Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39219225

RESUMO

High level of aluminum content in Enteromorpha prolifera posed a growing threat to both its growth and human health. This study focused on exploring the factors, impacts, and process of removing aluminum from Enteromorpha prolifera using humic acid. The results showed that under experimental conditions of 0.0330 g·L-1 humic acid concentration, pH 3.80, 34 °C, and a duration of 40 min, the removal rate was up to 80.18%. The levels of major flavor components, proteins, and amino acids in Enteromorpha prolifera increased significantly after treatment, while polysaccharides and trace elements like calcium and magnesium decreased significantly. Infrared spectroscopy demonstrated that the main functional groups involved in binding with Al3+ during humic acid adsorption were hydroxyl, carboxyl, phenol, and other oxygen-containing groups. The adsorption process of Al3+ by humic acid was a spontaneous phenomenon divided into three key stages: fast adsorption, slow adsorption, and adsorption equilibrium, which resulted from both physical and chemical adsorption effects. This study provided a safe and efficient method in algae metal removal.

2.
Environ Pollut ; 360: 124685, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111531

RESUMO

Microplastics (MPs) have aroused growing environmental concerns due to their biotoxicity and vital roles in accelerating the spread of toxic elements. Illuminating the interactions between MPs and heavy metals (HMs) is crucial for understanding the transport and fate of HM-loaded MPs in specific environmentally relevant scenarios. Herein, the adsorption of copper (Cu2+) and zinc (Zn2+) ions over polyethylene (PE) and polyethylene terephthalate (PET) particulates before and after heat persulfate oxidation (HPO) treatment was comprehensively evaluated in simulated and real swine wastewaters. The effects of intrinsic properties (i.e., degree of weathering, size, type) of MPs and environmental factors (i.e., pH, ionic strength, and co-occurring species) on adsorption were investigated thoroughly. It was observed that HPO treatment expedites the fragmentation of pristine MPs, and renders MPs with a variety of oxygen-rich functional groups, which are likely to act as new active sites for binding both HMs. The adsorption of both HMs is pH- and ionic strength-dependent at a pH of 4-6. Co-occurring species such as humic acid (HA) and tetracycline (TC) appear to enhance the affinity of both aged MPs for Cu2+ and Zn2+ ions via bridging complexation. However, co-occurring nutrient species (e.g., phosphate and ammonia) demonstrate different impacts on the adsorption, improving uptake of Cu2+ by precipitation while lowering affinity for Zn2+ owing to the formation of soluble zinc-ammonia complex. Spectroscopic analysis indicates that the dominant adsorption mechanism mainly involves electrostatic interactions and surface complexation. These findings provided fundamental insights into the interactions between aged MPs and HMs in swine wastewaters and might be extended to other nutrient-rich wastewaters.

3.
Int J Biol Macromol ; 273(Pt 2): 133003, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38851607

RESUMO

Enzymatic hydrolysis is important for lignocellulosic biomass conversion into fermentable sugars. However, the nonproductive adsorption of enzyme on lignin was major hinderance for the enzymatic hydrolysis efficiency. In this study, non-productive adsorption mechanism of cellulase component cellobiohydrolase (CBH) onto lignin was specific investigated. Research revealed that the adsorption behavior of CBH on eucalyptus alkali lignin (EuA) was affected by reaction conditions. As study on the adsorption kinetic, it was indicated that the adsorption cellulose binding domain (CBD) of CBH onto EuA well fitted with Langmuir adsorption model and pseudo second-order adsorption kinetics model. And the tyrosine site related to the adsorption of CBD onto lignin was proved by the fluorescence and UV spectra analysis. The results of this work provide a theoretical guidance to understanding the nonproductive adsorption mechanism and building method to reduce the adsorption of cellulase on the lignin.


