Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-39030685

RESUMO

Climate change-driven sea level rise threatens freshwater ecosystems and elicits salinity stress in microbiomes. Methane emissions in these systems are largely mitigated by methane-oxidizing microorganisms. Here, we characterized the physiological and metabolic response of freshwater methanotrophic archaea to salt stress. In our microcosm experiments, inhibition of methanotrophic archaea started at 1%. However, during gradual increase of salt up to 3% in a reactor over 12 weeks, the culture continued to oxidize methane. Using gene expression profiles and metabolomics, we identified a pathway for salt-stress response that produces the osmolyte of anaerobic methanotrophic archaea: N(ε)-acetyl-ß-L-lysine. An extensive phylogenomic analysis on N(ε)-acetyl-ß-L-lysine-producing enzymes revealed that they are widespread across both bacteria and archaea, indicating a potential horizontal gene transfer and a link to BORG extrachromosomal elements. Physicochemical analysis of bioreactor biomass further indicated the presence of sialic acids and the consumption of intracellular polyhydroxyalkanoates in anaerobic methanotrophs during salt stress.


Assuntos
Archaea , Água Doce , Metano , Osmorregulação , Filogenia , Estresse Salino , Metano/metabolismo , Água Doce/microbiologia , Anaerobiose , Archaea/metabolismo , Archaea/genética , Archaea/classificação , Oxirredução
2.
Microorganisms ; 12(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39065117

RESUMO

Microbial communities of terrestrial mud volcanoes are involved in aerobic and anaerobic methane oxidation, but the biological mechanisms of these processes are still understudied. We have investigated the taxonomic composition, rates of methane oxidation, and metabolic potential of microbial communities in five mud volcanoes of the Taman Peninsula, Russia. Methane oxidation rates measured by the radiotracer technique varied from 2.0 to 460 nmol CH4 cm-3 day-1 in different mud samples. This is the first measurement of high activity of microbial methane oxidation in terrestrial mud volcanos. 16S rRNA gene amplicon sequencing has shown that Bacteria accounted for 65-99% of prokaryotic diversity in all samples. The most abundant phyla were Pseudomonadota, Desulfobacterota, and Halobacterota. A total of 32 prokaryotic genera, which include methanotrophs, sulfur or iron reducers, and facultative anaerobes with broad metabolic capabilities, were detected in relative abundance >5%. The most highly represented genus of aerobic methanotrophs was Methyloprofundus reaching 36%. The most numerous group of anaerobic methanotrophs was ANME-2a-b (Ca. Methanocomedenaceae), identified in 60% of the samples and attaining relative abundance of 54%. The analysis of the metagenome-assembled genomes of a community with high methane oxidation rate indicates the importance of CO2 fixation, Fe(III) and nitrate reduction, and sulfide oxidation. This study expands current knowledge on the occurrence, distribution, and activity of microorganisms associated with methane cycle in terrestrial mud volcanoes.

3.
Microbiome ; 12(1): 68, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570877

RESUMO

BACKGROUND: The trophic strategy is one key principle to categorize microbial lifestyles, by broadly classifying microorganisms based on the combination of their preferred carbon sources, electron sources, and electron sinks. Recently, a novel trophic strategy, i.e., chemoorganoautotrophy-the utilization of organic carbon as energy source but inorganic carbon as sole carbon source-has been specifically proposed for anaerobic methane oxidizing archaea (ANME-1) and Bathyarchaeota subgroup 8 (Bathy-8). RESULTS: To further explore chemoorganoautotrophy, we employed stable isotope probing (SIP) of nucleic acids (rRNA or DNA) using unlabeled organic carbon and 13C-labeled dissolved inorganic carbon (DIC), i.e., inverse stable isotope labeling, in combination with metagenomics. We found that ANME-1 archaea actively incorporated 13C-DIC into RNA in the presence of methane and lepidocrocite when sulfate was absent, but assimilated organic carbon when cellulose was added to incubations without methane additions. Bathy-8 archaea assimilated 13C-DIC when lignin was amended; however, their DNA was derived from both inorganic and organic carbon sources rather than from inorganic carbon alone. Based on SIP results and supported by metagenomics, carbon transfer between catabolic and anabolic branches of metabolism is possible in these archaeal groups, indicating their anabolic versatility. CONCLUSION: We provide evidence for the incorporation of the mixed organic and inorganic carbon by ANME-1 and Bathy-8 archaea in the environment. Video Abstract.


