanol feeding, and normalized by 4MU. Hepatic transcripts, but not protein, for Ccl2 were enhanced by ethanol feeding and normalized by 4MU exposure. Finally, ethanol-exposed LX2 cells made more LPS-stimulated CCL2 mRNA and protein than cells not exposed to ethanol; 4MU prevented this. CONCLUSION: These data show that ethanol augments HSC activation through HA synthesis and enhances hepatic profibrogenic features. Therefore, targeting HSC HA production could potentially attenuate liver disease in ALD patients.

5.
Int J Mol Med ; 52(1)2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37232339

RESUMO

Osteoarthritis (OA) is a progressive joint disorder, which is principally characterized by the degeneration and destruction of articular cartilage. The cytoskeleton is a vital structure that maintains the morphology and function of chondrocytes, and its destruction is a crucial risk factor leading to chondrocyte degeneration and OA. Hyaluronan synthase­2 (HAS­2) is a key enzyme in synthesizing hyaluronic acid (HA) in vivo. The synthesis of high molecular weight HA catalyzed by HAS­2 serves a vital role in joint movement and homeostasis; however, it is unclear what important role HAS­2 plays in maintaining chondrocyte cytoskeleton morphology and in cartilage degeneration. The present study downregulated the expression of HAS­2 by employing 4­methylumbelliferone (4­MU) and RNA interference. In vitro experiments, including reverse transcription­quantitative PCR, western blotting, laser scanning confocal microscopy and flow cytometry were subsequently performed. The results revealed that downregulation of HAS­2 could activate the RhoA/ROCK signaling pathway, cause morphological abnormalities, decrease expression of the chondrocyte cytoskeleton proteins and promote chondrocyte apoptosis. In vivo experiments, including immunohistochemistry and Mankin's scoring, were performed to verify the effect of HAS­2 on the chondrocyte cytoskeleton, and it was revealed that inhibition of HAS­2 could cause cartilage degeneration. In conclusion, the present results revealed that downregulation of HAS­2 could activate the RhoA/ROCK pathway, cause abnormal morphology and decrease chondrocyte cytoskeleton protein expression, leading to changes in the signal transduction and biomechanical properties of chondrocytes, promotion of chondrocyte apoptosis and the induction of cartilage degeneration. Moreover, the clinical application of 4­MU may cause cartilage degeneration. Therefore, targeting HAS­2 may provide a novel therapeutic strategy for delaying chondrocyte degeneration, and the early prevention and treatment of OA.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Citoesqueleto/metabolismo , Regulação para Baixo , Hialuronan Sintases/metabolismo , Osteoartrite/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Transdução de Sinais
6.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768453

RESUMO

4-methylumbelliferone (4MU) is a well-known hyaluronic acid synthesis inhibitor and an approved drug for the treatment of cholestasis. In animal models, 4MU decreases inflammation, reduces fibrosis, and lowers body weight, serum cholesterol, and insulin resistance. It also inhibits tumor progression and metastasis. The broad spectrum of effects suggests multiple and yet unknown targets of 4MU. Aiming at 4MU target deconvolution, we have analyzed publicly available data bases, including: 1. Small molecule library Bio Assay screening (PubChemBioAssay); 2. GO pathway databases screening; 3. Protein Atlas Database. We also performed comparative liver transcriptome analysis of mice on normal diet and mice fed with 4MU for two weeks. Potential targets of 4MU public data base analysis fall into two big groups, enzymes and transcription factors (TFs), including 13 members of the nuclear receptor superfamily regulating lipid and carbohydrate metabolism. Transcriptome analysis revealed changes in the expression of genes involved in bile acid metabolism, gluconeogenesis, and immune response. It was found that 4MU feeding decreased the accumulation of the glycogen granules in the liver. Thus, 4MU has multiple targets and can regulate cell metabolism by modulating signaling via nuclear receptors.


