RESUMO
Atherosclerosis is a chronic inflammatory vascular disease. It was confirmed that activation of ferroptosis could induce the development of AS. Meanwhile, Krüppel-like factor 7 was reported to be involved in AS. Nevertheless, the detailed function of KLF7 in ferroptosis during AS has not been not explored. To mimic AS in vitro, human microvascular endothelial cells (HMEC-1) were exposed to 100 µg/mL ox-LDL. Cell viability was tested using MTT assay, and commercial kits were applied to examine the ferroptosis. Flow cytometry was applied for testing lipid ROS level. The relation between KLF7 and AlkB homolog 5 (ALKBH5) was explored using dual luciferase and ChIP assays. Furthermore, MeRIP was used to test the m6A modification level of ACSL4. KLF7 and ALKBH5 overexpression reversed ox-LDL-induced ferroptosis (characterized by up-regulated MDA, iron, Fe2+, lipid ROS and ACSL4, and down-regulated GSH and GPX4) in HMEC-1 cells. In addition, KLF7 transcriptionally activated ALKBH5. ALKBH5 decreased the level of ACSL4 by inhibiting the m6A modification of ACSL4. Furthermore, upregulation of KLF7 restored ox-LDL-induced ferroptosis in HMEC-1 cells via upregulating ALKBH5. KLF7 repressed ox-LDL-induced ferroptosis in HMEC-1 cells through promoting ALKBH5 mediated m6A demethylation of ACSL4. Our study might supply a new therapeutic strategy for AS treatment.
RESUMO
Background: As one of the most common and abundant internal modifications of eukaryotic mRNA, N6-methyladenosine (m6A) modifications are closely related to placental development. Ferroptosis is a newly discovered form of programmed cell death. During placental development, placental trophoblasts are susceptible to ferroptosis. However, the interactions of m6A and ferroptosis in trophoblast physiology and injury are unclear. Methods: Recurrent miscarriage (RM) was selected as the main gestational disease in this study. Published data (GSE76862) were used to analyze the gene expression profiles in patients with RM. The extent of m6A modification in total RNA of villous tissues between patients with RM and healthy controls (HC) was compared. ALKBH5 (encoding AlkB homolog 5, RNA demethylase) was selected as the candidate gene for further research. Quantitative real-time reverse transcription PCR, western blotting, and immunohistochemistry (IHC) confirmed the elevated expression of ALKBH5 in the cytotrophoblasts of patients with RM. Then, cell counting kit-8 assays, glutathione disulfide/glutathione quantification, 2',7'-dichlorfluorescein-diacetate staining, and malonaldehyde assays were used to explore the alterations of ferroptosis-related characteristics following RAS-selective lethal (RSL3) stimulation after overexpression of ALKBH5. Thereafter, we re-analyzed the published RNA sequencing data upon knockdown of ALKBH5, combined with published tissue RNA-seq data, and FTL (encoding ferritin light chain) was identified as the ferroptosis-related gene in cytotrophoblasts of patients with RM that is regulated by ALKBH5. Finally, western blotting and IHC confirmed the increased expression of FTL in the cytotrophoblasts from patients with RM. Results: Total m6A levels were decreased in patients with RM. The most significant differentially m6A-related gene was ALKBH5, which was increased in patients with RM. In vitro cell experiments showed that treatment with RSL3 resulted in increased cell death and upregulated ALKBH5 expression. Overexpression of ALKBH5 alleviated RSL3-induced HTR8 cell death and caused decreased levels of intracellular oxidation products. Published transcriptome sequencing revealed that FTL was the major ferroptosis-related gene regulated by ALKBH5 in the villous tissues of patients with RM. Consistent with the expression of ALKBH5, FTL was increased by RSL3-induction and increased in patients with RM. Conclusion: Elevated ALKBH5 alleviated RSL3-induced cytotrophoblast cell death by promoting the expression of FTL in patients with RM. Our results supported the view that ALKBH5 is an important regulator of the ferroptosis-related etiology of RM and suggested that ALKBH5 could be responsible for epigenetic aberrations in RM pathogenesis.
