RESUMO
Atg9, the only transmembrane protein among many autophagy-related proteins, was first identified in the year 2000 in yeast. Two homologs of Atg9, ATG9A and ATG9B, have been found in mammals. While ATG9B shows a tissue-specific expression pattern, such as in the placenta and pituitary gland, ATG9A is ubiquitously expressed. Additionally, ATG9A deficiency leads to severe defects not only at the molecular and cellular levels but also at the organismal level, suggesting key and fundamental roles for ATG9A. The subcellular localization of ATG9A on small vesicles and its functional relevance to autophagy have suggested a potential role for ATG9A in the lipid supply during autophagosome biogenesis. Nevertheless, the precise role of ATG9A in the autophagic process has remained a long-standing mystery, especially in neurons. Recent findings, however, including structural, proteomic, and biochemical analyses, have provided new insights into its function in the expansion of the phagophore membrane. In this review, we aim to understand various aspects of ATG9 (in invertebrates and plants)/ATG9A (in mammals), including its localization, trafficking, and other functions, in nonneuronal cells and neurons by comparing recent discoveries related to ATG9/ATG9A and proposing directions for future research.Abbreviation: AP-4: adaptor protein complex 4; ATG: autophagy related; cKO: conditional knockout; CLA-1: CLArinet (functional homolog of cytomatrix at the active zone proteins piccolo and fife); cryo-EM: cryogenic electron microscopy; ER: endoplasmic reticulum; KO: knockout; PAS: phagophore assembly site; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SV: synaptic vesicle; TGN: trans-Golgi network; ULK: unc-51 like autophagy activating kinase; WIPI2: WD repeat domain, phosphoinositide interacting 2.
RESUMO
Autophagosome biogenesis is a complex process orchestrated by dynamic interactions between Atg (autophagy-related) proteins and characterized by the turnover of specific cargoes, which can differ over time and depending on how autophagy is stimulated. Proteomic analyses are central to uncover protein-protein interaction networks and when combined with proximity-dependent biotinylation or proximity labeling (PL) approaches, they also permit to detect transient and weak interactions. However, current PL procedures for yeast Saccharomyces cerevisiae, one of the leading models for the study of autophagy, do not allow to keep temporal specificity and thus identify interactions and cargoes at a precise time point upon autophagy induction. Here, we present a new ascorbate peroxidase 2 (APEX2)-based PL protocol adapted to yeast that preserves temporal specificity and allows uncovering neighbor proteins by either western blot or proteomics. As a proof of concept, we applied this new method to identify Atg8 and Atg9 interactors and detected known binding partners as well as potential uncharacterized ones in rich and nitrogen starvation conditions. Also, as a proof of concept, we confirmed the spatial proximity interaction between Atg8 and Faa1. We believe that this protocol will be a new important experimental tool for all those researchers studying the mechanism and roles of autophagy in yeast, but also other cellular pathways in this model organism.Abbreviations: APEX2, ascorbate peroxidase 2, Atg, autophagy-related; BP, biotin phenol; Cvt, cytoplasm-to-vacuole targeting; ER, endoplasmic reticulum; LN2, liquid nitrogen; MS, mass spectrometry; PAS, phagophore assembly site; PL, proximity labeling; PE, phosphatidylethanolamine; PPINs, protein-protein interaction networks; PPIs, protein-protein interactions; RT, room temperature; SARs, selective autophagy receptors; WT, wild-type.
Assuntos
Ascorbato Peroxidases , Proteínas Relacionadas à Autofagia , Autofagia , Biotinilação , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Autofagia/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Ascorbato Peroxidases/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteômica/métodos , Ligação Proteica , Proteínas de MembranaRESUMO
Autophagy plays a critical role in maintaining cellular homeostasis and responding to various stress conditions by the degradation of intracellular components. In this narrative review, we provide a comprehensive overview of autophagy's cellular and molecular basis, biological significance, pharmacological modulation, and its relevance in lifestyle medicine. We delve into the intricate molecular mechanisms that govern autophagy, including macroautophagy, microautophagy and chaperone-mediated autophagy. Moreover, we highlight the biological significance of autophagy in aging, immunity, metabolism, apoptosis, tissue differentiation and systemic diseases, such as neurodegenerative or cardiovascular diseases and cancer. We also discuss the latest advancements in pharmacological modulation of autophagy and their potential implications in clinical settings. Finally, we explore the intimate connection between lifestyle factors and autophagy, emphasizing how nutrition, exercise, sleep patterns and environmental factors can significantly impact the autophagic process. The integration of lifestyle medicine into autophagy research opens new avenues for promoting health and longevity through personalized interventions.