Assuntos
Celulose 1,4-beta-Celobiosidase , Eucalyptus , Lignina , Lignina/química , Celulose 1,4-beta-Celobiosidase/química , Celulose 1,4-beta-Celobiosidase/metabolismo , Adsorção , Cinética , Eucalyptus/química , Hidrólise
4.
Environ Pollut ; 356: 124319, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38844042

RESUMO

The presence of microplastics in the ecological environment, serving as carriers for other organic pollutants, has garnered widespread attention. These microplastics exposed in the environment may undergo various aging processes. However, there is still a lack of information regarding how these aged microplastics impact the environmental behavior and ecological toxicity of pollutants. In this study, we modified polystyrene microplastics by simulating the aging behavior that may occur under environmental exposure, and then explored the adsorption behavior and adsorption mechanism of microplastics before and after aging for typical triazine herbicides. It was shown that all aging treatments of polystyrene increased the adsorption of herbicides, the composite aged microplastics had the strongest adsorption capacity and the fastest adsorption rate, and of the three herbicides, metribuzin was adsorbed the most by microplastics. The interactions between microplastics and herbicides involved mechanisms such as hydrophobic interactions, surface adsorption, the effect of π-π interactions, and the formation of hydrogen bonds. Further studies confirmed that microplastics adsorbed with herbicides cause greater biotoxicity to E. coli. These findings elucidate the interactions between microplastics before and after aging and triazine herbicides. Acting as carriers, they alter the environmental behavior and ecological toxicity of organic pollutants, providing theoretical support for assessing the ecological risk of microplastics in water environments.


Assuntos
Microplásticos , Poliestirenos , Triazinas , Poluentes Químicos da Água , Microplásticos/química , Microplásticos/toxicidade , Poliestirenos/química , Triazinas/química , Triazinas/toxicidade , Adsorção , Poluentes Químicos da Água/química , Herbicidas/química , Praguicidas/química
5.
J Colloid Interface Sci ; 673: 301-311, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38878365

RESUMO

The development of catalysts with suitable adsorption behavior for the reaction molecules and the elucidation of their internal structure-adsorption-catalytic activity relationships are crucial for the electrooxidation of 5-hydroxymethylfurfural (HMF). In this work, NiO-CuO heterostructures with a spontaneous built-in electric field (BEF) are specifically designed and used to regulate the OH- adsorption site for freeing up the active site of HMF for the HMF oxidation reaction (HMFOR). The mechanism driving electron pumping/accumulation of the BEF is examined by X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). Electrochemical data and theoretical calculations show that BEF modulates the adsorption energy and adsorption site of substrate molecules, thereby enhancing the performance of HMFOR and hydrogen evolution reaction (HER). Notably, the NiO-CuO electrode demonstrates high 2,5-Furandicarboxylic acid (FDCA) selectivity (99.76 %) and generation rate (13.79 mmol gcat-1 h-1). It only requires 1.33 V to obtain a current density of 10 mA cm-2 for HMFOR-coupled H2 evolution. This research introduces a novel approach by regulating the adsorption of reactive molecules for HMFOR-assisted H2 evolution.

6.
Carbohydr Polym ; 339: 122202, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823898

RESUMO

Interactions among multi-component play a critical role in modulating the foaming properties of aerated foods. This study evaluated the mechanisms of synergistic improvement of gellan gum (GEG) and guar gum (GUG) on the foaming properties of soy protein isolate (SPI)-based complex. The results showed that the GEG/GUG ratio was closely related to the intermolecular interactions of SPI-based ternary complex and the dynamical changing of its foaming properties. The SPI/GEG/GUG ternary complex with a GEG/GUG ratio of 2/3 exhibited the highest foamability (195 %) and comparable foam stability (99.17 %), which were 32.95 % and 2.99 % higher than that of SPI/GEG binary complex. At this ratio, GUG promoted the interactions between SPI and GEG, and bound to complex's surface through hydrogen bonding, resulting in the increase of particle size and surface charge, and the decrease of surface hydrophobicity. Although this reduced the diffusion of complex onto the air/water interface, it increased permeation rate and molecular rearrangement behavior, which were the potential mechanisms to improve the foaming properties. Additionally, the synergistic effect of GEG and GUG also enhanced the elastic strength and solid characteristics of foam systems. This study provided a theoretical guidance for the targeted modulation of foaming properties of multi-component aerated foods.


