Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 21447, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271908

RESUMO

During the trajectory tracking of robotic manipulators, many factors including dead zones, saturation, and uncertain dynamics, greatly increase the modeling and control difficulty. Aiming for this issue, a nonlinear active disturbance rejection control (NADRC)-based control strategy is proposed for robotic manipulators. In this controller, an extended state observer is introduced on basis of the dynamic model, to observe the extend state of model uncertainties and external disturbances. Then, in combination with the nonlinear feedback control structure, the robust trajectory tracking of robotic manipulators is achieved. Furthermore, to optimize the key parameters of the controller, an improved particle swarm optimization algorithm (IPSO) is designed using chaos theory, which improves the tracking accuracy of the proposed NDRC strategy effectively. Finally, using comparative studies, the effectiveness of the proposed control strategy is demonstrated by comparing with several commonly used controllers.

2.
Micromachines (Basel) ; 15(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39064342

RESUMO

Retinal vein cannulation involves puncturing an occluded vessel on the micron scale. Even single millinewton force can cause permanent damage. An ophthalmic robot with a piezo-driven injector is precise enough to perform this delicate procedure, but the uncertain viscoelastic characteristics of the vessel make it difficult to achieve the desired contact force without harming the retina. The paper utilizes a viscoelastic contact model to explain the mechanical characteristics of retinal blood vessels to address this issue. The uncertainty in the viscoelastic properties is considered an internal disturbance of the contact model, and an active disturbance rejection controller is then proposed to precisely control the contact force. The experimental results show that this method can precisely adjust the contact force at the millinewton level even when the viscoelastic parameters vary significantly (up to 403.8%). The root mean square (RMS) and maximum value of steady-state error are 0.32 mN and 0.41 mN. The response time is below 2.51 s with no obvious overshoot.

3.
ISA Trans ; 150: 92-106, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763785

RESUMO

The proliferation of virtual synchronous generator (VSG) technology within series-compensated double-fed induction generator (DFIG)-based wind farms is substantially hampered by the attendant risk of subsynchronous control interaction (SSCI), resulting in a significant research deficiency on systematic control interaction analysis and the development of mitigation strategies. The paper proposes an advanced active disturbance rejection control (ADRC) framework, incorporating real-time compensation mechanisms to mitigate the inadequate suppression efficacy attributable to the VSG's diminished output impedance. Initially, the mathematical expression for the VSG output impedance is rigorously deduced, and the positive damping attributes of the VSG in relation to SSCI are elucidated from the perspective of underlying mechanistic principles. Subsequently, the suppressive mechanism of SSCI by the ADRC is revealed in the context of VSG involvement, and the consequent augmentation of SSCI attributed to PI control is systematically derived. In immediate succession, the quanta of oscillation and inductive cross-coupling are encapsulated as the system's aggregate disturbance, thereby streamlining the ADRC to its primary order configuration, permitting the utilization of an extended state observer (ESO) for the dynamic estimation of said disturbance. Furthermore, a fractional-order filter function is instituted to engineer an augmented ESO, which refines the output voltage of the grid-side converter. Concurrently, a meticulous discourse on the rectification strategy for the proposed ESO parameters and its stability ensues. Ultimately, the efficacy of the mechanism analysis, alongside the robustness of the proffered control strategy for SSCI mitigation under diverse perturbation conditions, is corroborated via impedance evaluation and time-domain simulation.

4.
Sensors (Basel) ; 23(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36850390

RESUMO

Aiming at the problem of low control accuracy caused by nonlinear disturbances in the operation of the PLS-160 wheel-rail adhesion test rig, a linear active disturbance rejection controller (LADRC) suitable for the wheel-rail adhesion test rig was designed. The influence of nonlinear disturbances during the operation of the test rig on the control accuracy was analyzed based on SIMPACK. The SIMAT co-simulation platform was established to verify the control performance of the LADRC designed in this paper. The simulation results show that the speed and creepage errors of the test rig under the control of the LADRC met the adhesion test technical indicators under four different conditions. Compared with the traditional PID controller, the creepage overshoot and response time with the LADRC were reduced by 1.27% and 60%, respectively, under the constant creepage condition, and the stability recovery time was shorter under the condition of a sudden decrease in the adhesion coefficient. The LADRC designed in this paper shows better dynamic and anti-interference performance; therefore, it is more suitable for a follow-up study of the PLS-160 wheel-rail adhesion test rig.