Assuntos
Autofagia , Estilo de Vida , Humanos , Animais , Envelhecimento , Doenças Neurodegenerativas/metabolismoRESUMO
Autophagy is a conserved intracellular degradation system in eukaryotes, involving the sequestration of degradation targets into autophagosomes, which are subsequently delivered to lysosomes (or vacuoles in yeasts and plants) for degradation. In budding yeast, starvation-induced autophagosome formation relies on approximately 20 core Atg proteins, grouped into six functional categories: the Atg1/ULK complex, the phosphatidylinositol-3 kinase complex, the Atg9 transmembrane protein, the Atg2-Atg18/WIPI complex, the Atg8 lipidation system, and the Atg12-Atg5 conjugation system. Additionally, selective autophagy requires cargo receptors and other factors, including a fission factor, for specific sequestration. This review covers the 30-year history of structural studies on core Atg proteins and factors involved in selective autophagy, examining X-ray crystallography, NMR, and cryo-EM techniques. The molecular mechanisms of autophagy are explored based on protein structures, and future directions in the structural biology of autophagy are discussed, considering the advancements in the era of AlphaFold.
Assuntos
Autofagossomos , Saccharomyces cerevisiae , Autofagossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Vacúolos/metabolismo , Autofagia , Lisossomos/metabolismoRESUMO
Macroautophagy, hereafter referred to as autophagy, is a complex process in which multiple membrane-remodeling events lead to the formation of a cisterna known as the phagophore, which then expands and closes into a double-membrane vesicle termed the autophagosome. During the past decade, enormous progress has been made in understanding the molecular function of the autophagy-related proteins and their role in generating these phagophores. In this Review, we discuss the current understanding of three membrane remodeling steps in autophagy that remain to be largely characterized; namely, the closure of phagophores, the maturation of the resulting autophagosomes into fusion-competent vesicles, and their fusion with vacuoles/lysosomes. Our review will mainly focus on the yeast Saccharomyces cerevisiae, which has been the leading model system for the study of molecular events in autophagy and has led to the discovery of the major mechanistic concepts, which have been found to be mostly conserved in higher eukaryotes.
Assuntos
Autofagossomos , Proteínas de Saccharomyces cerevisiae , Autofagossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Macroautofagia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismoRESUMO
The regulation of autophagy initiation is a key step in autophagosome biogenesis. However, our understanding of the molecular mechanisms underlying the stepwise assembly of ATG proteins during this process remains incomplete. The Rab GTPase Ypt1/Rab1 is recognized as an essential autophagy regulator. Here, we identify Atg23 and Atg17 as binding partners of Ypt1, with their direct interaction proving crucial for the stepwise assembly of autophagy initiation complexes. Disruption of Ypt1-Atg23 binding results in significantly reduced Atg9 interactions with Atg11, Atg13, and Atg17, thus preventing the recruitment of Atg9 vesicles to the phagophore assembly site (PAS). Likewise, Ypt1-Atg17 binding contributes to the PAS recruitment of Ypt1 and Atg1. Importantly, we found that Ypt1 is phosphorylated by TOR at the Ser174 residue. Converting this residue to alanine blocks Ypt1 phosphorylation by TOR and enhances autophagy. Conversely, the Ypt1S174D phosphorylation mimic impairs both PAS recruitment and activation of Atg1, thus inhibiting subsequent autophagy. Thus, we propose TOR-mediated Ypt1 as a multifunctional assembly factor that controls autophagy initiation via its regulation of the stepwise assembly of ATG proteins.