Assuntos
Galactanos , Mananas , Gomas Vegetais , Polissacarídeos Bacterianos , Proteínas de Soja , Gomas Vegetais/química , Galactanos/química , Proteínas de Soja/química , Mananas/química , Polissacarídeos Bacterianos/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Ligação de Hidrogênio
7.
J Mol Model ; 30(6): 165, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735975

RESUMO

CONTEXT: A computational representation was used to model the doping and nanomodification of ZnO nanoparticles incorporated in Au/Fe nanocomposite. Au/Fe nanostructure was geometrically and discussed to investigate its electronic properties such electronic band structure and PDOS spectra. Moreover, the ZnO interacted with Au/Fe system was illustrated concerning the modified properties present on the surface of the nanocomposite as it may behave different attribution of band gap evaluated after ZnO modification included. Molecular dynamic simulation of the whole nano system was studied to predict the system stability concerning temperature and energy parameters during 100 ps simulation time. The most effective models under investigation were evaluated using adsorption annealing computations associated with the adsorption energy surface. A highly stable energetic adsorption system was anticipated by the periodic adsorption-annealing calculation. METHODS: Au and Fe pure metals nanostructures were studied as a separate molecule with (0 0 1) plane surface for optimum energy minimization. Dmol3 module in/materials studio software was utilized for this protocol. The designed Au/Fe layers for nanostructure building material was computationally optimized, where DFT level was considered involving generalized gradient approximation (GGA) with Perdew-Burke-Ernzerh (PBE) exchange functional. In the computations of the structure matrix simulation, the global orbital cutoff was selected. To address the weak quantification of the standard DFT functionals, Tkatchenko-Schefer (TS) (DFT + D) was utilized to precisely correct the pairwise dispersion of the functionals. The electrical parameters were interpreted using the reciprocal space of the ultrasoft pseudopotential representation. To overcome the issues of self-electron interaction, the nonlocal hybrid functional with PBE0 method was utilized to calculate the electronic properties of the studied systems. The computations generated are predicated on a particular trajectory of the gamma k-point band energy interpolations proposed in this examination. An investigation into the position of adsorption came after geometric optimization. Adsorbed on an optimized Au/Fe surface, ZnO nanostructure was computationally explored using the Dmol3 simulation software.

8.
Materials (Basel) ; 17(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38673253

RESUMO

The adsorption behavior and dispersing capability of hyperbranched phosphated polycarboxylate superplasticizers (PCEs) containing phosphate monoester and phosphate diester were investigated. The hyperbranched structures were constructed using a special monomer dimethylaminoethyl methacrylate (DMAMEA) to create the branches during the polymerization. Meanwhile, the polymer architectures were tailored by varying the content of phosphate monoester and phosphate diester in the backbone via free radical solution polymerization. In contrast to comb-like PCE, hyperbranched PCEs presented a weaker dispersion capability at w/c = 0.29, but with a lower water-to-cement ratio (w/c), the hyperbranched PCEs exhibited a better dispersion capability than the comb-like PCEs. The dynamic light scattering (DLS) and transmission electron microscope (TEM) analysis showed that the adsorption layer of hyperbranched PCEs were thicker than that of comb-like PCEs. A thicker adsorption layer thickness generated thinner diffusion water layer thickness. The increase of the free water amount due to the thinner water diffusion layer is the key mechanism for improving the dispersibility and decreasing the viscosity of cement paste.

