Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 677(Pt B): 571-582, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39154449

RESUMO

Combining photocatalytic reduction with organic synthetic oxidation in the same photocatalytic redox system can effectively utilize photoexcited electrons and holes from solar to chemical energy. Here, we stabilized 0D Au clusters on the substrate surface of Zn vacancies modified 2D ZnIn2S4 (ZIS-V) nanosheets by chemically bonding Au-S interaction, forming surfactant functionalized Au/ZIS-V photocatalyst, which can not only synergistic accelerate the selective oxidation of phenylcarbinol to value-added products coupled with clean energy hydrogen production but also further drive photocatalytic CO2-to-CO conversion. An internal electric field of Au/ZIS-V ohmic junction and Zn vacancies synchronously promote the photoexcited charge carrier separation and transfer to optimized active sites for redox reactions. Compared with CO2 reduction in water and the pristine ZnIn2S4, the reaction thermodynamics and kinetics of CO2 reduction over the Au/ZIS-V were simultaneously improved about 11.09 and 45.51 times, respectively. Moreover, the photocatalytic redox mechanisms were also profoundly studied by 13CO2 isotope tracing tests, in situ electron paramagnetic resonance (in situ EPR), in situ X-ray photoelectron spectroscopy (in situ XPS), in situ diffuse reflection infrared Fourier transform spectroscopy (in situ DRIFTS) and density functional theory (DFT) characterizations, etc. These results demonstrate the advantages of vacancies coupled with metal clusters in the synergetic enhancement of photocatalytic redox performance and have great potential applications in a wide range of environments and energy.

2.
Angew Chem Int Ed Engl ; : e202413298, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39364573

RESUMO

Using biomass oxidation reactions instead of water oxidation reactions is optimal for accomplishing biomass conversion and effective hydrogen generation. Here, we report that Fe2O3 photoanodes with a NiOOH cocatalyst exhibit excellent performance for photoelectrochemical oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA). The conversion efficiency for HMF reaches 98.5%, while the selectivity for FDCA is 94.2%. We revealed that HMF is oxidized through a spontaneous proton-coupled electron transfer (PCET) process with the high-valent phase of the Ni-based catalyst. The dangling oxygen and bridging oxygen of the high-valent phase species serve as proton-accepting sites. Furthermore, we pointed out that the deprotonated bond dissociation free energy difference between the catalysts and alcohols is the thermodynamic trigger for the PCET process. This study provides a reasonable explanation for the alcohol oxidation reaction, which is beneficial for designing biomass conversion systems.

3.
Chempluschem ; : e202400465, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39392064

RESUMO

Au single atoms and clusters were stabilized on Mg-Al layered double hydroxide nanoparticles (LDH NPs), and the obtained Au@LDH NPs were supported on SiO2 and CeO2. After hydrogen reduction, Au single atoms were found together with Au clusters on LDH/SiO2. In contrast to Au single-atom catalysts which are deposited in metal vacancies of oxide supports, the LDH NPs stabilize small Au species despite the absence of metal vacancies. The obtained Au(0)@LDH/SiO2 catalyzed aerobic oxidation of alcohols, and Au single atoms maintained after the reaction. Given that only Au NPs were observed on bulk LDH, the abundant surface OH group of LDH NPs would contribute to stabilize Au, resulting in higher activity than Au/LDH-bulk. After calcination to transform LDH to mixed metal oxide (MMO), the obtained Au(0)@MMO/SiO2 also exhibited high catalytic activity. Moreover, Au(0)@LDH/CeO2 exhibited higher activity and excellent selectivity for hydrogenation of 4-nitrostyrene to 4-aminostyrene than conventional Au catalysts such as Au/CeO2 and Au/TiO2 even though only Au NPs were present. We demonstrated that Au size can be minimized using LDH NPs, exhibiting in high catalytic performance. The basic surface OH groups of LDH would be also beneficial for deprotonation of alcohols and heterolytic H2 dissociation in the catalytic reactions.