Assuntos
Proteínas de Saccharomyces cerevisiae , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Fagossomos/metabolismo , Fosforilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
Autophagy is a highly conserved recycling process of eukaryotic cells that degrades protein aggregates or damaged organelles with the participation of autophagy-related proteins. Membrane bending is a key step in autophagosome membrane formation and nucleation. A variety of autophagy-related proteins (ATGs) are needed to sense and generate membrane curvature, which then complete the membrane remodeling process. The Atg1 complex, Atg2-Atg18 complex, Vps34 complex, Atg12-Atg5 conjugation system, Atg8-phosphatidylethanolamine conjugation system, and transmembrane protein Atg9 promote the production of autophagosomal membranes directly or indirectly through their specific structures to alter membrane curvature. There are three common mechanisms to explain the change in membrane curvature. For example, the BAR domain of Bif-1 senses and tethers Atg9 vesicles to change the membrane curvature of the isolation membrane (IM), and the Atg9 vesicles are reported as a source of the IM in the autophagy process. The amphiphilic helix of Bif-1 inserts directly into the phospholipid bilayer, causing membrane asymmetry, and thus changing the membrane curvature of the IM. Atg2 forms a pathway for lipid transport from the endoplasmic reticulum to the IM, and this pathway also contributes to the formation of the IM. In this review, we introduce the phenomena and causes of membrane curvature changes in the process of macroautophagy, and the mechanisms of ATGs in membrane curvature and autophagosome membrane formation.
Assuntos
Autofagossomos , Proteínas Relacionadas à Autofagia , Autofagia , Membrana Celular , Proteólise , Membrana Celular/química , Membrana Celular/metabolismo , Agregados Proteicos , Autofagossomos/química , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/metabolismo , Domínios Proteicos , Bicamadas Lipídicas , HumanosRESUMO
Autophagy is a catabolic pathway that functions as a degradative and recycling process to maintain cellular homeostasis in most eukaryotic cells, including photosynthetic organisms such as microalgae. This process involves the formation of double-membrane vesicles called autophagosomes, which engulf the material to be degraded and recycled in lytic compartments. Autophagy is mediated by a set of highly conserved autophagy-related (ATG) proteins that play a fundamental role in the formation of the autophagosome. The ATG8 ubiquitin-like system catalyzes the conjugation of ATG8 to the lipid phosphatidylethanolamine, an essential reaction in the autophagy process. Several studies identified the ATG8 system and other core ATG proteins in photosynthetic eukaryotes. However, how ATG8 lipidation is driven and regulated in these organisms is not fully understood yet. A detailed analysis of representative genomes from the entire microalgal lineage revealed a high conservation of ATG proteins in these organisms with the remarkable exception of red algae, which likely lost ATG genes before diversification. Here, we examine in silico the mechanisms and dynamic interactions between different components of the ATG8 lipidation system in plants and algae. Moreover, we also discuss the role of redox post-translational modifications in the regulation of ATG proteins and the activation of autophagy in these organisms by reactive oxygen species.
Assuntos
Microalgas , Microalgas/genética , Microalgas/metabolismo , Autofagossomos/metabolismo , Ubiquitina/metabolismo , Autofagia/fisiologia , Plantas/metabolismo , OxirreduçãoRESUMO
The coronavirus disease pandemic, which profoundly reshaped the world in 2019 (COVID-19), and is currently ongoing, has affected over 200 countries, caused over 500 million cumulative cases, and claimed the lives of over 6.4 million people worldwide as of August 2022. The causative agent is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Depicting this virus' life cycle and pathogenic mechanisms, as well as the cellular host factors and pathways involved during infection, has great relevance for the development of therapeutic strategies. Autophagy is a catabolic process that sequesters damaged cell organelles, proteins, and external invading microbes, and delivers them to the lysosomes for degradation. Autophagy would be involved in the entry, endo, and release, as well as the transcription and translation, of the viral particles in the host cell. Secretory autophagy would also be involved in developing the thrombotic immune-inflammatory syndrome seen in a significant number of COVID-19 patients that can lead to severe illness and even death. This review aims to review the main aspects that characterize the complex and not yet fully elucidated relationship between SARS-CoV-2 infection and autophagy. It briefly describes the key concepts regarding autophagy and mentions its pro- and antiviral roles, while also noting the reciprocal effect of viral infection in autophagic pathways and their clinical aspects.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Autofagia , Antivirais/farmacologia , Lisossomos/metabolismoRESUMO
Vacuolar processing enzymes (VPEs) are plant cysteine proteases that are subjected to autoactivation in an acidic pH. It is presumed that VPEs, by activating other vacuolar hydrolases, are in control of tonoplast rupture during programmed cell death (PCD). Involvement of VPEs has been indicated in various types of plant PCD related to development, senescence, and environmental stress responses. Another pathway induced during such processes is autophagy, which leads to the degradation of cellular components and metabolite salvage, and it is presumed that VPEs may be involved in the degradation of autophagic bodies during plant autophagy. As both PCD and autophagy occur under similar conditions, research on the relationship between them is needed, and VPEs, as key vacuolar proteases, seem to be an important factor to consider. They may even constitute a potential point of crosstalk between cell death and autophagy in plant cells. This review describes new insights into the role of VPEs in plant PCD, with an emphasis on evidence and hypotheses on the interconnections between autophagy and cell death, and indicates several new research opportunities.