Assuntos
Himecromona , Transcriptoma , Camundongos , Animais , Himecromona/farmacologia , Fígado/metabolismo , Inflamação/metabolismo , Transdução de Sinais , Metabolismo dos Lipídeos
7.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835210

RESUMO

4-methylumbelliferone (4MU) has been suggested as a potential therapeutic agent for a wide range of neurological diseases. The current study aimed to evaluate the physiological changes and potential side effects after 10 weeks of 4MU treatment at a dose of 1.2 g/kg/day in healthy rats, and after 2 months of a wash-out period. Our findings revealed downregulation of hyaluronan (HA) and chondroitin sulphate proteoglycans throughout the body, significantly increased bile acids in blood samples in weeks 4 and 7 of the 4MU treatment, as well as increased blood sugars and proteins a few weeks after 4MU administration, and significantly increased interleukins IL10, IL12p70 and IFN gamma after 10 weeks of 4MU treatment. These effects, however, were reversed and no significant difference was observed between control treated and 4MU-treated animals after a 9-week wash-out period.


Assuntos
Ácido Hialurônico , Himecromona , Animais , Ratos , Ácido Hialurônico/metabolismo , Himecromona/efeitos adversos , Himecromona/uso terapêutico , Interleucina-12
8.
Eur J Clin Invest ; 53(3): e13899, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36346481

RESUMO

BACKGROUND: Dysregulated hyaluronic acid (HA) metabolism has been shown to be implicated in several pathologies including endometriosis. 4-Methylumbelliferone (4MU) is an HA synthesis inhibitor with proven antitumour activity. In this study, we aim to evaluate the effect of 4MU on endometriosis development both in vivo and in vitro. METHODS: Endometriosis was surgically induced by uterine tissue auto-transplantation in 32 two-month-old BALB/c mice. Animals were designated into the early or late starting treatment group, which initiated on day 2 or day 15 after surgery, respectively. Within each group, 4MU 200 mg/kg/day or vehicle (Control) were administered by oesophageal gavage for 28 days. After sacrifice, the percentage of developed lesions, lesion size, cell proliferation, vascularization and HA deposition within the endometriotic-like lesions were evaluated. Cell viability was assessed in endometrial epithelial cells (ECC-1) and in endometrial stromal cells (t-HESC); and migration was evaluated in t-HESC. RESULTS: There was a significant reduction in the percentage of developed lesions in mice that started the 4MU treatment on day 2 compared with its respective control group, and compared with those that started treatment on day 15. However, no significant changes were found when analysing endometriotic-like lesion's cell proliferation, vascularization and HA deposition. In vitro, both cell viability and migration were inhibited by 4MU treatment. CONCLUSIONS: The inhibition of HA synthesis could be a beneficial and alternative option to treat endometriosis at the early stage of the disease. Further research is necessary to elucidate 4MU's mechanism of action and better strategies for delivering this promising drug.


Assuntos
Endometriose , Humanos , Feminino , Camundongos , Animais , Endometriose/tratamento farmacológico , Endometriose/metabolismo , Endometriose/patologia , Ácido Hialurônico/farmacologia , Ácido Hialurônico/uso terapêutico , Útero/metabolismo , Útero/patologia , Neovascularização Patológica , Células Epiteliais/metabolismo , Proliferação de Células
9.
Cells ; 11(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36497040

RESUMO

Radioresistant (RR) cells are poor prognostic factors for tumor recurrence and metastasis after radiotherapy. The hyaluronan (HA) synthesis inhibitor, 4-methylumbelliferone (4-MU), shows anti-tumor and anti-metastatic effects through suppressing HA synthase (HAS) expression in various cancer cells. We previously reported that the administration of 4-MU with X-ray irradiation enhanced radiosensitization. However, an effective sensitizer for radioresistant (RR) cells is yet to be established, and it is unknown whether 4-MU exerts radiosensitizing effects on RR cells. We investigated the radiosensitizing effects of 4-MU in RR cell models. This study revealed that 4-MU enhanced intracellular oxidative stress and suppressed the expression of cluster-of-differentiation (CD)-44 and cancer stem cell (CSC)-like phenotypes. Interestingly, eliminating extracellular HA using HA-degrading enzymes did not cause radiosensitization, whereas HAS3 knockdown using siRNA showed similar effects as 4-MU treatment. These results suggest that 4-MU treatment enhances radiosensitization of RR cells through enhancing oxidative stress and suppressing the CSC-like phenotype. Furthermore, the radiosensitizing mechanisms of 4-MU may involve HAS3 or intracellular HA synthesized by HAS3.