Assuntos
Archaea , Metano , Archaea/genética , Marcação por Isótopo , Oxirredução , Metano/metabolismo , Carbono/metabolismo , DNA , Anaerobiose , Sedimentos Geológicos , Filogenia
4.
J Hazard Mater ; 466: 133683, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38310847

RESUMO

The conventional perchlorate (ClO4-) reduction typically necessitates anaerobic conditions. However, in this study, we observed efficient ClO4- reduction using CH4 as the electron donor in a microaerobic environment. The maximum ClO4- removal flux of 2.18 g/m2·d was achieved in CH4-based biofilm. The kinetics of ClO4- reduction showed significant differences, with trace oxygen increasing the reduction rate of ClO4-, whereas oxygen levels exceeding 2 mg/L decelerated the ClO4- reduction. In the absence of exogenous oxygen, anaerobic methanotrophic (ANME) archaea contribute more than 80% electrons through the reverse methanogenesis pathway for ClO4- reduction. Simultaneously, microorganisms activate CH4 by utilizing oxygen generated from chlorite (ClO2-) disproportionation. In the presence of exogenous oxygen, methane oxidizers predominantly consume oxygen to drive the aerobic oxidation of methane. It is indicated that methane oxidizers and perchlorate reducing bacteria can form aggregates to resist external oxygen shocks and achieve efficient ClO4- reduction under microaerobic condition. These findings provide new insights into biological CH4 mitigation and ClO4- removal in hypoxic environment.


Assuntos
Metano , Percloratos , Metano/metabolismo , Percloratos/metabolismo , Archaea/metabolismo , Oxirredução , Anaerobiose , Oxigênio/metabolismo
5.
Front Microbiol ; 14: 1304671, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075885

RESUMO

Methylthiotransferases (MTTases) are radical S-adenosylmethionine (SAM) enzymes that catalyze the addition of a methylthio (-SCH3) group to an unreactive carbon center. These enzymes are responsible for the production of 2-methylthioadenosine (ms2A) derivatives found at position A37 of select tRNAs in all domains of life. Additionally, some bacteria contain the RimO MTTase that catalyzes the methylthiolation of the S12 ribosomal protein. Although the functions of MTTases in bacteria and eukaryotes have been established via detailed genetic and biochemical studies, MTTases from the archaeal domain of life are understudied and the substrate specificity determinants of MTTases remain unclear. Here, we report the in vitro enzymatic activities of an MTTase (C4B56_06395) from a thermophilic Ca. Methanophagales anaerobic methanotroph (ANME) as well as the MTTase from a hyperthermophilic methanogen - MJ0867 from Methanocaldococcus jannaschii. Both enzymes catalyze the methylthiolation of N6-threonylcarbamoyladenosine (t6A) and N6-hydroxynorvalylcarbamoyladenosine (hn6A) residues to produce 2-methylthio-N6-threonylcarbamoyladenosine (ms2t6A) and 2-methylthio-N6-hydroxynorvalylcarbamoyladenosine (ms2hn6A), respectively. To further assess the function of archaeal MTTases, we analyzed select tRNA modifications in a model methanogen - Methanosarcina acetivorans - and generated a deletion of the MTTase-encoding gene (MA1153). We found that M. acetivorans produces ms2hn6A in exponential phase of growth, but does not produce ms2t6A in detectable amounts. Upon deletion of MA1153, the ms2A modification was absent, thus confirming the function of MtaB-family MTTases in generating ms2hn6A modified nucleosides in select tRNAs.