4.
Chem Asian J ; : e202401035, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254915

RESUMO

An optimised synthesis of the metal-organic framework (MOF) UiO-66(Ce) is reported using a modulator-free route, yielding ~5 g of material with high crystallinity and 22% ligand defect. Two methods developed for loading gold nanoparticles onto the MOF. The first uses a double-solvent method to introduce HAuCl4 onto UiO-66(Ce), followed by reduction under 5% H2 in N2, while the second is a novel one-pot method where HAuCl4 is added to the synthesis mixture, forming Au nanoparticles within the pores of the UiO-66(Ce) during crystallisation. Analysis using powder X-ray diffraction (PXRD), nitrogen adsorption isotherms, transmission electron microscopy and small-angle X-ray scattering (SAXS) reveals that the two-step double-solvent method yields gold crystallites on the external surface of the MOF particles that are visible by PXRD. In contrast, the one-pot method forms smaller gold crystallites, with a distribution of sizes centred on ~4 nm diameter as seen by SAXS, with evidence from PXRD for the smallest particles being present within the MOF structure. The Au-loaded UiO-66(Ce) materials are evaluated for the catalytic oxidation of vanillyl alcohol to vanillin at 60 °C. Our findings indicate that incorporating Au nanoparticles via the one-pot synthesis method, enhances redox activity, achieving 43% conversion and 90% selectivity towards vanillin.

5.
Beilstein J Org Chem ; 20: 1677-1683, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39076300

RESUMO

We present N-heterocycle-stabilized iodanes (NHIs) as suitable reagents for the mild oxidation of activated alcohols. Two different protocols, both involving activation by chloride additives, were used to synthesize benzylic ketones and aldehydes without overoxidation in up to 97% yield. Based on MS experiments an activated hydroxy(chloro)iodane is proposed as the reactive intermediate.

6.
Angew Chem Int Ed Engl ; 63(40): e202409419, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38975974

RESUMO

The local acidity at the anode surface during electrolysis is apparently stronger than that in bulk electrolyte due to the deprotonation from the reactant, which leads to the deteriorated electrocatalytic performances and product distributions. Here, an anode-electrolyte interfacial acidity regulation strategy has been proposed to inhibit local acidification at the surface of anode and enhance the electrocatalytic activity and selectivity of anodic reactions. As a proof of the concept, CeO2-x Lewis acid component has been employed as a supporter to load Au nanoparticles to accelerate the diffusion and enrichment of OH- toward the anode surface, so as to accelerate the electrocatalytic alcohol oxidation reaction. As the result, Au/CeO2-x exhibits much enhanced lactic acid selectivity of 81 % and electrochemical activity of 693 mA⋅cm-2 current density in glycerol oxidation reaction compared to pure Au. Mechanism investigation reveals that the introduced Lewis acid promotes the mass transport and concentration of OH- on the anode surface, thus promoting the generation of lactic acid through the simultaneous enhancements of Faradaic and non-Faradaic processes. Attractively, the proposed strategy can be used for the electro-oxidation performance enhancements of a variety of alcohols, which thereby provides a new perspective for efficient alcohol electro-oxidations and the corresponding electrocatalyst design.

7.
J Colloid Interface Sci ; 675: 481-487, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38986321

RESUMO

High-entropy alloys have raised great interest in recent years because of their potential applications for multi-electron reactions owing to their diverse active sites and multielement tunability. However, the difficulty of synthesis is an obstacle to their development due to phase separation often exists. In addition, it's a challenge to precisely control morphology in harsh conditions, thus leading to nanoparticles in many cases. We report a facile method to obtain PdPtPbSnNi HEA NWs by solvothermal synthesis method that no existing phase separation. PdPb nucleation plays a role in the formation of the high-entropy structure that serves as a PdPb nucleus for Sn, Ni, and Pt reduction subsequently, thus forming a single phase and an orderly-arranged nanowire structure. Significantly, the optimized PdPtPbSnNi NWs exhibit excellent catalytic activity and stability for both EOR and MOR which is 4.36 A mgPd+Pt-1 and 4.34 A mgPd+Pt-1, respectively. This study highlights a novel strategy for morphology tuning, providing a prospect for designing superior high-entropy nano-catalysts for multi-step reactions.