Assuntos
Hialuronan Sintases , Himecromona , Neoplasias Bucais , Radiossensibilizantes , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Hialuronan Sintases/genética , Neoplasias Bucais/radioterapia , Recidiva Local de Neoplasia , Radiossensibilizantes/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Tolerância a Radiação , Himecromona/farmacologia
10.
Cancer Cell Int ; 22(1): 421, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581895

RESUMO

BACKGROUND: Hyaluronic acid (HA) promotes cancer metastasis; however, the currently approved treatments do not target HA. Metastatic renal carcinoma (mRCC) is an incurable disease. Sorafenib (SF) is a modestly effective antiangiogenic drug for mRCC. Although only endothelial cells express known SF targets, SF is cytotoxic to RCC cells at concentrations higher than the pharmacological-dose (5-µM). Using patient cohorts, mRCC models, and SF combination with 4-methylumbelliferone (MU), we discovered an SF target in RCC cells and targeted it for treatment. METHODS: We analyzed HA-synthase (HAS1, HAS2, HAS3) expression in RCC cells and clinical (n = 129), TCGA-KIRC (n = 542), and TCGA-KIRP (n = 291) cohorts. We evaluated the efficacy of SF and SF plus MU combination in RCC cells, HAS3-transfectants, endothelial-RCC co-cultures, and xenografts. RESULTS: RCC cells showed increased HAS3 expression. In the clinical and TCGA-KIRC/TCGA-KIRP cohorts, higher HAS3 levels predicted metastasis and shorter survival. At > 10-µM dose, SF inhibited HAS3/HA-synthesis and RCC cell growth. However, at ≤ 5-µM dose SF in combination with MU inhibited HAS3/HA synthesis, growth of RCC cells and endothelial-RCC co-cultures, and induced apoptosis. The combination inhibited motility/invasion and an HA-signaling-related invasive-signature. We previously showed that MU inhibits SF inactivation in RCC cells. While HAS3-knockdown transfectants were sensitive to SF, ectopic-HAS3-expression induced resistance to the combination. In RCC models, the combination inhibited tumor growth and metastasis with little toxicity; however, ectopic-HAS3-expressing tumors were resistant. CONCLUSION: HAS3 is the first known target of SF in RCC cells. In combination with MU (human equivalent-dose, 0.6-1.1-g/day), SF targets HAS3 and effectively abrogates mRCC.

11.
Mol Genet Metab Rep ; 33: 100914, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36092250

RESUMO

Fabry disease is an X-linked glycolipid storage disorder caused by mutations in the GLA gene which result in a deficiency in the lysosomal enzyme alpha galactosidase A (AGA). As a result, the glycolipid substrate Gb3 accumulates in critical tissues and organs producing a progressive debilitating disease. In Fabry disease up to 80% of patients experience life-long neuropathic pain that is difficult to treat and greatly affects their quality of life. The molecular mechanisms by which deficiency of AGA leads to neuropathic pain are not well understood, due in part to a lack of in vitro models that can be used to study the underlying pathology at the cellular level. Using CRISPR-Cas9 gene editing, we generated two clones with mutations in the GLA gene from a human embryonic stem cell line. Our clonal cell lines maintained normal stem cell morphology and markers for pluripotency, and showed the phenotypic characteristics of Fabry disease including absent AGA activity and intracellular accumulation of Gb3. Mutations in the predicted locations in exon 1 of the GLA gene were confirmed. Using established techniques for dual-SMAD inhibition/WNT activation, we were able to show that our AGA-deficient clones, as well as wild-type controls, could be differentiated to peripheral-type sensory neurons that express pain receptors. This genetically and physiologically relevant human model system offers a new and promising tool for investigating the cellular mechanisms of peripheral neuropathy in Fabry disease and may assist in the development of new therapeutic strategies to help lessen the burden of this disease.