9.
Int J Biol Macromol ; 268(Pt 1): 131583, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38621554

RESUMO

This study evaluated the foaming properties, the dynamic adsorption behavior at the air/water (A/W) interface and the foam rheological characteristics of complexes formed by soy protein isolate (SPI) and different charged polysaccharides, including chitosan (CS), guar gum (GUG) and gellan gum (GEG). The results showed that the SPI/CS10 had the highest initial foam volume (26.67 mL), which were 3.89 %, 100.08 % and 70.19 % higher than that of single SPI, SPI/GUG and SPI/GEG complexes, respectively. Moreover, three charged polysaccharides could all significantly improve the foam stability of complexes. Among them, foams stabilized by SPI/GEG10 were the most stable that the foam volume slightly changed (approximately 1 mL) and no drainage occurred throughout the whole recording process. The interfacial behavior analysis showed that SPI/CS10 had higher diffusion (Kdiff) and rearrangement rate (KR) but lower penetration rate (KP) at the A/W interface compared with single SPI, while SPI/GUG10 and all SPI/GEG complexes showed higher KR and KP but lower Kdiff. In addition, SPI/CS10 was beneficial to concurrently enhance the elastic strength and solid-like behavior of foam system, while all SPI/GEG complexes could improve the elastic strength of foam system but was not conducive to the solid-like behavior.


Assuntos
Ar , Polissacarídeos , Reologia , Proteínas de Soja , Água , Proteínas de Soja/química , Água/química , Polissacarídeos/química , Gomas Vegetais/química , Galactanos/química , Polissacarídeos Bacterianos/química , Quitosana/química , Adsorção , Mananas/química
10.
Environ Sci Pollut Res Int ; 31(16): 24139-24152, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436855

RESUMO

In order to reveal the adsorption mechanism of microplastics (MPs) on antibiotics, polystyrene (PS) was chosen as a typical microplastic, Fenton and high-temperature aging methods were used to obtain aged MPs particles. The adsorption behavior and mechanism of ciprofloxacin hydrochloride (CIP) on PS before and after aging were studied by batch adsorption experiments, and other influencing environmental conditions were evaluated concurrently. The results showed that the adsorption of CIP on PS was an exothermic reaction, the pseudo-second-order model and Freundlich isothermal models could fit the adsorption of CIP on PS. Aging treatment enhanced the adsorption capacity of PS to CIP, and Fenton aging for 7 days had the best effect. The highest adsorption was observed when the solution pH was 6. The adsorption capacity of microplastics gradually decreased with increasing ionic strength and the concentration of fulvic acid, while the aging microplastics changed little with the concentration of fulvic acid. The presence of both Cu (II) and CIP inhibits the adsorption of each other on microplastics. Based on the above findings, the adsorption of CIP on PS is dominated by physical adsorption, and electrostatic interactions and hydrogen bonding interactions are also important mechanisms for the adsorption of CIP on microplastics.


Assuntos
Poliestirenos , Poluentes Químicos da Água , Microplásticos , Plásticos , Ciprofloxacina , Adsorção , Água Doce , Poluentes Químicos da Água/análise
11.
J Chromatogr A ; 1720: 464781, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38471297

RESUMO

Taking the thiazide cationic dye methylene blue (MB), triphenylmethane cationic dye crystal violet (CV), monoazo cationic dye cationic red 46 (R-46), and polycarboxycyanine cationic dye cationic rosé FG (P-FG) as the research objects, the adsorption behaviors of a self-made corn straw modified adsorbent HQ-DTPA-I for the dyes were investigated in depth. Under optimized conditions, HQ-DTPA-I can quickly adsorb most dyes within 3 min and reach equilibrium adsorption in 15-20 min. The removal rates of HQ-DTPA-I to MB, CV, R-46 and AP-FG can reach 95.28 %, 99.78 %, 99.28 % and 98.53 %, respectively. It also has good anti-interference ability for common ions present in most actual dye wastewater. For six consecutive adsorption-desorption cycles, the adsorption performance of HQ-DTPA-I can still reach 80.17 %, 81.61 %, 90.77 % and 83.48 % of the initial adsorption capacity, indicating good recovery performance. Based on Gaussian density functional theory to calculate its surface potential energy, it is found that the adsorption mechanism of HQ-DTPA-I for the cationic dyes is mainly due to the electrostatic interaction between the carboxyl groups in ligand DTPA and amino groups in dye molecules.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Corantes/química , Zea mays , Adsorção , Ligantes , Cátions , Azul de Metileno/química , Violeta Genciana/química , Ácido Pentético , Poluentes Químicos da Água/química , Cinética
12.
J Mol Model ; 30(4): 106, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491151