5.
Sensors (Basel) ; 22(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35632304

RESUMO

Aiming to address the problem of moving mirror speed fluctuations in moving mirror control systems, an improved active disturbance rejection double closed-loop controller (IADR-DCLC) is proposed and verified by simulation to realize the high-performance control of a moving mirror control system. First, the mathematical model of a rotary-type voice coil motor (RT VCM) is established, and the relationship between the angular velocity of the RT VCM and the optical path scanning velocity is analyzed. Second, in order to suppress the model uncertainty and external disturbance of the system, an improved active disturbance rejection controller (IADRC) is proposed. Compared with a conventional ADRC, the tracking differentiator of the proposed IADRC is replaced with desired signal optimization (DSO), and the actual speed is introduced to the extended state observer (ESO). The IADRC is used in the position-speed double closed-loop control model. Finally, the simulation results show that the IADR-DCLC has not only a good tracking effect but also a good anti-interference ability and can meet the requirements of the moving mirror control system for the uniformity of optical-path scanning speed and accurate control of the position of the moving mirror.

6.
Sensors (Basel) ; 22(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35458996

RESUMO

At present, magnetic bearings are a better energy-saving choice than mechanical bearings in industrial applications. However, there are strongly coupled characteristics in magnetic bearing-rotor systems with redundant structures, and uncertain disturbances in the electrical system as well as external disturbances, and these unfavorable factors degrade the performance of the system. To improve the anti-interference performance of magnetic bearing systems, this paper proposes the inverse of the current distribution matrix W-1 meaning that the active disturbance rejection control simulation model can be carried out without neglecting the current of each coil. Firstly, based on the working mechanism of magnetic bearings with redundant structures and the nonlinear electromagnetic force model, the current and displacement stiffness models of magnetic bearings are established, and a dynamic model of the rotor is constructed. Then, according to the dynamic model of the rotor and the mapping relationship between the current of each coil and the electromagnetic force of the magnetic bearing, we established the equivalent control loop of the magnetic bearing-rotor system with redundant structures. Finally, on the basis of the active disturbance rejection control (ADRC) strategy, we designed a linear active disturbance rejection controller (LADRC) for magnetic bearings with redundant structures under the condition of no coil failure, and a corresponding simulation was carried out. The results demonstrate that compared to PID+current distribution control strategy, the LADRC+current distribution control strategy proposed in this paper is able to effectively improve the anti-interference performance of the rotors supported by magnetic bearings with redundant structures.

7.
ISA Trans ; 78: 56-65, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29102477

RESUMO

Vessels with a dynamic positioning system (DPS) are widely applied in ocean resource exploration. Because of the inaccuracy and coupling of the vessel dynamic model, it is important to design a controller that performs well in an oceanic environment. The active disturbance rejection controller (ADRC) is introduced in this study to control the vessel movement and positioning in the DPS. The merit of the ADRC is that it does not need an accurate plant and disturbance model. In the proposed method, an adaptive hybrid biogeography-based optimization (BBO) and differential evolution (DE) are developed. The orthogonal learning (OL) mechanism is employed to achieve adaptive switching to different searching mechanisms between BBO and DE. The proposed adaptive hybrid BBO-DE (AHBBODE) algorithm is then used to optimize the parameters of ADRC; these parameters are not easy to determine by using the trial and error method. Finally, the proposed method is compared with the BBO- and DE-based methods. The results show that better performance is obtained by the proposed method.

8.
ISA Trans ; 61: 95-103, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26775089

RESUMO

This paper deals with the critical issue in a wind energy conversion system (WECS) based on a direct-driven permanent magnet synchronous generator (PMSG): the rejection of lumped disturbance, including the system uncertainties in the internal dynamics and unknown external forces. To simultaneously track the motor speed in real time and capture the maximum power, a maximum power point tracking strategy is proposed based on active disturbance rejection control (ADRC) theory. In real application, system inertia, drive torque and some other parameters change in a wide range with the variations of disturbances and wind speeds, which substantially degrade the performance of WECS. The ADRC design must incorporate the available model information into an extended state observer (ESO) to compensate the lumped disturbance efficiently. Based on this principle, a model-compensation ADRC is proposed in this paper. Simulation study is conducted to evaluate the performance of the proposed control strategy. It is shown that the effect of lumped disturbance is compensated in a more effective way compared with the traditional ADRC approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...