8.
Molecules ; 29(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893509

RESUMO

The catalytic properties of three copper complexes, [Cu(en)2](ClO4)2 (1), [Cu(amp)2](ClO4)2, (2) and [Cu(bpy)2](ClO4)2 (3) (where en = ethylenediamine, amp = 2-aminomethylpyridine and bpy = 2,2'-bipyridine), were explored upon the oxidation of benzyl alcohol (BnOH). Maximized conversions of the substrates to their respective products were obtained using a multivariate analysis approach, a powerful tool that allowed multiple variables to be optimized simultaneously, thus creating a more economical, fast and effective technique. Considering the studies in a fluid solution (homogeneous), all complexes strongly depended on the amount of the oxidizing agent (H2O2), followed by the catalyst load. In contrast, time seemed to be statistically less relevant for complexes 1 and 3 and not relevant for 2. All complexes showed high selectivity in their optimized conditions, and only benzaldehyde (BA) was obtained as a viable product. Quantitatively, the catalytic activity observed was 3 > 2 > 1, which is related to the π-acceptor character of the ligands employed in the study. Density functional theory (DFT) studies could corroborate this feature by correlating the geometric index for square pyramid Cu(II)-OOH species, which should be generated in the solution during the catalytic process. Complex 3 was successfully immobilized in silica-coated magnetic nanoparticles (Fe3O4@SiO2), and its oxidative activity was evaluated through heterogenous catalysis assays. Substrate conversion promoted by 3-Fe3O4@SiO2 generated only BA as a viable product, and the supported catalyst's recyclability was proven. Reduced catalytic conversions in the presence of the radical scavenger (2,2,6,6-tetrametil-piperidi-1-nil)oxil (TEMPO) indicate that radical and non-radical mechanisms are involved.

9.
ACS Nano ; 18(27): 17939-17949, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38918079

RESUMO

How to simultaneously utilize photogenerated electrons and holes still remains a critical challenge in the field of artificial photosynthesis, especially in the process of photocatalytic hydrogen (H2) evolution coupled with biomass oxidation to value-added chemicals. Herein, a series-parallel photocatalyst (Cu NPs/CdS/In2O3) that can intrinsically regulate the transfer of photogenerated carriers is ingeniously designed for photocatalytic H2 evolution synergized with furfural alcohol (FFA) selective oxidation to furfural (FF). Accordingly, the desired H2 and FF evolution rates with near 100% selectivity toward FF are achieved on Cu NPs/CdS/In2O3 in a sealed atmospheric system. Experimental and theoretical analyses confirm that the localized surface plasmon resonance (LSPR) effect induced by Cu NPs accelerates the reduction of protons (H+) to H2 efficiently, while the photogenerated holes from In2O3 preferentially activate the α-C-H bond of FFA adsorbed on Lewis acid sites to generate FF. This work provides a reference for regulating the transfer of photogenerated carriers for H2 evolution coupled with FF synthesis.

10.
Int J Biol Macromol ; 273(Pt 2): 133007, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38857729

RESUMO

Heteroatom-doped porous carbon-based materials with high surface area compared to their metal-based homologs are considered environmentally friendly and ideal catalysts for organic reactions. In this paper, a new method for the convenient fabrication, cost-effective, and high efficiency of nitrogen/selenium co-doped porous carbon-based catalysis (marked as N/SePC-T) was designed. The N/SePC-T catalysts were created from the direct pyrolysis of a eutectic solvent containing choline chloride/urea as the nitrogen-rich carbon source, selenium dioxide as a source of heteroatom and chitosan as a secondary carbon source in different temperatures (T). The efficacy of the carbonization temperature on the pore structure, morphology, and catalytic activity of the N/SePC-T materials was investigated and displayed, the N/SePC-900 (having a surface area of 562.01 m2/g and total pore volume of 0.2351 cm3 g-1) has the best performance. The morphology, structure, and physicochemical properties of N/SePC-900 were characterized using various analyses including XRD, TEM, TGA, FE-SEM, EDX, FT-IR, XPS, and Raman. The optimized N/SePC-900 catalyst indicated excellent catalytic performance in the oxidation of benzylalcohols to corresponding aldehydes in very mild conditions.