RESUMO

CONTEXT: Electronic durable behavior on the material surface was accompanied by a class of antipsychotic drugs (APD) to describe the surface modification in the designed adsorption model. Hierarchically Zn-MOF system was utilized for estimating its capacity for drug molecule removal. Geometrically optimized strategy on the studied systems was performed using DFT/GGA/PBE. FMOs analysis was depicted based on the same level of calculations, and molecular electrostatic potential surface (MEP) was generated for unadsorbed and adsorbed systems to illustrate the variation in the surface-active sites. By interpreting the electronic density of states (DOS), the atomic orbital can be identified as a major or minor electronic distribution by PDOS graph. Adsorption locating behavior was considered to detect the significant surface interaction mode between APD and Zn-MOF surface based on lower adsorption energy. The stability of the adsorbed model was best described through dynamic simulation analysis with time through elevated temperatures. The non-covalent interactions were described using RDG/NCI analysis to show the major favorable surface interaction predicting the highly stable adsorption system. METHODS: The most accurate geometrical computations were performed using the materials studio software followed by surface cleavage and vacuum slab generation. The first principle of DFT was used to apply CASTEP module with GGA/PBE method for band structure and DOS calculations. Three systems of antipsychotic drugs were computationally studied using CASTEP simulation package and adsorbed on an optimized Zn-MOF surface. Adsorption locator module predicted the preferred adsorption mechanistic models, in which the first model was arranged to be more stable, to confirm the occurrence of some interactions in the adsorption mechanism.

13.
Polymers (Basel) ; 16(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38399863

RESUMO

The advanced Gas Insulated Switchgear/Gas Insulated Lines (GIS/GIL) transmission equipment serves as an essential physical infrastructure for establishing a new energy power system. An analysis spanning nearly a decade on faults arising from extra/ultra-high voltage discharges reveals that over 60% of such faults are attributed to the discharge of metal particles and dust. While existing technical means, such as ultra-high frequency and ultrasonic sensing, exhibit effectiveness in online monitoring of particles larger than sub-millimeter dimensions, the inherent randomness and elusive nature of micron-nano dust pose challenges for effective characterization through current technology. This elusive micron-nano dust, likely concealed as a latent threat, necessitates special attention due to its potential as a "safety killer". To address the challenges associated with detecting micron-nano dust and comprehending its intricate mechanisms, this paper introduces a micron-nano dust adsorption experimental platform tailored for observation and practical application in GIS/GIL operations. The findings highlight that micron-nano dust's adsorption state in the electric field predominantly involves agglomerative adsorption along the insulator surface and diffusive adsorption along the direction of the ground electrode. The pivotal factors influencing dust movement include the micron-nano dust's initial position, mass, material composition, and applied voltage. Further elucidation emphasizes the potential of micron-nano dust as a concealed safety hazard. The study reveals specific physical phenomena during the adsorption process. Agglomerative adsorption results in micron-nano dust speckles forming on the epoxy resin insulator's surface. With increasing voltage, these speckles undergo an "explosion", forming an annular dust halo with deepening contours. This phenomenon, distinct from the initial adsorption, is considered a contributing factor to flashovers along the insulator's surface. The physical mechanism behind flashovers triggered by micron-nano dust is uncovered, highlighting the formation of a localized short circuit area and intense electric field distortion constituted by dust speckles. These findings establish a theoretical foundation and technical support for enhancing the safe operational performance of AC and DC transmission pipelines' insulation.