Assuntos
Apoptose , Plantas , Apoptose/fisiologia , Vacúolos/metabolismo , Autofagia/fisiologia , Morte Celular/fisiologiaRESUMO
N6-methyladenosine (m6A) has been recognized as a common type of post-transcriptional epigenetic modification. m6A modification and YTHDF1, one of its reader proteins, have been documented to play a pivotal role in numerous human diseases via regulating mRNA splicing, translation, stability, and subcellular localization. The chemotherapeutic drug cisplatin (CDP) can damage sensory hair cells (HCs) and result in permanent sensorineural hearing loss. However, whether YTHDF1-mediated modification of mRNA is potentially involved in CDP-induced injury in sensory hair cells was not fully clarified. This study investigated the potential mechanisms for the modification of YTHDF1 in CDP-induced damage in HCs. Here, we discovered that YTHDF1's expression level statistically increased significantly after treating with CDP. Apoptosis and cell death of HCs induced by CDP were exacerbated after the knockdown of YTHDF1, while overexpression of YTHDF1 in HCs alleviated their injury induced by CDP. Moreover, YTHDF1 expression correlated with cisplatin-induced autophagy with statistical significance in HCs; namely, YTHDF1's overexpression enhanced the activation of autophagy, while its deficiency suppressed autophagy and, at the same time, increased the loss of HCs after CDP damage. WB analysis and qRT-PCR results of autophagy-related genes indicated that YTHDF1 promoted the translation of autophagy-related genes ATG14, thus boosting autophagy. Therefore, CDP-induced YTHDF1 expression protected HCs against CDP-induced apoptosis by upregulating the translation of autophagy-related genes ATG14, along with enhancing autophagy. Based on these findings, it can be inferred that YTHDF1 is potentially a target for ameliorating drug-induced HCs damage through m6A modification.
Assuntos
Autofagia , Cisplatino , Humanos , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Cisplatino/toxicidade , Células Ciliadas Auditivas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismoRESUMO
Autophagy is an evolutionarily conserved multistep degradation mechanism in eukaryotes, that maintains cellular homoeostasis by replenishing cells with nutrients through catabolic lysis of the cytoplasmic components. This critically coordinated pathway involves sequential processing events that begin with initiation, nucleation, and elongation of phagophores, followed by the formation of double-membrane vesicles known as autophagosomes. Finally, autophagosomes migrate towards and fuse with lysosomes in mammals and vacuoles in yeast and plants, for the eventual degradation of the intravesicular cargo. Here, we review the recent advances in our understanding of the molecular events that define the process of autophagy.