Assuntos
Álcoois , Carbono , Quitosana , Solventes Eutéticos Profundos , Nitrogênio , Oxirredução , Selênio , Quitosana/química , Catálise , Porosidade , Carbono/química , Nitrogênio/química , Álcoois/química , Selênio/química , Solventes Eutéticos Profundos/química , Química Verde , Solventes/química
11.
Chem Asian J ; 19(17): e202400346, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38878296

RESUMO

The photocatalytic oxidation of biomass-derived benzyl alcohol provides a promising way for the synthesis of benzoic acid, which is an important intermediate with wide applications. To improve the efficiency of photocatalytic benzyl alcohol oxidation to benzoic acid is of great interest. In this work, we propose the utilization of NH2-UiO-66-ID-Fe catalyst for photocatalytic oxidation of benzyl alcohol to benzoic acid, where NH2-UiO-66 is a typically used metal-organic framework, ID is indole-2,3-dione (ID) that has biocompatibility, light absorption property and can be covalently combined with amino-functionalized substances. The NH2-UiO-66-ID-Fe catalyst exhibits improved light absorption and photo-generated electron-hole separation ability compared with NH2-UiO-66. The photocatalytic performance of NH2-UiO-66-ID-Fe was examined for the oxidation of bio-based benzyl alcohol under mild conditions of air atmosphere, room temperature and no additive or additional oxidant involved. The results show that the conversion of benzyl alcohol and the selectivity to benzoic acid could both reach over 99 % in 6 h, and the generation rate of benzoic acid per gram of catalyst is 3.36 mmol g-1 h-1. The reaction mechanism was detected by radical trapping method and in situ electron paramagnetic resonance. This study presents an efficient and environmentally benign avenue for the synthesis of carboxylic acid compounds.

12.
Nanomaterials (Basel) ; 14(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38727338

RESUMO

The catalytic oxidation of alcohols is an important transformation in the chemical industry. Carbon materials with a large surface area and N doping show great promise as metal-free catalysts for the reaction. In this study, a rich N-containing covalent triazine framework polymerized by cyanuric chloride and p-phenylenediamine was used to synthesize N-doped porous carbon with the assistance of a pore-forming agent-NaCl. First, the mass ratio of the polymer/NaCl was optimized to 1:9. Then, the influence of the pyrolysis temperatures (700-1000 °C) on the materials was studied in detail. It was found that the carbon materials were gradually exfoliated by molten salt at high temperatures. XRD and Raman characterizations showed them with a certain graphitization. The optimal doped carbon CNN-1-9-900 achieved the highest surface area of 199.03 m2g-1 with the largest pore volume of 0.29 cm3g-1. Furthermore, it had a high N content of 9.9 at% with the highest relative proportion of pyridinic/graphitic N. Due to the synergistic effect between the surface area and pyridinic/graphitic N, CNN-1-9-900 showed the best performance for benzyl alcohol oxidation with TBHP at moderate conditions, and the process also worked for its derivatives.

13.
Nanomaterials (Basel) ; 14(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38727346

RESUMO

Halide perovskite Cs3Bi2Br9 (CBB) has excellent potential in photocatalysis due to its promising light-harvesting properties. However, its photocatalytic performance might be limited due to the unfavorable charge carrier migration and water-induced properties, which limit the stability and photocatalytic performance. Therefore, we address this constraint in this work by synthesizing a stable halide perovskite heterojunction by introducing hydrogen titanate nanosheets (H2Ti3O7-NS, HTiO-NS). Optimizing the weight % (wt%) of CBB enables synthesizing the optimal CBB/HTiO-NS, CBHTNS heterostructure. The detailed morphology and structure characterization proved that the cubic shape of CBB is anchored on the HTiO-NS surface. The 30 wt% CBB/HTiO-NS-30 (CBHTNS-30) heterojunction showed the highest BnOH photooxidation performance with 98% conversion and 75% benzoic acid (BzA) selectivity at 2 h under blue light irradiation. Detailed optical and photoelectrochemical characterization showed that the incorporating CBB and HTiO-NS widened the range of the visible-light response and improved the ability to separate the photo-induced charge carriers. The presence of HTiO-NS has increased the oxidative properties, possibly by charge separation in the heterojunction, which facilitated the generation of superoxide and hydroxyl radicals. A possible reaction pathway for the photocatalytic oxidation of BnOH to BzH and BzA was also suggested. Furthermore, through scavenger experiments, we found that the photogenerated h+, e- and •O2- play an essential role in the BnOH photooxidation, while the •OH have a minor effect on the reaction. This work may provide a strategy for using HTiO-NS-based photocatalyst to enhance the charge carrier migration and photocatalytic performance of CBB.