14.
Sci Total Environ ; 918: 170591, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38309345

RESUMO

Microplastics (MPs), a new type of pollutant, have attracted much attention worldwide. MPs are often complexed with other pollutants such as heavy metals, resulting in combined toxicity to organisms in the environment. Studies on the combined toxicity of MPs and heavy metals have usually focused on the marine, while on the freshwater are lacking. In order to understand the combined toxic effects of MPs and heavy metals in the freshwater, five typical MPs (PVC, PE, PP, PS, PET) were selected to investigate the adsorption characteristics of MPs to Pb2+ before and after the MPs aging by ultraviolet (UV) irradiation through static adsorption tests. The results showed that UV aging enhanced adsorption of Pb2+ by MPs. It is noteworthy that MPs-PET had the highest adsorption capacity for Pb2+, and the interaction between MPs-PET and Pb2+ was the strongest. We specifically selected MPs-PET to study its combined toxicity with Pb2+ to Chlorella pyrenoidosa. In the combined toxicity test, MPs-PET and Pb2+ had significant toxic effects on Chlorella pyrenoidosa in the individual exposure, and the toxicity of individual Pb2+ exposure was greater than that of individual MPs-PET exposure. In the combined exposure, when MPs-PET and Pb2+ without adsorption (MPs-PET/Pb2+), MPs-PET and Pb2+ had a synergistic effect, which would produce strong physical and chemical stress on Chlorella pyrenoidosa simultaneously, and the toxic effect was the most significant. After the adsorption of MPs-PET and Pb2+ (MPs-PET@Pb2+), the concentration and activity of Pb2+ decreased due to the adsorption and fixation of MPs-PET, and the chemical stress on Chlorella pyrenoidosa was reduced, but the physical stress of MPs-PET still existed and posed a serious threat to the survival of Chlorella pyrenoidosa. This study has provided a theoretical basis for further assessment of the potential environmental risks of MPs in combination with other pollutants such as heavy metals.


Assuntos
Chlorella , Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Microplásticos/toxicidade , Plásticos/toxicidade , Chumbo/toxicidade , Poluentes Químicos da Água/análise , Metais Pesados/toxicidade , Metais Pesados/química , Adsorção
15.
Ecotoxicol Environ Saf ; 269: 115747, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070415

RESUMO

Microplastics (MPs) are global environmental pollutants with potential toxicity concerns, and their effects on the reproductive system have attracted increasing attention. This study investigated the interaction between MPs and mammalian biomolecules, focusing on the relationship between the testosterone adsorption behavior of MPs and male reproductive health. The adsorption capacity of different types of MPs for testosterone was evaluated in vitro experiments. Polyamide (PA)-MPs exhibited stronger adsorption, while polymethyl methacrylate (PMMA)-MPs displayed the weakest adsorption. Sorption equilibrium between PA-MPs and testosterone was achieved within 6 h, fitting the Pseudo-2nd-order model and Langmuir isotherm. The effects of MPs on male reproduction in mice was determined in vivo experiments. Male mice were treated with 0.1 and 0.5 mg/d PA-MPs/PMMA-MPs by gavage once per day for 28 days. The results showed that only 0.5 mg/d PA-MP exposure induced decreased serum testosterone levels, increased testicular testosterone levels compared to the control, and more severe damage to seminiferous tubule structure, sperm motility and sperm morphology compared to the PMMA-MPs group. Meanwhile, PA-MPs could reduce intracellular nuclear translocation of androgen receptor (AR) mediated by testosterone, while PMMA-MPs had no impact. The study revealed that PA-MP adsorption reduced testosterone bioavailability and caused sperm quality to decline, offering new insights into the combined toxicity mechanism of MPs in male mammals.