Assuntos
Aborto Habitual , Homólogo AlkB 5 da RNA Desmetilase , Ferroptose , Trofoblastos , Humanos , Ferroptose/genética , Feminino , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Aborto Habitual/genética , Aborto Habitual/metabolismo , Aborto Habitual/patologia , Trofoblastos/metabolismo , Trofoblastos/patologia , Gravidez , Adulto , Estudos de Casos e ControlesRESUMO
This study investigates the role of ALKBH5-mediated m6A demethylation in T-cell acute lymphoblastic leukemia (T-ALL). T-ALL cell lines (HPB-ALL, MOLT4, Jurkat, CCRF-CEM) and human T cells were analyzed. CCRF-CEM and Jurkat cells were transfected with si-ALKBH5, miR-20a-5p-inhibitor, and pcDNA3.1-DDX5. The expression levels of ALKBH5, miR-20a-5p, and DDX5 in these cells were determined using qRT-PCR and Western blotting. Cell viability, proliferation, colony formation, and apoptosis were assessed using CCK-8, EdU staining, colony formation assay, and flow cytometry. mRNA m6A levels were quantified with an m6A RNA methylation detection reagent, and RNA immunoprecipitation was employed to measure the enrichment of DGCR8 and m6A on the primary transcript pri-miR-20a of miR-20a-5p. Dual-luciferase assay confirmed the binding relationship between miR-20a-5p and DDX5. Results showed that ALKBH5 and DDX5 were upregulated in T-ALL tissues and cells, whereas miR-20a-5p was downregulated. Silencing ALKBH5 inhibited T-ALL cell viability, colony formation, and proliferation, while promoting apoptosis. These effects were reversed by miR-20a-5p inhibition or DDX5 overexpression. ALKBH5 reduced the relative m6A level in T-ALL cells and decreased miR-20a-5p expression by reducing DGCR8 binding to pri-miR-20a-5p. miR-20a-5p suppressed DDX5 transcription. In conclusion, ALKBH5-mediated m6A demethylation decreases DGCR8 binding to pri-miR-20a, thereby repressing miR-20a-5p expression and enhancing DDX5 expression, ultimately inhibiting T-ALL cell apoptosis and promoting proliferation.
RESUMO
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. Hepatic lipid deposition is a key factor in the development of NAFLD. N6-methyladenosine (m6A) modification, the most prevalent mRNA modification in eukaryotic cells, plays an important role in regulating hepatic lipid metabolism. However, its potential role in hepatic lipid deposition remains poorly understood. Histological and immunohistochemistry studies were used to investigate lipid deposition in free fatty acids (FFAs)-incubated LO2 cells, high-fat diet-fed mice models and clinical samples. Stable overexpression and knockdown of AlkB homolog 5 (ALKBH5) was manipulated to investigate the effects of ALKBH5 on m6A methylation and lipid metabolism in hepatocytes. RNA-sequencing transcriptome analysis and methylated RNA immunoprecipitation-quantitative-PCR analysis were used to reveal the potential downstream molecular targets of ALKBH5. ALKBH5 was down-regulated in fatty liver compared to normal liver in both humans and mice. Overexpression of ALKBH5 significantly improved FFA-induced lipid accumulation and promoted autophagosome-lysosome fusion in hepatocytes. Meanwhile, knockdown of ALKBH5 significantly increased the expression of microtubule-associated protein 1A/1B-light chain 3B and Sequestosome 1, leading to impaired autophagic flux and further lipid deposition in hepatocytes under FFA incubation. Overexpression of vacuolar protein sorting 11 (VPS11) reversed FFA-induced lipid accumulation in ALKBH5-silenced hepatocytes. Mechanistically, ALKBH5 alleviated hepatic lipid deposition and impaired autophagic flux by removing the m6A modification on VPS11 mRNA to promote its translation. Collectively, our findings revealed an epigenetic mechanism by which ALKBH5 alleviates hepatic lipid deposition by restoring VPS11-dependent autophagic flux, providing a potential target to counteract NAFLD.