14.
J Comput Chem ; 45(25): 2128-2135, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38760960

RESUMO

Theoretical modeling of the solid-state photocatalysis is one of the important issues as various useful photocatalysts have been developed to date. In this work, we investigated the mechanism of the alcohol photooxidation on niobium oxide (Nb2O5) which was experimentally developed, using the density functional theory (DFT)/time-dependent (TD)DFT calculations based on the cluster model. The alcohol adsorption and the first hydrogen transfer from hydroxy group to surface occur in the ground state, while the second hydrogen transfer from CH proceeds in the excited states during the photoirradiation of UV or visible light. The spin crossing was identified and the low-lying triplet states were solved for the reaction pathway. The photoabsorption in the visible light region was characterized as the charge transfer transition from O 2p of alcohol to Nb 4d of the Nb2O5 surface. The spin density and the natural population analysis indicated the generation of spin density in the moiety of carbonyl compound and its dissipation to the interface of the surface, which partly explains the electron paramagnetic resonance measurement. It was confirmed that the rate determining step is the desorption of carbonyl compound and water molecule in agreement with the experimental rate equation analysis. The present findings with the theoretical modeling will provide useful information for the further studies of the solid-state photocatalysis.

15.
Angew Chem Int Ed Engl ; 63(33): e202405342, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38801736

RESUMO

This paper presents a novel approach for the selective oxidation of alcohols to their corresponding aldehydes through direct mechanocatalysis, employing a gold-coated milling vessel as catalyst and air as the oxidation agent. By adjusting milling frequency, media, and duration, high catalytic efficiencies and selectivities are achieved. Remarkably, yields of up to 99 % are obtained for specific substrates, with a turnover number (TON) of 8200 and a turnover frequency (TOF) of 0.77 s-1, surpassing existing alternatives. Confirmation of the catalytic reaction indeed occurring on the milling tool surface was achieved through X-ray photoelectron spectroscopy (XPS).

16.
Angew Chem Int Ed Engl ; 63(25): e202405173, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38622784

RESUMO

Constructing amorphous/intermetallic (A/IMC) heterophase structures by breaking the highly ordered IMC phase with disordered amorphous phase is an effective way to improve the electrocatalytic performance of noble metal-based IMC electrocatalysts because of the optimized electronic structure and abundant heterophase boundaries as active sites. In this study, we report the synthesis of ultrathin A/IMC PtPbBi nanosheets (NSs) for boosting hydrogen evolution reaction (HER) and alcohol oxidation reactions. The resulting A/IMC PtPbBi NSs exhibit a remarkably low overpotential of only 25 mV at 10 mA cm-2 for the HER in an acidic electrolyte, together with outstanding stability for 100 h. In addition, the PtPbBi NSs show high mass activities for methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR), which are 13.2 and 14.5 times higher than those of commercial Pt/C, respectively. Density functional theory calculations demonstrate that the synergistic effect of amorphous/intermetallic components and multimetallic composition facilitate the electron transfer from the catalyst to key intermediates, thus improving the catalytic activity of MOR. This work establishes a novel pathway for the synthesis of heterophase two-dimensional nanomaterials with high electrocatalytic performance across a wide range of electrochemical applications.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38624155