Assuntos
Microplásticos , Poluentes Químicos da Água , Masculino , Animais , Camundongos , Microplásticos/toxicidade , Plásticos/toxicidade , Plásticos/química , Nylons , Testosterona , Adsorção , Disponibilidade Biológica , Polimetil Metacrilato , Saúde Reprodutiva , Sêmen/química , Motilidade dos Espermatozoides , Poluentes Químicos da Água/análise , Mamíferos
16.
J Mol Model ; 30(1): 14, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38148383

RESUMO

CONTEXT: Electronic sustainable behavior on the material surface and in situ metal configuration were accompted with some metal atoms like Li, Na, and K elements. Metal-doped ZrO2 crystal exported modified characteristics related to electronic conduction and exhibited some dynamic modification around the surface of the metal oxide. Computational perturbations were considered to discuss the modification behavior in addition to the studied Li, Na, and K metals. Optimization of the three doping systems was achieved followed by generating DOS and electronic band structure maps. A dynamic simulation was performed with temperature over 2000 k: the presence of the metal on the surface and prediction of its ZrO2 inclusion leading to access adsorption behavior, besides generating predictive designed models described the adsorption affinity on the solid-state surface. It cannot be neglected the importance of various metals as a main role in chemotherapy. Molecular docking investigation was considered to predict the binding behavior of the studied metal ZrO2 carrier system as an anticancer agent. Also, docking affinity was helpful in comparing the active sites binding for the studied metals, resulting in a notable binding affinity for both Li- and Na-zirconia incorporation. METHODS: The program PWSCF, which is a component of the quantum ESPRESSO suite for quantum simulation of materials, was used to construct geometric systems. The generalized gradient approximation in the Perdew-Burke-Ernzerhof (GGA/PBE) function with D3 correction (Becke-Jonson damping) was applied to the exchange-correlation energy. As the last step in the DFT postulation and design, adsorption locator annealing was carried out on the convergent models using the Materials Studio simulation package. The main roles played by metal atoms are in protein binding and the suppression of bio-active regions. For the docking process, the protein was produced using AutoDock 4.2 and Discovery Studio software in accordance with the usual methodology. Chimera and Discovery Studio were used to examine the docking data that was processed after generating specific grid box dimensions for 7BTN.

17.
Huan Jing Ke Xue ; 44(12): 6811-6822, 2023 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-38098406

RESUMO

NaHCO3-activated buckwheat biochar was studied, and an optimal biochar of 0.25N-BC [m(NaHCO3):m(buckwheat bark)=0.25:1]was selected. SEM, BET, XRD, Raman, FTIR, and XPS methods were applied to analyze the effects of NaHCO3 on the physicochemical properties of buckwheat biochar. The adsorption properties and mechanism of NaHCO3-activated buckwheat biochar for iopamidol(IPM), a nonionic iodol X-ray contrast agent, were also investigated. The results showed that compared with buckwheat skin biochar(BC), NaHCO3-activated biochar had higher structural defects(surface area and pore volume increased, respectively, from 480.40 m2·g-1 and 0.29 cm3·g-1 to 572.83 m2·g-1 and 0.40 cm3·g-1, with ID/IG being 1.22 times that of BC), the carbon and oxygen functional groups on the BC surface changed significantly, and the polarity increased [(N+O)/C from 0.15 to 0.24]. The maximum adsorption capacity of 0.25N-BC for IPM was 74.94 mg·g-1, which was 9.51 times that of BC(7.88 mg·g-1). The pseudo-second-order adsorption kinetics and Langmuir and Freundlich isotherm models could well fit the adsorption of 0.25N-BC for IPM. The adsorption processes were mainly chemical, monolayer, and heterogeneous multilayer adsorption. Pore filling, hydrogen bonding, π-π, and n-π interactions were the main mechanisms of 0.25N-BC adsorption for IPM. Comparing the activated buckwheat biochar by different bases [KOH, Na2CO3, NaHCO3, KHCO3, and Ca(HCO3)2], 0.25N-BC exhibited high adsorption capability and short equilibrium time and could effectively remove the IPM residue in the actual water(secondary sedimentation tank effluent and lake). The removal rate of IPM remained at 74.91% after three adsorption-desorption cycles. The results showed that NaHCO3-activated buckwheat biochar was a green, effective, and sustainable adsorbent for the removal of iodine-containing organic matter.


