Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(7)2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37515291

RESUMO

In the present study, 31 samples (12 fecal, 9 nasal and 10 rectal swabs) from 28/92 (30.43%, 10 captive and 18 free-roaming African green monkeys (AGMs, Chlorocebus sabaeus)) apparently healthy AGMs in the Caribbean Island of St. Kitts tested positive for adenoviruses (AdVs) by DNA-dependent DNA polymerase (pol)-, or hexon-based screening PCR assays. Based on analysis of partial deduced amino acid sequences of Pol- and hexon- of nine AGM AdVs, at least two AdV genetic variants (group-I: seven AdVs with a Simian mastadenovirus-F (SAdV-F)/SAdV-18-like Pol and hexon, and group-II: two AdVs with a SAdV-F/SAdV-18-like Pol and a Human mastadenovirus-F (HAdV-F)/HAdV-40-like hexon) were identified, which was corroborated by analysis of the nearly complete putative Pol, complete hexon, and partial penton base sequences of a representative group-I (strain KNA-08975), and -II (KNA-S6) AdV. SAdV-F-like AdVs were reported for the first time in free-roaming non-human primates (NHPs) and after ~six decades from captive NHPs. Molecular characterization of KNA-S6 (and the other group-II AdV) indicated possible recombination and cross-species transmission events involving SAdV-F-like and HAdV-F-like viruses, corroborating the hypothesis that the evolutionary pathways of HAdVs and SAdVs are intermingled, complicated by recombination and inter-species transmission events, especially between related AdV species, such as HAdV-F and SAdV-F. To our knowledge, this is the first report on detection and molecular characterization of AdVs in AGMs.


Assuntos
Infecções por Adenoviridae , Adenoviridae , Chlorocebus aethiops , Doenças dos Macacos , Adenoviridae/classificação , Adenoviridae/genética , Adenoviridae/isolamento & purificação , Animais , Animais Selvagens , São Cristóvão e Névis , Filogenia , Infecções por Adenoviridae/transmissão , Infecções por Adenoviridae/veterinária , Infecções por Adenoviridae/virologia , Doenças dos Macacos/transmissão , Doenças dos Macacos/virologia , Animais de Zoológico
2.
Front Immunol ; 13: 867015, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359965

RESUMO

Animal models are an integral part of the drug development and evaluation process. However, they are unsurprisingly imperfect reflections of humans, and the extent and nature of many immunological differences are unknown. With the rise of targeted and biological therapeutics, it is increasingly important that we understand the molecular differences in the immunological behavior of humans and model organisms. However, very few antibodies are raised against non-human primate antigens, and databases of cross-reactivity between species are incomplete. Thus, we screened 332 antibodies in five immune cell populations in blood from humans and four non-human primate species generating a comprehensive cross-reactivity catalog that includes cell type-specificity. We used this catalog to create large mass cytometry universal cross-species phenotyping and signaling panels for humans, along with three of the model organisms most similar to humans: rhesus and cynomolgus macaques and African green monkeys; and one of the mammalian models most widely used in drug development: C57BL/6 mice. As a proof-of-principle, we measured immune cell signaling responses across all five species to an array of 15 stimuli using mass cytometry. We found numerous instances of different cellular phenotypes and immune signaling events occurring within and between species, and detailed three examples (double-positive T cell frequency and signaling; granulocyte response to Bacillus anthracis antigen; and B cell subsets). We also explore the correlation of herpes simian B virus serostatus on the immune profile. Antibody panels and the full dataset generated are available online as a resource to enable future studies comparing immune responses across species during the evaluation of therapeutics.


Assuntos
Mamíferos , Linfócitos T , Animais , Chlorocebus aethiops , Reações Cruzadas , Humanos , Macaca fascicularis , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL
3.
Front Immunol ; 13: 1060985, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713371

RESUMO

HIV emerged following cross-species transmissions of simian immunodeficiency viruses (SIVs) that naturally infect non-human primates (NHPs) from Africa. While HIV replication and CD4+ T-cell depletion lead to increased gut permeability, microbial translocation, chronic immune activation, and systemic inflammation, the natural hosts of SIVs generally avoid these deleterious consequences when infected with their species-specific SIVs and do not progress to AIDS despite persistent lifelong high viremia due to long-term coevolution with their SIV pathogens. The benign course of natural SIV infection in the natural hosts is in stark contrast to the experimental SIV infection of Asian macaques, which progresses to simian AIDS. The mechanisms of non-pathogenic SIV infections are studied mainly in African green monkeys, sooty mangabeys, and mandrills, while progressing SIV infection is experimentally modeled in macaques: rhesus macaques, pigtailed macaques, and cynomolgus macaques. Here, we focus on the distinctive features of SIV infection in natural hosts, particularly (1): the superior healing properties of the intestinal mucosa, which enable them to maintain the integrity of the gut barrier and prevent microbial translocation, thus avoiding excessive/pathologic immune activation and inflammation usually perpetrated by the leaking of the microbial products into the circulation; (2) the gut microbiome, the disruption of which is an important factor in some inflammatory diseases, yet not completely understood in the course of lentiviral infection; (3) cell population shifts resulting in target cell restriction (downregulation of CD4 or CCR5 surface molecules that bind to SIV), control of viral replication in the lymph nodes (expansion of natural killer cells), and anti-inflammatory effects in the gut (NKG2a/c+ CD8+ T cells); and (4) the genes and biological pathways that can shape genetic adaptations to viral pathogens and are associated with the non-pathogenic outcome of the natural SIV infection. Deciphering the protective mechanisms against SIV disease progression to immunodeficiency, which have been established through long-term coevolution between the natural hosts and their species-specific SIVs, may prompt the development of novel therapeutic interventions, such as drugs that can control gut inflammation, enhance gut healing capacities, or modulate the gut microbiome. These developments can go beyond HIV infection and open up large avenues for correcting gut damage, which is common in many diseases.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Chlorocebus aethiops , Linfócitos T CD8-Positivos , Macaca mulatta , Inflamação
4.
Viral Immunol ; 33(10): 634-641, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33185509

RESUMO

Interferon-induced transmembrane proteins (IFITMs) are transmembrane proteins induced by interferon that can provide broad-spectrum antiviral activities. However, there are few reports on the antiviral activity of monkey-derived IFITMs. In this study, the IFITM1 and IFITM3 genes of African green monkey (AGM) were cloned and overexpressed in Vero cells, followed by infection with mouse norovirus (MNV) and severe fever with thrombocytopenia syndrome virus (SFTSV). The results showed that monkey IFITM1 and IFITM3 can be stably overexpressed in Vero cells. Both IFITM1 and IFITM3 from AGM could effectively restrict infection by SFTSV, and the viral inhibition rate of IFITM3 was more obvious compared with IFITM1. However, both monkey IFITM1 and IFITM3 had no significant effect on the replication of MNV. These results indicate that different IFITMs have different functions, which may be related to the structure of the host IFITMs and the types of pathogens.


Assuntos
Proteínas de Membrana/genética , Norovirus/fisiologia , Phlebovirus/fisiologia , Replicação Viral/genética , Animais , Chlorocebus aethiops , Clonagem Molecular , Proteínas de Membrana/classificação , Camundongos , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...