12.
Mol Genet Metab Rep ; 31: 100871, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35782611

RESUMO

Fabry disease is a glycosphingolipid storage disorder that is caused by a genetic deficiency of the lysosomal enzyme alpha-galactosidase A (AGA, EC 3.2.1.22). As a result, the glycolipid substrate, globotriaosylceramide (Gb3) accumulates in various cell types throughout the body producing a multisystem disease that affects the vascular, cardiac, renal, and nervous systems. A hallmark of this disorder is neuropathic pain that occurs in up to 80% of Fabry patients and has been characterized as a small fiber neuropathy. The molecular mechanism by which changes in AGA activity produce neuropathic pain is not clear, in part due to a lack of relevant model systems. Using 50B11 cells, an immortalized dorsal root ganglion neuron with nociceptive characteristics derived from rat, we used CRISPR-Cas9 gene editing of the galactosidase alpha (GLA) gene for AGA to create two stable knock-out clones that have the phenotypic characteristics of Fabry cells. The cell lines show severely reduced lysosomal AGA activity in homogenates as well as impaired degradation of Gb3 in cultured cells. This phenotype is stable over long-term culture. Similar to the unedited 50B11 cell line, the clones differentiate in response to forskolin and extend neurites. Flow cytometry experiments demonstrate that the gene-edited cells express TRPV1 pain receptor at increased levels compared to control, suggesting a possible mechanism for increased pain sensitization in Fabry patients. Our 50B11 cell lines show phenotypic characteristics of Fabry disease and grow well under standard cell culture conditions. These cell lines can provide a convenient model system to help elucidate the molecular mechanism of pain in Fabry patients.

13.
Molecules ; 27(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35268679

RESUMO

Mast cells (MCs) are an important treatment target for high-affinity IgE Fc receptor (FcεRI)-mediated allergic diseases. The plant-derived molecule 4-methylumbelliferone (4-MU) has beneficial effects in animal models of inflammation and autoimmunity diseases. The aim of this study was to examine 4-MU effects on MC activation and probe the underlying molecular mechanism(s). We sensitized rat basophilic leukemia cells (RBLs) and mouse bone marrow-derived mast cells (BMMCs) with anti-dinitrophenol (DNP) immunoglobulin (Ig)E antibodies, stimulated them with exposure to DNP-human serum albumin (HSA), and then treated stimulated cells with 4-MU. Signaling-protein expression was determined by immunoblotting. In vivo allergic responses were examined in IgE-mediated passive cutaneous anaphylaxis (PCA) and ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) mouse models. 4-MU inhibited ß-hexosaminidase activity and histamine release dose-dependently in FcεRI-activated RBLs and BMMCs. Additionally, 4-MU reduced cytomorphological elongation and F-actin reorganization while down-regulating IgE/Ag-induced phosphorylation of SYK, NF-κB p65, ERK1/2, p38, and JNK. Moreover, 4-MU attenuated the PCA allergic reaction (i.e., less ear thickening and dye extravasation). Similarly, we found that 4-MU decreased body temperature, serum histamine, and IL4 secretion in OVA-challenged ASA model mice. In conclusion, 4-MU had a suppressing effect on MC activation both in vitro and in vivo and thus may represent a new strategy for treating IgE-mediated allergic conditions.