RESUMO

The novel 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) groups immobilized on functional polymers or nanoparticles emerged as potential Pickering interfacial catalysts (PICs) for effective catalysis in biphasic systems. In this study, a snowman-shaped Janus-structured polymer with TEMPO-anchored nanohybrid particles (SM-JPP-TEMPO) was prepared and employed as a potential PIC in the Anelli-Montanari system for the selective oxidation of alcohol. The amphiphilic character of SM-JPP-TEMPO particles plays a dual role as an emulsifier and catalyst in the Pickering emulsion. As a result, it enables smaller droplets (102 µm) at the water-in-oil (W/O) interface and reduces the interfacial tension from 26.58 to 17.38 mN/m, which improves the stability of the Pickering emulsion system. This constructed Pickering emulsion microreactor offers a larger interface contact area and shortens the mass transfer distance of the substrate of cinnamyl alcohol, which significantly enhances the catalytic conversion at the Anelli-Montanari oxidation system, thus achieving remarkable conversion efficiency of (92.3%) with excellent selectivity (99%) in static (stirring-free) condition. It was found that the Janus nanohybrid catalyst (SM-JPP-TEMPO) enhanced 1.29-fold catalytic efficiency compared to the TEMPO grafted spherical polystyrene nanoparticle (PS-NPs-TEMPO) catalyst (72%). Moreover, after seven consecutive cycles, the Janus nanocatalyst (SM-JPP-TEMPO) maintained the conversion significantly. Hence, these results collectively highlight that the amphiphilic SM-JPP-TEMPO catalyst provides an efficient and eco-friendly strategy for the intensification of liquid-liquid biphasic reaction systems for potential applications in industries.

18.
Small ; 20(32): e2309736, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38459644

RESUMO

The direct alcohol fuel cells (DAFCs) rely on alcohol oxidation reactions (AORs) to produce electricity, which require catalysts with optimized electronic structure to accelerate the sluggish AORs. Herein, an epitaxial growth of Pd layer onto the pentatwinned Au@Ag core-shell nanorods (NRs) is reported to synthesize highly strained Au@AgPd core-shell NRs. The tensile strain in the AgPd shell of the Au@AgPd nanorods (NRs) arises not only from the core-shell lattice mismatch but also from twinning and lattice distortion occurring at the five twinned boundaries present in the structure. Theoretical simulations prove that the presence of tensile strains in the AgPd layer leads to a significant upward shift of the d-band center of the Pd site toward the Fermi level which remarkably changes the adsorption energy of alcohols on the surface. Highly strained Au@AgPd NRs show exceptional mass activities in electrochemical oxidation of biomass-derived alcohols (ethylene glycol, ethanol, and glycerol) reaching up to 18.66, 15.6, and 7.90 A mgpd -1, respectively. These values are 23.3, 23.6, and 23.2 times higher than commercial Pd/C catalysts. This strain engineering strategy set the platform for the design and synthesis of highly efficient and versatile catalysts for the construction of high-performance DAFCs.

19.
Angew Chem Int Ed Engl ; 63(12): e202318868, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38227346

RESUMO

There is a growing interest in developing dye-sensitized photocatalytic systems (DSPs) to produce molecular hydrogen (H2 ) as alternative energy source. To improve the sustainability of this technology, we replaced the sacrificial electron donor (SED), typically an expensive and polluting chemical, with an alcohol oxidation catalyst. This study demonstrates the first dye-sensitized system using a diketopyrrolopyrrole dye covalently linked to 2,2,6,6-tetramethyl-1-piperidine-N-oxyl (TEMPO) based catalyst for simultaneous H2 evolution and alcohol-to-aldehyde transformation operating in water with visible irradiation.

20.
Small ; 20(7): e2306178, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37800605

RESUMO

The ethanol oxidation reaction (EOR) is an attractive alternative to the sluggish oxygen evolution reaction in electrochemical hydrogen evolution cells. However, the development of high-performance bifunctional electrocatalysts for both EOR and hydrogen evolution reaction (HER) is a major challenge. Herein, the synthesis of Pd3 Pb@Pt core-shell nanocubes with controlled shell thickness by Pt-seeded epitaxial growth on intermetallic Pd3 Pb cores is reported. The lattice mismatch between the Pd3 Pb core and the Pt shell leads to the expansion of the Pt lattice. The synergistic effects between the tensile strain and the core-shell structures result in excellent electrocatalytic performance of Pd3 Pb@Pt catalysts for both EOR and HER. In particular, Pd3 Pb@Pt with three Pt atomic layers shows a mass activity of 8.60 A mg-1 Pd+Pt for ethanol upgrading to acetic acid and close to 100% of Faradic efficiency for HER. An EOR/HER electrolysis system is assembled using Pd3 Pb@Pt for both the anode and cathode, and it is shown that low cell voltage of 0.75 V is required to reach a current density of 10 mA cm-2 . The present work offers a promising strategy for the development of bifunctional catalysts for hybrid electrocatalytic reactions and beyond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...