6.
Proc Natl Acad Sci U S A ; 120(51): e2302156120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38079551

RESUMO

Authigenic carbonate minerals can preserve biosignatures of microbial anaerobic oxidation of methane (AOM) in the rock record. It is not currently known whether the microorganisms that mediate sulfate-coupled AOM-often occurring as multicelled consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB)-are preserved as microfossils. Electron microscopy of ANME-SRB consortia in methane seep sediments has shown that these microorganisms can be associated with silicate minerals such as clays [Chen et al., Sci. Rep. 4, 1-9 (2014)], but the biogenicity of these phases, their geochemical composition, and their potential preservation in the rock record is poorly constrained. Long-term laboratory AOM enrichment cultures in sediment-free artificial seawater [Yu et al., Appl. Environ. Microbiol. 88, e02109-21 (2022)] resulted in precipitation of amorphous silicate particles (~200 nm) within clusters of exopolymer-rich AOM consortia from media undersaturated with respect to silica, suggestive of a microbially mediated process. The use of techniques like correlative fluorescence in situ hybridization (FISH), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), and nanoscale secondary ion mass spectrometry (nanoSIMS) on AOM consortia from methane seep authigenic carbonates and sediments further revealed that they are enveloped in a silica-rich phase similar to the mineral phase on ANME-SRB consortia in enrichment cultures. Like in cyanobacteria [Moore et al., Geology 48, 862-866 (2020)], the Si-rich phases on ANME-SRB consortia identified here may enhance their preservation as microfossils. The morphology of these silica-rich precipitates, consistent with amorphous-type clay-like spheroids formed within organic assemblages, provides an additional mineralogical signature that may assist in the search for structural remnants of microbial consortia in rocks which formed in methane-rich environments from Earth and other planetary bodies.


Assuntos
Sedimentos Geológicos , Metano , Sedimentos Geológicos/microbiologia , Anaerobiose , Dióxido de Silício , Hibridização in Situ Fluorescente , Fósseis , Archaea/genética , Oxirredução , Sulfatos , Silicatos , Filogenia , Consórcios Microbianos
7.
Microorganisms ; 11(12)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38138100

RESUMO

The Guaymas Basin in the Gulf of California is characterized by active seafloor spreading, the rapid deposition of organic-rich sediments, steep geothermal gradients, and abundant methane of mixed thermogenic and microbial origin. Subsurface sediment samples from eight drilling sites with distinct geochemical and thermal profiles were selected for DNA extraction and PCR amplification to explore the diversity of methane-cycling archaea in the Guaymas Basin subsurface. We performed PCR amplifications with general (mcrIRD), and ANME-1 specific primers that target the alpha (α) subunit of methyl coenzyme M reductase (mcrA). Diverse ANME-1 lineages associated with anaerobic methane oxidation were detected in seven out of the eight drilling sites, preferentially around the methane-sulfate interface, and in several cases, showed preferences for specific sampling sites. Phylogenetically, most ANME-1 sequences from the Guaymas Basin subsurface were related to marine mud volcanoes, seep sites, and the shallow marine subsurface. The most frequently recovered methanogenic phylotypes were closely affiliated with the hyperthermophilic Methanocaldococcaceae, and found at the hydrothermally influenced Ringvent site. The coolest drilling site, in the northern axial trough of Guaymas Basin, yielded the greatest diversity in methanogen lineages. Our survey indicates the potential for extensive microbial methane cycling within subsurface sediments of Guaymas Basin.

8.
Sci Total Environ ; 902: 166049, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543312

RESUMO

The recent discovery of anaerobic oxidation of methane (AOM) in freshwater ecosystems has caused a great interest in "cryptic methane cycle" in terrestrial ecosystems. Anaerobic methanotrophs appears widespread in wetland ecosystems, yet, the scope and mechanism of AOM in natural wetlands remain poorly understood. In this paper, we review the recent progress regarding the potential of AOM, the diversity and distribution, and the metabolism of anaerobic methanotrophs in wetland ecosystems. The potential of AOM determined through laboratory incubation or in situ isotopic labeling ranges from 1.4 to 704.0 nmol CH4·g-1 dry soil·d-1. It appears that the availability of electron acceptors is critical in driving different AOM in wetland soils. The environmental temperature and salinity exert a significant influence on AOM activity. Reversal methanogenesis and extracellular electron transfer are likely involved in the AOM process. In addition to anaerobic methanotrophic archaea, the direct involvement of methanogens in AOM is also probable. This review presented an overview of the rate, identity, and metabolisms to unravel the biogeochemical puzzle of AOM in wetland soils.