RESUMO
Osteoporosis, a common bone disease in older individuals, involves the progression influenced by N6-methyladenosine (m6A) modification. This study aimed to elucidate the effects of VDAC3 m6A modification on human bone mesenchymal stromal cell (BMSC) senescence and osteogenic differentiation. BMSCs were treated with etoposide to induce senescence. Senescence was assessed by ß-galactosidase staining and quantitative real-time PCR (qPCR), and osteogenic differentiation was evaluated using Western blot, alkaline phosphatase, and alizarin red S staining. VDAC3 and ALKBH5 expression were quantified by qPCR, and their interaction was assessed by RNA immunoprecipitation (RIP) and luciferase reporter assay. m6A methylation was analyzed using the Me-RIP assay. VDAC3 expression was significantly decreased in etoposide-treated BMSCs (1.00 ± 0.13 vs. 0.26 ± 0.06). VDAC3 overexpression reduced etoposide-induced senescence and promoted osteogenic differentiation. ALKBH5 overexpression inhibited VDAC3 m6A modification (1.00 ± 0.095 vs. 0.233 ± 0.177) and its stability. ALKBH5 knockdown decreased etoposide-induced senescence and promoted osteogenic differentiation, effects that were reversed by VDAC3 knockdown. YTHDF1 was identified as the m6A methylation reader, and its overexpression inhibited VDAC3 stability. We demonstrated that ALKBH5 inhibited osteogenic differentiation of etoposide-induced senescent cells through the inhibition of VDAC3 m6A modification, and YTHDF1 acted as the m6A methylation reader. These findings provide a novel theoretical basis for the treatment of osteoporosis.
Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Diferenciação Celular , Senescência Celular , Etoposídeo , Células-Tronco Mesenquimais , Osteogênese , Osteoporose , Humanos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Senescência Celular/efeitos dos fármacos , Osteoporose/metabolismo , Osteoporose/genética , Osteoporose/patologia , Osteoporose/tratamento farmacológico , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Etoposídeo/farmacologia , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/farmacologia , Canais de Ânion Dependentes de Voltagem/metabolismo , Canais de Ânion Dependentes de Voltagem/genética , Células Cultivadas , MetilaçãoRESUMO
Tumors reprogram their metabolism to generate complex neoplastic ecosystems. Here, we demonstrate that glioblastoma (GBM) stem cells (GSCs) display elevated activity of the malate-aspartate shuttle (MAS) and expression of malate dehydrogenase 2 (MDH2). Genetic and pharmacologic targeting of MDH2 attenuated GSC proliferation, self-renewal, and in vivo tumor growth, partially rescued by aspartate. Targeting MDH2 induced accumulation of alpha-ketoglutarate (αKG), a critical co-factor for dioxygenases, including the N6-methyladenosine (m6A) RNA demethylase AlkB homolog 5, RNA demethylase (ALKBH5). Forced expression of MDH2 increased m6A levels and inhibited ALKBH5 activity, both rescued by αKG supplementation. Reciprocally, targeting MDH2 reduced global m6A levels with platelet-derived growth factor receptor-ß (PDGFRß) as a regulated transcript. Pharmacological inhibition of MDH2 in GSCs augmented efficacy of dasatinib, an orally bioavailable multi-kinase inhibitor, including PDGFRß. Collectively, stem-like tumor cells reprogram their metabolism to induce changes in their epitranscriptomes and reveal possible therapeutic paradigms.