Assuntos
Autofagossomos , Autofagia , Animais , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Lisossomos/metabolismo , Mamíferos/metabolismo , Plantas/metabolismo , Saccharomyces cerevisiae/metabolismoRESUMO
In many regions of the world, Leishmaniasis is a cause of substantial mortality and ailment. Due to impediment in available treatment, development of novel and effective treatments is indispensable. Significance of autophagy has been accentuated in infectious disease as well as in Leishmaniasis, and it is having capability to be manifested as a therapeutic target. By evincing autophagy as a novel therapeutic regime, this study emphasized on the critical role of ATG4.1-ATG8 and ATG5-ATG12 complexes in Leishmania species. The objective here was to identify ATG8 as a potential therapeutic target in Leishmania. R71T, P56E, R18P are the significant mutations which shows detrimental effect on ATG8 while Arg276, Arg73, Cys75 of ATG4.1 and Val88, Pro89, Glu116, Asn117, and Gly120 are interacting residues of ATG8. Along with this, we also bring into spotlight an enticing role of Thiabendazole derivatives that interferes with the survival mechanisms by targeting ATG8. Further, the study claims that thiabendazole can be a potential drug candidate to target autophagy process in the infectious disease Leishmaniasis.
Assuntos
Doenças Transmissíveis , Leishmania , Leishmaniose , Autofagia/genética , Humanos , Leishmaniose/tratamento farmacológico , TiabendazolRESUMO
To fight neurodegenerative diseases, several therapeutic strategies have been proposed that, to date, are either ineffective or at the early preclinical stages. Intracellular protein aggregates represent the cause of about 70% of neurodegenerative disorders, such as Alzheimer's disease. Thus, autophagy, i.e., lysosomal degradation of macromolecules, could be employed in this context as a therapeutic strategy. Searching for a compound that stimulates this process led us to the identification of a 37/67kDa laminin receptor inhibitor, NSC48478. We have analysed the effects of this small molecule on the autophagic process in mouse neuronal cells and found that NSC48478 induces the conversion of microtubule-associated protein 1A/1B-light chain 3 (LC3-I) into the LC3-phosphatidylethanolamine conjugate (LC3-II). Interestingly, upon NSC48478 treatment, the contribution of membranes to the autophagic process derived mainly from the non-canonical m-TOR-independent endocytic pathway, involving the Rab proteins that control endocytosis and vesicle recycling. Finally, qRT-PCR analysis suggests that, while the expression of key genes linked to canonical autophagy was unchanged, the main genes related to the positive regulation of endocytosis (pinocytosis and receptor mediated), along with genes regulating vesicle fusion and autolysosomal maturation, were upregulated under NSC48478 conditions. These results strongly suggest that 37/67 kDa inhibitor could be a useful tool for future studies in pathological conditions.
Assuntos
Autofagia , Laminina , Animais , Laminina/farmacologia , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Naftóis/farmacologia , Receptores de LamininaRESUMO
Macroautophagy, hereafter autophagy, is a degradative process conserved among eukaryotes, which is essential to maintain cellular homeostasis. Defects in autophagy lead to numerous human diseases, including various types of cancer and neurodegenerative disorders. The hallmark of autophagy is the de novo formation of autophagosomes, which are double-membrane vesicles that sequester and deliver cytoplasmic materials to lysosomes/vacuoles for degradation. The mechanism of autophagosome biogenesis entered a molecular era with the identification of autophagy-related (ATG) proteins. Although there are many unanswered questions and aspects that have raised some controversies, enormous advances have been done in our understanding of the process of autophagy in recent years. In this review, we describe the current knowledge about the molecular regulation of autophagosome formation, with a particular focus on budding yeast and mammalian cells.
Assuntos
Autofagossomos , Macroautofagia , Animais , Autofagossomos/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Humanos , Lisossomos/metabolismo , Mamíferos/metabolismoRESUMO
Autophagosome formation is a regulated membrane remodeling process, which involves the generation of autophagosomal membrane precursors (vesicles), the assembly of the autophagosomal membrane precursors to form the phagophore, and phagophore elongation to complete the autophagosome. The sources of the autophagosomal membrane precursors are endomembrane compartments, such as the endoplasmic reticulum (ER), the ER-Golgi intermediate compartment (ERGIC), ER-exit sites (ERES), and endosomes. In response to stress, these structures are remodeled, to generate the early autophagosomal membrane precursors. The phagophore assembly site (PAS), which mainly localizes on the ER, harbors the site for autophagosomal membrane assembly, elongation, and completion. ATG proteins, membrane remodeling factors, and autophagic membranes follow a precise choreography to complete the overall process. In this chapter, we briefly discuss our current knowledge on the membrane origins of the autophagosome, as well as autophagosomal precursor generation, assembly, and expansion.