Assuntos
Ecossistema , Áreas Alagadas , Anaerobiose , Metano/metabolismo , Archaea/metabolismo , Oxirredução , Solo
9.
Appl Environ Microbiol ; 89(6): e0036723, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37272802

RESUMO

Acetyl-CoA synthetase (ACS) and acetate ligase (ACD) are widespread among microorganisms, including archaea, and play an important role in their carbon metabolism, although only a few of these enzymes have been characterized. Anaerobic methanotrophs (ANMEs) have been reported to convert methane anaerobically into CO2, polyhydroxyalkanoate, and acetate. Furthermore, it has been suggested that they might be able to use acetate for anabolism or aceticlastic methanogenesis. To better understand the potential acetate metabolism of ANMEs, we characterized an ACS from ANME-2a as well as an ACS and an ACD from ANME-2d. The conversion of acetate into acetyl-CoA (Vmax of 8.4 µmol mg-1 min-1 and Km of 0.7 mM acetate) by the monomeric 73.8-kDa ACS enzyme from ANME-2a was more favorable than the formation of acetate from acetyl-CoA (Vmax of 0.4 µmol mg-1 min-1 and Km of 0.2 mM acetyl-CoA). The monomeric 73.4-kDa ACS enzyme from ANME-2d had similar Vmax values for both directions (Vmax,acetate of 0.9 µmol mg-1 min-1 versus Vmax,acetyl-CoA of 0.3 µmol mg-1 min-1). The heterotetrameric ACD enzyme from ANME-2d was active solely in the acetate-producing direction. Batch incubations of an enrichment culture dominated by ANME-2d fed with 13C2-labeled acetate produced 3 µmol of [13C]methane in 7 days, suggesting that this anaerobic methanotroph might have the potential to reverse its metabolism and perform aceticlastic methanogenesis using ACS to activate acetate albeit at low rates (2 nmol g [dry weight]-1 min-1). Together, these results show that ANMEs may have the potential to use acetate for assimilation as well as to use part of the surplus acetate for methane production. IMPORTANCE Acetyl-CoA plays a key role in carbon metabolism and is found at the junction of many anabolic and catabolic reactions. This work describes the biochemical properties of ACS and ACD enzymes from ANME-2 archaea. This adds to our knowledge of archaeal ACS and ACD enzymes, only a few of which have been characterized to date. Furthermore, we validated the in situ activity of ACS in ANME-2d, showing the conversion of acetate into methane by an enrichment culture dominated by ANME-2d.


Assuntos
Acetatos , Archaea , Archaea/metabolismo , Acetilcoenzima A/metabolismo , Anaerobiose , Oxirredução , Acetatos/metabolismo , Carbono/metabolismo , Metano/metabolismo
10.
Microorganisms ; 11(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985129

RESUMO

The key microbial group involved in anaerobic methane oxidation is anaerobic methanotrophic archaea (ANME). From a terrestrial mud volcano, we enriched a microbial community containing ANME-2a, using methane as an electron donor, Fe(III) oxide (ferrihydrite) as an electron acceptor, and anthraquinone-2,6-disulfonate as an electron shuttle. Ferrihydrite reduction led to the formation of a black, highly magnetic precipitate. A significant relative abundance of ANME-2a in batch cultures was observed over five subsequent transfers. Phylogenetic analysis revealed that, in addition to ANME-2a, two bacterial taxa belonging to uncultured Desulfobulbaceae and Anaerolineaceae were constantly present in all enrichments. Metagenome-assembled genomes (MAGs) of ANME-2a contained a complete set of genes for methanogenesis and numerous genes of multiheme c-type cytochromes (MHC), indicating the capability of methanotrophs to transfer electrons to metal oxides or to a bacterial partner. One of the ANME MAGs encoded respiratory arsenate reductase (Arr), suggesting the potential for a direct coupling of methane oxidation with As(V) reduction in the single microorganism. The same MAG also encoded uptake [NiFe] hydrogenase, which is uncommon for ANME-2. The MAG of uncultured Desulfobulbaceae contained genes of dissimilatory sulfate reduction, a Wood-Ljungdahl pathway for autotrophic CO2 fixation, hydrogenases, and 43 MHC. We hypothesize that uncultured Desulfobulbaceae is a bacterial partner of ANME-2a, which mediates extracellular electron transfer to Fe(III) oxide.