RESUMO
The X-box-binding protein 1 (XBP1) is an important transcription factor during endoplasmic reticulum stress response, which was reported as an oncogene in non-small cell lung cancer (NSCLC) tumorigenesis and development. However, the regulatory mechanism of XBP1 expression in NSCLC progression was less reported. N6-methyladenosine (m6A) RNA modification is an emerging epigenetic regulatory mechanism for gene expression. This study aimed to investigate the regulatory role of the m6A modification in XBP1 expression in NSCLC. We identified XBP1 as a downstream target of ALKBH5-mediated m6A modification in A549 and PC9 cells. Knockdown of ALKBH5 increased the m6A modification and the stability of XBP1 mRNA, while overexpression of ALKBH5 had the opposite effect. Furthermore, IGF2BP3 was confirmed to be a reader of XBP1 m6A methylation and to enhance the stability of XBP1 mRNA. Additionally, IGF2BP3 knockdown significantly reversed the increase in XBP1 stability mediated by ALKBH5 depletion. In vivo and in vitro experiments demonstrated that ALKBH5/IGF2BP3 promotes the proliferation, migration, and invasion of NSCLC cells by upregulating XBP1 expression. In addition, we also showed that XBP1 promoted NSCLC cell proliferation, migration, and invasion by activating IL-6-JAK-STAT3 signaling. Our research suggested that ALKBH5-mediated m6A modification of XBP1 facilitates NSCLC progression through the IL-6-JAK-STAT3 pathway.
RESUMO
Glioblastoma (GBM) is the most aggressive form of glioma, characterized by high mortality and poor prognosis. Dysregulation of microRNAs (miRNAs) plays a critical role in the progression and metastasis of GBM. This study aimed to investigate the role and molecular mechanism of miR-124-3p in GBM. Levels of miR-124-3p, EPHA2, and ALKBH5 were measured using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, migration, invasion, and stemness were assessed using the Cell Counting Kit-8 (CCK-8), colony formation, Transwell, and sphere formation assays, respectively. Bioinformatics prediction, dual-luciferase reporter assays, and RNA pull-down experiments were employed to validate the target of miR-124-3p. RNA binding protein immunoprecipitation (RIP) and methylated RNA immunoprecipitation (Me-RIP) were utilized to evaluate the regulation of miR-124-3p maturation by ALKBH5. The results indicated that overexpression of miR-124-3p inhibited the proliferation, migration, invasion, and stemness of GBM cells. EPHA2 was identified as a direct downstream target of miR-124-3p, and its overexpression reversed the inhibitory effects of miR-124-3p on cellular functions. Furthermore, miR-124-3p targeted EPHA2 to inactivate the Wnt/ß-catenin pathway. Additionally, ALKBH5 negatively regulated miR-124-3p by impeding its processing. In conclusion, knockdown of ALKBH5 promoted the processing of pri-miR-124-3p, increasing mature miR-124-3p levels, which inhibited the malignant behaviors of GBM cells by targeting EPHA2. These findings highlight the importance of the ALKBH5/miR-124-3p/EPHA2 axis in GBM.
Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Proliferação de Células , Glioblastoma , MicroRNAs , Receptor EphA2 , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/fisiologia , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Proliferação de Células/genética , Receptor EphA2/genética , Receptor EphA2/metabolismo , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Movimento Celular/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Invasividade Neoplásica/genéticaRESUMO
RNA N6-methyladenosine (m6A) demethylase AlkB homolog 5 (ALKBH5) plays a crucial role in regulating innate immunity. Lysine acylation, a widespread protein modification, influences protein function, but its impact on ALKBH5 during viral infections has not been well characterized. This study investigates the presence and regulatory mechanisms of a previously unidentified lysine acylation in ALKBH5 and its role in mediating m6A modifications to activate antiviral innate immune responses. We demonstrate that ALKBH5 undergoes lactylation, which is essential for an effective innate immune response against DNA herpesviruses, including herpes simplex virus type 1 (HSV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), and mpox virus (MPXV). This lactylation attenuates viral replication. Mechanistically, viral infections enhance ALKBH5 lactylation by increasing its interaction with acetyltransferase ESCO2 and decreasing its interaction with deacetyltransferase SIRT6. Lactylated ALKBH5 binds interferon-beta (IFN-ß) messenger RNA (mRNA), leading to demethylation of its m6A modifications and promoting IFN-ß mRNA biogenesis. Overexpression of ESCO2 or depletion of SIRT6 further enhances ALKBH5 lactylation to strengthen IFN-ß mRNA biogenesis. Our results identify a posttranslational modification of ALKBH5 and its role in regulating antiviral innate immune responses through m6A modification. The finding provides an understanding of innate immunity and offers a potential therapeutic target for HSV-1, KSHV, and MPXV infections.
Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Herpesvirus Humano 8 , Imunidade Inata , Replicação Viral , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Humanos , Replicação Viral/genética , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/imunologia , Interferon beta/metabolismo , Interferon beta/genética , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/genética , Células HEK293 , Herpesviridae/imunologia , LipoilaçãoRESUMO
This study explored the mechanism by which the m6A demethylase ALKBH5 mediates epithelial-mesenchymal transition (EMT) in sepsis-associated acute kidney injury (SA-AKI) and AKI-chronic kidney disease (CKD) transition. HK-2 cells were stimulated with lipopolysaccharide (LPS) to establish an in vitro model of SA-AKI. ALKBH5 expression was reduced through the transfection of si-ALKBH5. Cell viability, apoptosis, and migration were detected by CCK-8 assay, TUNEL staining, and Transwell. The levels of TNF-α, IL-1ß, and IL-6 were measured by enzyme-linked immunosorbent assay. Quantitative real-time polymerase chain reaction or Western blotting was performed to determine the expressions of ALKBH5, miR-205-5p, DDX5, E-cadherin, and α-SMA. The m6A level was quantitatively analyzed. The expression of pri-miR-205 bound to DGCR8 and m6A-modified pri-miR-205 after intervention with ALKBH5 expression was detected by RNA immunoprecipitation. A dual-luciferase assay confirmed the binding between miR-205-5p and DDX5. ALKBH5 was highly expressed in LPS-induced HK-2 cells. Inhibition of ALKBH5 increased cell viability, repressed apoptosis, and reduced EMT. Inhibition of ALKBH5 increased the m6A modification level, thereby promoting DGCR8 binding to pri-miR-205 to increase miR-205-5p expression and eventually targeting DDX5 expression. Low expression of miR-205-5p or overexpression of DDX5 partially abolished the inhibitory effect of ALKBH5 silencing on EMT. In conclusion, ALKBH5 represses miR-205-5p expression by removing m6A modification to upregulate DDX5 expression, thereby promoting EMT and AKI-CKD transition after SA-AKI.
Assuntos
Injúria Renal Aguda , Homólogo AlkB 5 da RNA Desmetilase , RNA Helicases DEAD-box , Transição Epitelial-Mesenquimal , Lipopolissacarídeos , MicroRNAs , Sepse , Humanos , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Sepse/metabolismo , Sepse/genética , Sepse/complicações , Sepse/patologia , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Apoptose , Desmetilação , Movimento Celular , Sobrevivência CelularRESUMO
OBJECTIVES: This study investigates the dual role of ALKBH5, an eraser enzyme, in colorectal cancer (CRC), focusing on how N6-methyladenosine (m6A) mutations influence CRC development and progression. METHODS: We reviewed various studies that highlighted the role of ALKBH5 in colorectal cancer (CRC). This includes the impact of ALKBH5 on tumor cell behavior including immune system interactions, invasion, and proliferation in CRC. We also looked into how ALKBH5 acts as a tumor suppressor under different conditions analyzed clinical data to assess the impact of ALKBH5 expression on outcomes in colorectal cancer patients. KEY FINDINGS: In CRC, ALKBH5 plays a dual role. In certain situations, it inhibits the progression of the tumor, but in other circumstances, it promotes tumor growth and immunosuppression. The interaction with RABA5 plays a role in the development of CRC. Having elevated levels of ALKBH5 has been associated with unfavorable patient outcomes, such as reduced survival rates and more advanced cancer stages. Various factors, including tumor differentiation, TNM stages, and carcinoembryonic antigen (CEA) levels, be linked to ALKBH5 expression. CONCLUSIONS: ALKBH5 plays a complicated and situation-specific role in colorectal cancer (CRC). Targeting ALKBH5 could result in novel therapy options that balance its tumor-promoting and tumor-fighting properties in CRC. Further research into m6A alterations and ALKBH5 could enhance CRC treatment approaches and patient outcomes.
Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Animais , Mutação , Adenosina/análogos & derivados , Adenosina/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Proliferação de CélulasRESUMO
BACKGROUND: Elevated extracellular matrix (ECM) accumulation is a major contributing factor to the pathogenesis of fibrotic diseases. Recent studies have indicated that N6-methyladenosine (m6A) RNA modification plays a pivotal role in modulating RNA stability and contribute to the initiation of various pathological conditions. Howbeit, the precise mechanism by which m6A influences ECM deposition remains unclear. METHODS: In this study, we used hypertrophic scars (HTSs) as a paradigm to investigate ECM-related diseases. We focused on the role of ALKBH5-mediated m6A demethylation within the pathological progression of HTSs and examined its correlation with clinical stages. The effects of ALKBH5 ablation on ECM components were studied both in vivo and in vitro. Downstream targets of ALKBH5, along with their underlying mechanisms, were identified using integrated high-throughput analysis, RNA-binding protein immunoprecipitation and RNA pull-down assays. Furthermore, the therapeutic potential of exogenous ALKBH5 overexpression was evaluated in fibrotic scar models. RESULTS: ALKBH5 was decreased in fibroblasts derived from HTS lesions and was negatively correlated with their clinical stages. Importantly, ablation of ALKBH5 promoted the expression of COL3A1, COL1A1, and ELN, leading to pathological deposition and reconstruction of the ECM both in vivo and in vitro. From a therapeutic perspective, the exogenous overexpression of ALKBH5 significantly inhibited abnormal collagen deposition in fibrotic scar models. As determined by integrated high-throughput analysis, key ECM components including COL3A1, COL1A1, and ELN are direct downstream targets of ALKBH5. By means of its mechanism, ALKBH5 inhibits the expression of COL3A1, COL1A1, and ELN by removing m6A from mRNAs, thereby decreasing their stability in a YTHDF1-dependent manner. CONCLUSIONS: Our study identified ALKBH5 as an endogenous suppressor of pathological ECM deposition, contributing to the development of a reprogrammed m6A-targeted therapy for HTSs.
Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Matriz Extracelular , Fibrose , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Matriz Extracelular/metabolismo , Fibrose/metabolismo , Humanos , Camundongos , Animais , Desmetilação , Colágeno Tipo III/metabolismo , Colágeno Tipo III/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Masculino , Cadeia alfa 1 do Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Fibroblastos/metabolismoRESUMO
ALKBH5 is one of the demethylases involved in the regulation of RNA m6A modification. In addition to its role in the dynamic regulation of RNA m6A modification, ALKBH5 has been found to play important roles in various tissues fibrosis processes in recent years. However, the mechanisms and effects of ALKBH5 in fibrosis have been reported inconsistently. Multiple cell types, including parenchymal cells, immune cells (neutrophils and T cells), macrophages, endothelial cells, and fibroblasts, play roles in various stages of fibrosis. Therefore, this review analyzes the mechanisms by which ALKBH5 regulates these cells, its impact on their functions, and the outcomes of fibrosis. Furthermore, this review summarizes the role of ALKBH5 in fibrotic diseases such as pulmonary fibrosis, liver fibrosis, cardiac fibrosis, and renal fibrosis, and discusses various ALKBH5 inhibitors that have been discovered to date, exploring the potential of ALKBH5 as a clinical target for fibrosis.