Assuntos
Autofagossomos , Complexo de Golgi , Autofagia , Proteínas Relacionadas à Autofagia , Retículo EndoplasmáticoRESUMO
Selective autophagy is the lysosomal degradation of specific intracellular components sequestered into autophagosomes, late endosomes, or lysosomes through the activity of selective autophagy receptors (SARs). SARs interact with autophagy-related (ATG)8 family proteins via sequence motifs called LC3-interacting region (LIR) motifs in vertebrates and Atg8-interacting motifs (AIMs) in yeast and plants. SARs can be divided into two broad groups: soluble or membrane bound. Cargo or substrate selection may be independent or dependent of ubiquitin labeling of the cargo. In this review, we discuss mechanisms of mammalian selective autophagy with a focus on the unifying principles employed in substrate recognition, interaction with the forming autophagosome via LIR-ATG8 interactions, and the recruitment of core autophagy components for efficient autophagosome formation on the substrate.
Assuntos
Proteínas Reguladoras de Apoptose , Proteínas Associadas aos Microtúbulos , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Autofagossomos/metabolismo , Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Mamíferos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismoRESUMO
Throughout their life cycle, plants face a tremendous number of environmental and developmental stresses. To respond to these different constraints, they have developed a set of refined intracellular systems including autophagy. This pathway, highly conserved among eukaryotes, is induced by a wide range of biotic and abiotic stresses upon which it mediates the degradation and recycling of cytoplasmic material. Central to autophagy is the formation of highly specialized double membrane vesicles called autophagosomes which select, engulf, and traffic cargo to the lytic vacuole for degradation. The biogenesis of these structures requires a series of membrane remodeling events during which both the quantity and quality of lipids are critical to sustain autophagy activity. This review highlights our knowledge, and raises current questions, regarding the mechanism of autophagy, and its induction and regulation upon environmental stresses with a particular focus on the fundamental contribution of lipids. How autophagy regulates metabolism and the recycling of resources, including lipids, to promote plant acclimation and resistance to stresses is further discussed.
Assuntos
Autofagossomos/metabolismo , Autofagia , Metabolismo dos Lipídeos , Plantas/metabolismo , Estresse FisiológicoRESUMO
The de novo generation of double-membrane autophagosomes is the hallmark of autophagy. The initial membranous precursor cisterna, the phagophore, is very likely generated by the fusion of vesicles and acts as a membrane seed for the subsequent expansion into an autophagosome. This latter step requires a massive convoy of lipids into the phagophore. In this review, we present recent advances in our understanding of the intracellular membrane sources and lipid delivery mechanisms, which principally rely on vesicular transport and membrane contact sites that contribute to autophagosome biogenesis. In this context, we discuss lipid biosynthesis and lipid remodeling events that play a crucial role in both phagophore nucleation and expansion.
Assuntos
Autofagossomos , Autofagia , Membranas IntracelularesRESUMO
Sporozoites of the etiological agent of malaria, Plasmodium, form parasitophorous vacuoles (PVs) in hepatocytes. The PV membranes (PVM) are coated with a well-known host autophagy marker LC3 and parasite-derived protein called Upregulated in infective sporozoites 3 (UIS3), which has been shown to interact with LC3 and inhibit LC3-mediated autophagic disruption at the PV. Although uis3(-) sporozoites cannot proliferate in wild-type cells, they can replicate efficiently in cells defective in autophagy due to the lack of Atg proteins such as Atg3, Atg5 and Atg7, since these Atg proteins are essential for processing of LC3. However, it remains to be seen whether other Atg proteins participate in the restriction of uis3(-) parasite growth. Here we show that, despite essential roles of Atg9 and Atg14 in autophagy, both proteins are dispensable for the restriction of uis3(-) parasite growth. Moreover, we found that cells lacking LC3 proteins are also able to restrict uis3(-) parasite growth. In sharp contrast, GABARAPs, another subfamily of mammalian Atg8, participated in suppression of uis3(-) parasite growth. Taken together, contrary to a previous model in which UIS3 avoids host LC3- and autophagy-dependent parasite elimination program, our data demonstrate a role of GABARAPs for suppression of uis3(-) parasite growth in a manner independent on autophagy.