11.
mSystems ; 8(2): e0117922, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36927099

RESUMO

Marine sediments are important methane reservoirs. Methane efflux from the seabed is significantly restricted by anaerobic methanotrophic (ANME) archaea through a process known as anaerobic oxidation of methane (AOM). Different clades of ANME archaea occupy distinct niches in methane seeps, but their underlying molecular mechanisms still need to be fully understood. To provide genetic explanations for the niche partitioning of ANME archaea, we applied comparative genomic analysis to ANME archaeal genomes retrieved from global methane seeps. Our results showed that ANME-2 archaea are more prevalent than ANME-1 archaea in shallow sediments because they carry genes that encode a significantly higher number of outer membrane multiheme c-type cytochromes and flagellar proteins. These features make ANME-2 archaea perform direct interspecies electron transfer better and benefit more from electron acceptors in AOM. Besides, ANME-2 archaea carry genes that encode extra peroxidase compared to ANME-1 archaea, which may lead to ANME-2 archaea better tolerating oxygen toxicity. In contrast, ANME-1 archaea are more competitive in deep layers than ANME-2 archaea because they carry extra genes (mtb and mtt) for methylotrophic methanogenesis and a significantly higher number of frh and mvh genes for hydrogenotrophic methanogenesis. Additionally, ANME-1 archaea carry exclusive genes (sqr, TST, and mddA) involved in sulfide detoxification compared to ANME-2 archaea, leading to stronger sulfide tolerance. Overall, this study reveals the genomic mechanisms shaping the niche partitioning among ANME archaea in global methane seeps. IMPORTANCE Anaerobic methanotrophic (ANME) archaea are important methanotrophs in marine sediment, controlling the flux of biologically generated methane, which plays an essential role in the marine carbon cycle and climate change. So far, no strain of this lineage has been isolated in pure culture, which makes metagenomics one of the fundamental approaches to reveal their metabolic potential. Although the niche partitioning of ANME archaea was frequently reported in different studies, whether this pattern was consistent in global methane seeps had yet to be verified, and little was known about the genetic mechanisms underlying it. Here, we reviewed and analyzed the community structure of ANME archaea in global methane seeps and indicated that the niche partitioning of ANME archaea was statistically supported. Our comparative genomic analysis indicated that the capabilities of interspecies electron transfer, methanogenesis, and the resistance of oxygen and hydrogen sulfide could be critical in defining the distribution of ANME archaea in methane seep sediment.


Assuntos
Archaea , Metano , Archaea/genética , Anaerobiose , Metano/metabolismo , Oxirredução , Metagenômica
12.
Glob Chang Biol ; 29(10): 2714-2731, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36811358

RESUMO

Thermokarst lagoons represent the transition state from a freshwater lacustrine to a marine environment, and receive little attention regarding their role for greenhouse gas production and release in Arctic permafrost landscapes. We studied the fate of methane (CH4 ) in sediments of a thermokarst lagoon in comparison to two thermokarst lakes on the Bykovsky Peninsula in northeastern Siberia through the analysis of sediment CH4 concentrations and isotopic signature, methane-cycling microbial taxa, sediment geochemistry, lipid biomarkers, and network analysis. We assessed how differences in geochemistry between thermokarst lakes and thermokarst lagoons, caused by the infiltration of sulfate-rich marine water, altered the microbial methane-cycling community. Anaerobic sulfate-reducing ANME-2a/2b methanotrophs dominated the sulfate-rich sediments of the lagoon despite its known seasonal alternation between brackish and freshwater inflow and low sulfate concentrations compared to the usual marine ANME habitat. Non-competitive methylotrophic methanogens dominated the methanogenic community of the lakes and the lagoon, independent of differences in porewater chemistry and depth. This potentially contributed to the high CH4 concentrations observed in all sulfate-poor sediments. CH4 concentrations in the freshwater-influenced sediments averaged 1.34 ± 0.98 µmol g-1 , with highly depleted δ13 C-CH4 values ranging from -89‰ to -70‰. In contrast, the sulfate-affected upper 300 cm of the lagoon exhibited low average CH4 concentrations of 0.011 ± 0.005 µmol g-1 with comparatively enriched δ13 C-CH4 values of -54‰ to -37‰ pointing to substantial methane oxidation. Our study shows that lagoon formation specifically supports methane oxidizers and methane oxidation through changes in pore water chemistry, especially sulfate, while methanogens are similar to lake conditions.