RESUMO
m6A modification is a crucial epigenetic regulatory mechanism in diffuse large B-cell lymphoma (DLBCL). Low-dose cardiotonic drugs have been shown to induce apoptosis in DLBCL cells through epigenetic modulation. However, the involvement of the cardiotonic drug ouabain in the malignant progression of DLBCL remains unclear. Our study revealed that ouabain indeed contributes to the malignant progression of DLBCL through m6A modification. Through qPCR analysis, we observed a negative correlation between ouabain concentration and the expression levels of the demethylase ALKBH5 and the m6A-binding protein IGF2BP2 in DLBCL cells. Furthermore, high expression levels of ALKBH5 and IGF2BP2 were identified in both the GEO database and DLBCL patient tissue samples. Notably, elevated ALKBH5 and IGF2BP2 promoted cell proliferation both in vitro and in vivo. Inhibition of their expression rendered DLBCL cells more sensitive to ouabain treatment, resulting in significant suppression of cell proliferation, G1/S phase cell cycle arrest, and increased apoptosis. In summary, our results clarify that the demethylase ALKBH5 and the m6A-binding protein IGF2BP2 are involved in the malignant progression of DLBCL, and that the cardiotonic drug ouabain can inhibit the proliferation of DLBCL cells by inhibiting the expression of ALKBH5 and IGF2BP2, which provides new insights into the targeted treatment of DLBCL.
RESUMO
Structural and functional alterations in brain microvascular endothelial cells (BMECs) caused by oxygen-glucose deprivation (OGD) are involved in the pathogenesis of various brain disorders. AlkB homolog 5 (ALKBH5) is a primary m6A demethylase that regulates various cell processes, but its distinct roles in BMEC function remain to be clarified. In the present study, in mouse middle cerebral artery occlusion (MCAO) model, knockout of ALKBH5 reduced neurological deficits, infarct volumes and tissue apoptosis caused by ischemia/reperfusion injury. Evans blue leakage and decreased expression of the tight junction protein ZO-1 and Occludin were also attenuated by ALKBH5 knockout. During the exploration of the underlying mechanisms of the role of ALKBH5 in BMECs, we found that the expression of ALKBH5 was induced at both the mRNA and protein levels by hypoxia; however, its protein stability was impaired by OGD treatment. Knockdown of ALKBH5 expression increased total m6A levels and alleviated OGD-induced BMEC injury. At the same time, the selective ALKBH5 inhibitor Cpd 20m also exhibited a protective effect on cell injury. In contrast, overexpression of ALKBH5 increased the sensitivity of BMECs to OGD. Interestingly, the m6A sequencing data revealed that knockdown of ALKBH5altered the expression of many genes via m6A upregulation. The gene expression alterations were verified by real-time PCR. Taken together, our results suggest that ALKBH5, as well as its target genes, plays important roles in the regulation of brain microvascular endothelial cell function through its RNA demethylase activity.
Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Células Endoteliais , Glucose , Camundongos Knockout , Animais , Camundongos , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Células Endoteliais/metabolismo , Glucose/deficiência , Encéfalo/metabolismo , Encéfalo/patologia , Masculino , Microvasos/patologia , Microvasos/metabolismo , Camundongos Endogâmicos C57BL , Oxigênio/metabolismo , Infarto da Artéria Cerebral Média/patologia , Adenosina/análogos & derivados , Adenosina/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologiaRESUMO
Dysregulation of renal tubular epithelial cell (RTEC) apoptosis is one of the critical steps underlying the occurrence and development of nephrolithiasis. Although N6-methyladenosine (m6A) modification has been extensively studied and associated with various pathologic processes, research on its specific role in RTEC injury and apoptosis remains limited. In this study, we found that overexpression of ALKBH5 reduced the level of m6A modification in RTEC cells and notably promoted RTEC apoptosis. Further mechanism studies revealed that ALKBH5 mainly decreased the m6A level on the mRNA of Mucin 1 (MUC1) gene in RTECs. Moreover, ALKBH5 impaired the stability of MUC1 mRNA in RTECs, leading to attenuated expression of MUC1. Finally, we determined that the ALKBH5-MUC1 axis primarily facilitated RTEC apoptosis by regulating the PI3K/Akt signaling pathway. This study revealed the critical role of the ALKBH5-MUC1-PI3K/Akt regulatory system in RTEC apoptosis and provided new therapeutic targets for treating nephrolithiasis.