Assuntos
Receptores de IgE
14.
Biomedicines ; 10(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35203523

RESUMO

Integrin-dependent adhesion of neutrophils to tissue, accompanied by the development of neutrophil-induced inflammation, occurs both in the focus of infection and in the absence of infection in metabolic disorders such as reperfusion after ischemia, diabetes mellitus, or the development of pneumonia in patients with cystic fibrosis or viral diseases. Hyaluronic acid (HA) plays an important role in the recruitment of neutrophils to tissues. 4-methylumbilliferon (4-MU), an inhibitor of HA synthesis, is used to treat inflammation, but its mechanism of action is unknown. We studied the effect of 4-MU on neutrophil adhesion and concomitant secretion using adhesion to fibronectin as a model for integrin-dependent adhesion. 4-MU reduced the spreading of neutrophils on the substrate and the concomitant secretion of granule proteins, including pro-inflammatory components. 4-MU also selectively blocked adhesion-induced release of the free amino acid hydroxylysine, a product of lysyl hydroxylase, which can influence cell invasion by modifying the extracellular matrix. Finally, 4-MU inhibited the formation of cytonemes, the extracellular membrane secretory structures containing the pro-inflammatory bactericides of the primary granules. The anti-inflammatory effect of 4-MU may be associated with the suppression of secretory processes that ensure the neutrophil invasion and initiate inflammation. We suggest that HA, due to the peculiarities of its synthesis, can promote the release of secretory carriers from the cell and 4-MU can block this process.

15.
Int J Biol Macromol ; 206: 467-480, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35202638

RESUMO

Lung cancer is the most common cause of cancer death worldwide. Thereby, new treatment strategies as targeting nano-therapy present promising possibilities to control the aggressiveness of lung cancer. Dual CD44 and folate receptors targetable nanocapsule based on folic-polyethylene glycol-hyaluronic (FA-PEG-HA) were fabricated to improve the therapeutic activity of 4-Methylumbelliferone (4-MU) toward lung cancer. In this study, we fabricate 4-MU Nps as a hybrid polymeric (protamine) protein (albumin) nanocapsule, then functionalized by targeting layer to form 4-MU@FA-PEG-HA Nps with encapsulation efficacy 96.15%. The in vitro study of free 4-MU, 4-MU Nps and 4-MU@FA-PEG-HA Nps on A549 lung cancer cells reveal that the 4-MU Nps and 4-MU@FA-PEG-HA Nps were more cytotoxic than free 4-MU on A549 cells. The observed therapeutic activity of 4-MU@FA-PEG-HA Nps on urethane-induced lung cancer model, potentiality revealed a tumor growth inhibition via apoptotic mechanisms and angiogenesis inhibition. The results were supported by Enzyme-linked immunosorbent assay (ELIZA) of transforming growth factors (TGFß1) and serum HA, histopathological analysis as well as immunohistochemical Ki67, CD44, Bcl-2 and caspace-3 staining. Moreover, 4-MU@FA-PEG-HA Nps exhibited a promising safety profile. Hence, it is expected that our developed novel nano-system can be used for potential application on tumor therapy for lung cancer.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Nanocápsulas , Nanopartículas , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ácido Fólico , Humanos , Ácido Hialurônico , Himecromona/efeitos adversos , Neoplasias Pulmonares/tratamento farmacológico , Nanocápsulas/uso terapêutico , Polietilenoglicóis/uso terapêutico
16.
Nat Prod Res ; 36(3): 707-713, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32757631

RESUMO

Series of thioether derivatives containing 4-methylumbelliferone fused oxazole moiety were designed and synthesised, their structures were fully characterized by 1H NMR, 13C NMR and HR-ESI-MS as well. Moreover, the in vitro antifungal potency of the title compounds were preliminarily evaluated for their possible use as a fungicide. Meanwhile, ethyl thioethers 3aa and 3ba displayed remarkable inhibitory effect against the mycelium growth of Valsa mali and Botrytis cinerea with EC50 of 12-16 µg/mL. Furthermore, compounds 3aa and 3ba also exhibited > 88% protective and curative effect against B. cinerea on tomato fruits at 90 µg/mL. Additionally, the environmental toxicity of the title compounds against the brine shrimp Artemia salina were evaluated as well. The results indicated that most of the title compounds exhibited weak toxic to aquatic organism A. salina.