Assuntos
Sedimentos Geológicos , Microbiota , Metano/análise , Anaerobiose , Lagos , Água/análise , Sulfatos/análise
13.
Environ Res ; 219: 115174, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36584837

RESUMO

Freshwater wetlands, paddy fields, inland aquatic ecosystems and coastal wetlands are recognized as important sources of atmospheric methane (CH4). Currently, increasing evidence shows the potential importance of the anaerobic oxidation of methane (AOM) mediated by NC10 bacteria and a novel cluster of anaerobic methanotrophic archaea (ANME)-ANME-2d in mitigating CH4 emissions from different ecosystems. To better understand the role of NC10 bacteria and ANME-2d archaea in CH4 emission reduction, the current review systematically summarizes different AOM processes and the functional microorganisms involved in freshwater wetlands, paddy fields, inland aquatic ecosystems and coastal wetlands. NC10 bacteria are widely present in these ecosystems, and the nitrite-dependent AOM is identified as an important CH4 sink and induces nitrogen loss. Nitrite- and nitrate-dependent AOM co-occur in the environment, and they are mainly affected by soil/sediment inorganic nitrogen and organic carbon contents. Furthermore, salinity is another key factor regulating the two AOM processes in coastal wetlands. In addition, ANME-2d archaea have the great potential to couple AOM to the reduction of iron (III), manganese (IV), sulfate, and even humics in different ecosystems. However, the study on the environmental distribution of ANME-2d archaea and their role in CH4 mitigation in environments is insufficient. In this study, we propose several directions for future research on the different AOM processes and respective functional microorganisms.


Assuntos
Archaea , Ecossistema , Nitritos , Metano , Anaerobiose , Bactérias , Oxirredução , Catálise , Sedimentos Geológicos , Filogenia
14.
Int Microbiol ; 26(2): 191-204, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36329310

RESUMO

Submarine mud volcanoes (MVs) have attracted significant interest in the scientific community for obtaining clues on the subsurface biosphere. On-land MVs, which are much less focused in this context, are equally important, and they may even provide insights also for astrobiology of extraterrestrial mud volcanism. Hereby, we characterized microbial communities of two active methane-seeping on-land MVs, Murono and Kamou, in central Japan. 16S rRNA gene profiling of those sites recovered the dominant archaeal sequences affiliated with methanogens. Anaerobic methanotrophs (ANME), with the subgroups ANME-1b and ANME-3, were recovered only from the Murono site albeit a greatly reduced relative abundance in the community compared to those of typical submarine MVs. The bacterial sequences affiliated to Caldatribacteriota JS1 were recovered from both sites; on the other hand, sulfate-reducing bacteria (SRB) of Desulfobulbaceae was recovered only from the Murono site. The major difference of on-land MVs from submarine MVs is that the high concentrations of sulfate are not always introduced to the subsurface from above. In addition, the XRD analysis of Murono shows the absence of sulfate-, sulfur-related mineral. Therefore, we hypothesize one scenario of ANME-1b and ANME-3 thriving at the depth of the Murono site independently from SRB, which is similar to the situations reported in some other methane-seeping sites with a sulfate-depleted condition. We note that previous investigations speculate that the erupted materials from Murono and Kamou originate from the Miocene marine strata. The fact that SRB (Desulfobulbaceae) capable of associating with ANME-3 was recovered from the Murono site presents an alternative scenario: the old sea-related juvenile water somehow worked as the source of additional sulfur-related components for the SRB-ANME syntrophic consortium forming at a deeper zone of the site. However, the reason for the differences between Murono and Kamou is still unknown, and this requires further investigation.


Assuntos
Archaea , Metano , Archaea/genética , RNA Ribossômico 16S/genética , Japão , Sedimentos Geológicos/microbiologia , Filogenia , Bactérias/genética , Sulfatos , Oxirredução
15.
FEMS Microbiol Ecol ; 98(11)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36190327