Assuntos
Fagopyrum , Poluentes Químicos da Água , Iopamidol , Adsorção , Poluentes Químicos da Água/análise , Carvão Vegetal/química , Cinética
18.
Front Chem ; 11: 1265290, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954958

RESUMO

A combined method of solid-phase alkali activation and surface precipitation was used to prepare the lithium/aluminum layered double hydroxides-SiO2 loaded bauxite (LDH-Si-BX) and applied to adsorb Li+ in brines. In the study, various characterization techniques such as SEM, XRD, BET, Zeta potential, and x-ray photoelectron spectroscopy (XPS) were applied to characterize and analyze the adsorbents. The adsorption-desorption performance of LDH-Si-BX for Li+ in brines was systematically investigated, including adsorption temperature, adsorption time, Li+ concentration, and regeneration properties. The results indicated that the adsorption kinetics were better fitted by the pseudo-second-order model, whereas the Langmuir model could match the adsorption isotherm data and the maximum Li+ capacity of 1.70 mg/g at 298K. In addition, in the presence of coexisting ions (Na+, K+, Ca2+, and Mg2+), LDH-Si-BX showed good selective adsorption of Li+, and the pH studies demonstrated that the adsorbents had better Li+ adsorption capacity in neutral environments. In the adsorption process of real brines, LDH-Si-BX had a relatively stable adsorption capacity, and after 10 cycles of adsorption and regeneration, the adsorption capacity decreased by 16.8%. It could be seen that the LDH-Si-BX adsorbents prepared in this report have the potential for Li+ adsorption in brines.

19.
ACS Nano ; 17(21): 21799-21812, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37862692

RESUMO

Constructing active sites with enhanced intrinsic activity and accessibility in a confined microenvironment is critical for simultaneously upgrading the round-trip efficiency and lifespan of all-vanadium redox flow battery (VRFB) yet remains under-explored. Here, we present nanointerfacial electric fields (E-fields) featuring outstanding intrinsic activity embodied by binary Mo2C-Mo2N sublattice. The asymmetric chemical potential on both sides of the reconstructed heterogeneous interface imposes the charge movement and accumulation near the atomic-scale N-Mo-C binding region, eliciting the configuration of an accelerator-like E-field from Mo2N to Mo2C sublattice. Supported with theoretical calculations and intrinsic activity tests, the improved vanadium ion adsorption behavior and charge-transfer process at the nanointerfacial sites were further substantiated, hence expediting the electrochemical kinetics. Accordingly, the pronounced promotion is achieved in the resultant flow battery, yielding an energy efficiency of 77.7% and an extended lifespan of 1000 cycles at 300 mA cm-2, outperforming flow cells with conventional single catalysts in most previous reports.

20.
Environ Sci Pollut Res Int ; 30(54): 114739-114755, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37906331

RESUMO

Environmental plastic wastes are continuously degraded into microplastics (MPs) and nanoplastics (NPs); the latter are more potentially harmful to organisms and human health as their smaller size and higher surface-to-volume ratio. Previous reviews on NPs mainly concentrate on specific aspects, such as sources, environmental behavior, and toxicological effects, but few focused on NPs-related scientific publications from a global point of view. Therefore, this bibliometric study aims to summarize the research themes and trends on NPs and also propose potential directions for future inquiry. Related papers were downloaded from the Web of Science Core Collection database on NPs published from 2008 to 2021, and then retrieved information was analyzed using CiteSpace 6.1 R2 and VOSviewer (version 1.6.). Research on NPs mainly involved environmental behaviors, toxicological effects, identification and extraction of NPs, whereas aquatic environments, especially marine systems, attracted more attentions from these scientists compare to terrestrial environments. Furthermore, the adsorption behavior of pollutants by NPs and the toxicological effects of organisms exposed to NPs are the present hotspots, while the regulation of humic acid (HA) on NPs behaviors and the environmental behavior of NPs in freshwater, like rivers and lakes, are the frontier areas of research. This study also explored the possible opportunities and challenges that may be faced in NPs research, which provide a valuable summary and outlook for ongoing NPs-related research, which may be of intrigue and noteworthiness for relevant researchers.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Adsorção , Bibliometria , Lagos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...