Assuntos
Antifúngicos , Fungicidas Industriais , Antifúngicos/farmacologia , Botrytis , Fungicidas Industriais/farmacologia , Himecromona , Oxazóis/farmacologia , Relação Estrutura-Atividade , Sulfetos/farmacologia
17.
Front Oncol ; 11: 710061, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34676159

RESUMO

In antineoplastic therapy, one of the challenges is to adjust the treatment to the needs of each patient and reduce the toxicity caused by conventional antitumor strategies. It has been demonstrated that natural products with antitumoral properties are less toxic than chemotherapy and radiotherapy. Also, using already developed drugs allows developing substantially less costly methods for the discovery of new treatments than traditional drug development. Candidate molecules proposed for drug repositioning include 4-methylumbelliferone (4-MU), an orally available dietetic product, derivative of coumarin and mainly found in the plant family Umbelliferae or Apiaceae. 4-MU specifically inhibits the synthesis of glycosaminoglycan hyaluronan (HA), which is its main mechanism of action. This agent reduces the availability of HA substrates and inhibits the activity of different HA synthases. However, an effect independent of HA synthesis has also been observed. 4-MU acts as an inhibitor of tumor growth in different types of cancer. Particularly, 4-MU acts on the proliferation, migration and invasion abilities of tumor cells and inhibits the progression of cancer stem cells and the development of drug resistance. In addition, the effect of 4-MU impacts not only on tumor cells, but also on other components of the tumor microenvironment. Specifically, 4-MU can potentially act on immune, fibroblast and endothelial cells, and pro-tumor processes such as angiogenesis. Most of these effects are consistent with the altered functions of HA during tumor progression and can be interrupted by the action of 4-MU. While the potential advantage of 4-MU as an adjunct in cancer therapy could improve therapeutic efficacy and reduce toxicities of other antitumoral agents, the greatest challenge is the lack of scientific evidence to support its approval. Therefore, crucial human clinical studies have yet to be done to respond to this need. Here, we discuss and review the possible applications of 4-MU as an adjunct in conventional antineoplastic therapies, to achieve greater therapeutic success. We also describe the main proposed mechanisms of action that promote an increase in the efficacy of conventional antineoplastic strategies in different types of cancer and prospects that promote 4-MU repositioning and application in cancer therapy.

18.
Life Sci ; 287: 120065, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34678263

RESUMO

AIMS: Despite continuous improvement in the treatment of acute leukemia, new therapies are still needed to overcome resistance and reduce adverse effects. The aim of this work was to study the tumor-suppressive effects of 4-methylumbelliferone (4MU) in human acute leukemia cell lines. In addition, we aimed to address the extent of these effects in relation to the inhibition of hyaluronic acid (HA) synthesis. MAIN METHODS: HA levels were measured by an ELISA-like assay. Human acute leukemia cell lines were treated with 4MU, HA or their combination. Cell proliferation was assessed by the [3H]-Tdr uptake assay, metabolic activity by the XTT assay and cell death was determined by DAPI, AO/EB and AnnexinV-PE/7-AAD staining. Senescence induction was evaluated by SA-ß-Gal and C12FDG staining. Total and surface RHAMM expression levels were assessed by flow cytometry and fluorescence microscopy. KEY FINDINGS: 4MU reduced metabolic activity and inhibited cell proliferation in all leukemia cells, and these effects were explained by the induction of senescence or cell death depending on the cell line evaluated. Exogenous HA failed to prevent most of the tumor-suppressive effects observed. Results from this work suggest that the tumor-suppressive effects exerted by 4MU would be explained by HA-synthesis-independent mechanisms. SIGNIFICANCE: These findings broaden the knowledge of 4MU as a potential treatment in acute leukemia. We report for the first time the existence of tumor-suppressive effects of 4MU on human acute leukemia cell lines that are independent of its role as HA-synthesis inhibitor.