RESUMO

The methane-rich areas, the Loki's Castle vent field and the Jan Mayen vent field at the Arctic Mid Ocean Ridge (AMOR), host abundant niches for anaerobic methane-oxidizers, which are predominantly filled by members of the ANME-1. In this study, we used a metagenomic-based approach that revealed the presence of phylogenetic and functional different ANME-1 subgroups at AMOR, with heterogeneous distribution. Based on a common analysis of ANME-1 genomes from AMOR and other geographic locations, we observed that AMOR subgroups clustered with a vent-specific ANME-1 group that occurs solely at vents, and with a generalist ANME-1 group, with a mixed environmental origin. Generalist ANME-1 are enriched in genes coding for stress response and defense strategies, suggesting functional diversity among AMOR subgroups. ANME-1 encode a conserved energy metabolism, indicating strong adaptation to sulfate-methane-rich sediments in marine systems, which does not however prevent global dispersion. A deep branching family named Ca. Veteromethanophagaceae was identified. The basal position of vent-related ANME-1 in phylogenomic trees suggests that ANME-1 originated at hydrothermal vents. The heterogeneous and variable physicochemical conditions present in diffuse venting areas of hydrothermal fields could have favored the diversification of ANME-1 into lineages that can tolerate geochemical and environmental variations.


Assuntos
Fontes Hidrotermais , Regiões Árticas , Sedimentos Geológicos , Metano/metabolismo , Filogenia , Sulfatos
16.
Front Microbiol ; 13: 988871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212815

RESUMO

In seafloor sediments, the anaerobic oxidation of methane (AOM) consumes most of the methane formed in anoxic layers, preventing this greenhouse gas from reaching the water column and finally the atmosphere. AOM is performed by syntrophic consortia of specific anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). Cultures with diverse AOM partners exist at temperatures between 12°C and 60°C. Here, from hydrothermally heated sediments of the Guaymas Basin, we cultured deep-branching ANME-1c that grow in syntrophic consortia with Thermodesulfobacteria at 70°C. Like all ANME, ANME-1c oxidize methane using the methanogenesis pathway in reverse. As an uncommon feature, ANME-1c encode a nickel-iron hydrogenase. This hydrogenase has low expression during AOM and the partner Thermodesulfobacteria lack hydrogen-consuming hydrogenases. Therefore, it is unlikely that the partners exchange hydrogen during AOM. ANME-1c also does not consume hydrogen for methane formation, disputing a recent hypothesis on facultative methanogenesis. We hypothesize that the ANME-1c hydrogenase might have been present in the common ancestor of ANME-1 but lost its central metabolic function in ANME-1c archaea. For potential direct interspecies electron transfer (DIET), both partners encode and express genes coding for extracellular appendages and multiheme cytochromes. Thermodesulfobacteria encode and express an extracellular pentaheme cytochrome with high similarity to cytochromes of other syntrophic sulfate-reducing partner bacteria. ANME-1c might associate specifically to Thermodesulfobacteria, but their co-occurrence is so far only documented for heated sediments of the Gulf of California. However, in the deep seafloor, sulfate-methane interphases appear at temperatures up to 80°C, suggesting these as potential habitats for the partnership of ANME-1c and Thermodesulfobacteria.

17.
Methods Mol Biol ; 2522: 469-486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36125771

RESUMO

It has been less than two decades since the study of archaeal ecophysiology has become unshackled from the limitations of cultivation and amplicon sequencing through the advent of metagenomics. As a primer to the guide on producing archaeal genomes from metagenomes, we briefly summarize here how different meta'omics, imaging, and wet lab methods have contributed to progress in understanding the ecophysiology of Archaea. We then peer into the history of how our knowledge on two particularly important lineages was assembled: the anaerobic methane and alkane oxidizers, encountered primarily among Euryarchaeota, and the nanosized, mainly parasitic, members of the DPANN superphylum.


Assuntos
Archaea , Genoma Arqueal , Alcanos , Archaea/genética , Metano , Filogenia
18.
Sci Total Environ ; 851(Pt 2): 158213, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36028040