RESUMO
N6-methyladenosine (m6A) is dynamically regulated by methyltransferases (termed "writers") and demethylases (referred to as "erasers"), facilitating a reversible modulation. Changes in m6A levels significantly influence cellular functions, such as RNA export from the nucleus, mRNA metabolism, protein synthesis, and RNA splicing. They are intricately associated with a spectrum of pathologies. Moreover, dysregulation of m6A modulation has emerged as a promising therapeutic target across many diseases. m6A plays a pivotal role in controlling vital downstream molecules and critical biological pathways, contributing to the pathogenesis and evolution of numerous conditions. This review provides an overview of m6A demethylases, explicitly detailing the structural and functional characteristics of FTO and ALKBH5. Additionally, we explore their distinct involvement in various diseases, examine factors regulating their expression, and discuss the progress in inhibitor development.
RESUMO
Gastrointestinal cancer is the most common malignancy in humans, often accompanied by poor prognosis. N6-methyladenosine (m6A) modification is widely present in eukaryotic cells as the most abundant RNA modification. It plays a crucial role in RNA splicing and processing, nuclear export, translation, and stability. Human AlkB homolog 5 (ALKBH5) is a type of RNA demethylase exhibiting abnormal expression in various gastrointestinal cancers.It is closely related to the tumorigenesis, proliferation, migration, and other biological functions of gastrointestinal cancer. However, recent studies indicated that the role and mechanism of ALKBH5 in gastrointestinal cancer are complicated and even controversial. Thus, this review summarizes recent advances in elucidating the role of ALKBH5 as a tumor suppressor or promoter in gastrointestinal cancer. It examines the biological functions of ALKBH5 and its potential as a therapeutic target, providing new perspectives and insights for gastrointestinal cancer research.
RESUMO
Translation is one of the main gene expression steps targeted by cellular stress, commonly referred to as translational stress, which includes treatment with anticancer drugs. While translational stress blocks the translation initiation of bulk mRNAs, it nonetheless activates the translation of specific mRNAs known as short upstream open reading frames (uORFs)-mRNAs. Among these, the ATF4 mRNA encodes a transcription factor that reprograms gene expression in cells responding to various stresses. Although the stress-induced translation of the ATF4 mRNA relies on the presence of uORFs (upstream to the main ATF4 ORF), the mechanisms mediating this effect, particularly during chemoresistance, remain elusive. Here, we report that ALKBH5 (AlkB Homolog 5) and FTO (FTO: Fat mass and obesity-associated protein), the two RNA demethylating enzymes, promote the translation of ATF4 mRNA in a transformed liver cell line (Hep3B) treated with the chemotherapeutic drug sorafenib. Using the in vitro luciferase reporter translational assay, we found that depletion of both enzymes reduced the translation of the reporter ATF4 mRNA upon drug treatment. Consistently, depletion of either protein abrogates the loading of the ATF3 mRNA into translating ribosomes as assessed by polyribosome assays coupled to RT-qPCR. Collectively, these results indicate that the ALKBH5 and FTO-mediated translation of the ATF4 mRNA is regulated at its initiation step. Using in vitro methylation assays, we found that ALKBH5 is required for the inhibition of the methylation of a reporter ATF4 mRNA at a conserved adenosine (A235) site located at its uORF2, suggesting that ALKBH5-mediated translation of ATF4 mRNA involves demethylation of its A235. Preventing methylation of A235 by introducing an A/G mutation into an ATF4 mRNA reporter renders its translation insensitive to ALKBH5 depletion, supporting the role of ALKBH5 demethylation activity in translation. Finally, targeting either ALKBH5 or FTO sensitizes Hep3B to sorafenib-induced cell death, contributing to their resistance. In summary, our data show that ALKBH5 and FTO are novel factors that promote resistance to sorafenib treatment, in part by mediating the translation of ATF4 mRNA.