Assuntos
Antineoplásicos/farmacologia , Ácido Hialurônico/biossíntese , Himecromona/farmacologia , Leucemia Mieloide Aguda/metabolismo , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Relação Dose-Resposta a Droga , Humanos , Himecromona/uso terapêutico , Células Jurkat , Leucemia Mieloide Aguda/tratamento farmacológico , Células U937
19.
J Orthop Surg Res ; 16(1): 507, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404442

RESUMO

BACKGROUND: The anterior cruciate ligament (ACL) has a key role as a dynamic stabilizer of the knee joints, and ACL dysfunction caused by traumatic or degenerative rupture accelerates osteoarthritis progression. Thus, it is important to prevent the degenerative rupture of the ACL. 4-Methylumbelliferone (4-MU), a pre-approved drug, exerts anti-inflammatory effects in osteoarthritis chondrocytes. It was originally used as an inhibitor of hyaluronan synthesis in chondrocytes. METHODS: In this study, we investigated whether 4-MU affects the expression of catabolic factors, such as matrix metalloproteinase (MMP)-1, MMP-3, and interleukin (IL)-6, in ACL-derived cells and ACL explant cultures using immunohistochemistry, real-time RT-qPCR, and capillary western immunoassay. Furthermore, the hyaluronan concentration was evaluated using a colorimetric assay. Statistical analyses were conducted using analysis of variance for multi-group comparisons, followed by Tukey or Tukey-Kramer post hoc test. RESULTS: Our results revealed, for the first time, that 4-MU suppressed the IL-ß-induced upregulation of pro-catabolic factors, such as MMP-1, MMP-3, and IL-6, in ACL-derived cells. This suppressive effect was also observed in the cultured ligament tissues in ex vivo experiments. 4-MU also reversed an enhanced dependence on glycolysis in IL-1ß-activated ACL-derived cells. Furthermore, we found that the suppressive effects of 4-MU were exerted directly and not through the inhibition of hyaluronan synthesis. CONCLUSIONS: We conclude that 4-MU could be an effective and useful treatment for knee osteoarthritis, owing to its anti-inflammatory effect on, not only chondrocytes but also on ligament cells.


Assuntos
Lesões do Ligamento Cruzado Anterior , Osteoartrite do Joelho , Ligamento Cruzado Anterior , Anti-Inflamatórios , Humanos , Ácido Hialurônico/farmacologia , Himecromona/farmacologia , Interleucina-6 , Metaloproteinase 3 da Matriz
20.
J Histochem Cytochem ; 69(6): 415-428, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34080894

RESUMO

Although many studies have focused on a role for hyaluronan (HA) of interstitial extracellular matrix (presumably produced by non-vascular "stromal" cells) in regulating vascular growth, we herein examine the influence of "autocrine HA" produced by vascular endothelial cells themselves on tubulogenesis, using human umbilical vein endothelial cells (HUVECs) in angiogenic and vasculogenic three-dimensional collagen gel cultures. Relative to unstimulated controls, tubulogenic HUVECs upregulated HAS2 mRNA and increased the synthesis of cell-associated HA (but not HA secreted into media). Confocal microscopy/immunofluorescence on cultures fixed with neutral-buffered 10% formalin (NBF) revealed cytoplasmic HAS2 in HUVEC cords and tubes. Cultures fixed with NBF (with cetylpyridinium chloride added to retain HA), stained for HA using "affinity fluorescence" (biotinylated HA-binding protein with streptavidin-fluor), and viewed by confocal microscopy showed HA throughout tube lumens, but little/no HA on the abluminal sides of the tubes or in the surrounding collagen gel. Lumen formation in angiogenic and vasculogenic cultures was strongly suppressed by metabolic inhibitors of HA synthesis (mannose and 4-methylumbelliferone). Hyaluronidase strongly inhibited lumen formation in angiogenic cultures, but not in vasculogenic cultures (where developing lumens are not open to culture medium). Collectively, our results point to a role for autocrine, luminal HA in microvascular sprouting and lumen development. (J Histochem Cytochem 69: 415-428, 2021).


Assuntos
Células Endoteliais/metabolismo , Ácido Hialurônico/metabolismo , Neovascularização Fisiológica , Técnicas de Cultura de Células , Colágeno/metabolismo , Células Endoteliais/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...