RESUMO

Shallow methane/sulfate transition zones in cold seeps are hotspots to study microbially mediated geochemical cycles due to high methane fluxes. However, our knowledge about the microbial communities in remote seafloor cold seep ecosystems with different methane seepage intensity is still sparse due to the challenge for sampling and visual observations. In this work, three remotely operated vehicle (ROV) video-guided push sediment cores were sampled from cold seep fields with different methane seepage intensity (low-intensity seepage, R5-C1; moderate-intensity seepage, R6-C2; high-intensity seepage, R6-C3) at the western slope of Mid-Okinawa Trough (Mid-OT) and subjected to high throughput sequencing of 16S rRNA genes for bacteria and archaea. Vesicomyid clams and white microbial mats are visible by video at R6-C3 with methane bubbles. The high relative abundances of anaerobic methanotrophic archaea (ANME-1, -2, and -3), δ-Proteobacteriacea and Campylobacteria in R6-C3 indicated that the processes of anaerobic methane oxidation (AOM), sulfate reduction and sulfur oxidation might occur in this active seeping site. In contrast, Bathyarchaeia, Nitrosopumilales, Sphingomonadales, and Burkholderiales were enriched in bubble-free sites, which commonly involved in the degradation of organic compounds. Principal coordinate analysis showed that both bacterial and archaeal communities were clustered according to sampling sites, also indicating the impact of methane seepage intensity on microbial communities. The co-occurrence network analysis revealed that microbes at the site with high methane fluxes mainly cooperated with each other to sustain the ecosystems, whereas competition enhanced at sites with low methane fluxes. Detection of thermophiles Thermoanaerobaculia and Hydrothermarchaeota may indicate microbial transmission from nearby hydrothermal vents, suggesting potential interactions between cold seepage and hydrothermal vent ecosystems. These results expand our knowledge about the composition and distribution of bacteria and archaea with different methane seepage intensity in cold seep field at the Mid-OT, contributing to the ongoing efforts in understanding carbon cycling in the cold seep ecosystems.


Assuntos
Metano , Microbiota , Metano/metabolismo , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Sedimentos Geológicos/química , Filogenia , Archaea , Bactérias/metabolismo , Sulfatos/metabolismo , Oxirredução , Enxofre/metabolismo , Carbono/metabolismo
19.
Arch Microbiol ; 204(8): 461, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35792953

RESUMO

Small regulatory RNAs (sRNAs) are present in almost all investigated microbes, regarded as modulators and regulators of gene expression and also known to play their regulatory role in the environmentally significant process. It has been estimated that less than 1% of the microbes in nature are culturable in the laboratory, hindering our understanding of their physiology, and living strategies. However, recent big advancing of DNA sequencing and omics-related data analysis makes the understanding of the genetics, metabolic potentials, even ecological roles of uncultivated microbes possible. In this study, we used a metagenome and metatranscriptome-based integrated approach to identify small RNAs in the microbiome of Guaymas Basin sediments. Hundreds of environmental sRNAs comprising 228 groups were identified based on their homology, 82% of which displayed high similarity with previously known small RNAs in Rfam database, whereas, "18%" are putative novel sRNA motifs. A putative cis-acting sRNA potentially binding to methyl coenzyme M reductase, a key enzyme in methanogenesis or anaerobic oxidation of methane (AOM), was discovered in the genome of ANaerobic MEthane oxidizing archaea group 1 (ANME-1), which were the dominate microbe in the sample. These sRNAs were actively expressed in local Guaymas Basin hydrothermal environment, suggesting important roles of sRNAs in regulating microbial activity in natural environments.


Assuntos
Sedimentos Geológicos , Pequeno RNA não Traduzido , Archaea/genética , Archaea/metabolismo , Sedimentos Geológicos/química , Metano/metabolismo , Filogenia , Pequeno RNA não Traduzido/metabolismo
20.
Sci Total Environ ; 841: 156790, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35724792

RESUMO

Landfill cover soils (LCS) play important roles in mitigating methane emissions from landfills. Anaerobic oxidation of methane (AOM) has been demonstrated as a potential methane removal process in aquatic ecosystems. However, whether AOM could occur in LCS is largely unknown. Here, microcosm incubations with 13CH4 were applied to track the potential activities of AOM and quantitative PCR was used to identify the responsible microorganisms. AOM was found to be active in the bottom and middle layers of LCS. In the bottom layer, sulfate-AOM was the most active process, mainly dominated by ANME archaea (without ANME-2d). Meanwhile, in the middle layer, nitrate and nitrite were the major electron acceptors involved in AOM with high abundances of ANME-2d archaea and NC10 bacteria. Our results implied a spatial segregation of methane oxidizing microbes in LCS and might be helpful for future control of methane emissions by the enhancement of AOM.


Assuntos
Metano , Solo , Anaerobiose , Archaea , Ecossistema , Sedimentos Geológicos/microbiologia , Oxirredução , Instalações de Eliminação de Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...