Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; 240(9): e14203, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39023008

RESUMO

AIM: The present study aimed to investigate the effects of a single bout of resistance exercise on mitophagy in human skeletal muscle (SkM). METHODS: Eight healthy men were recruited to complete an acute bout of one-leg resistance exercise. SkM biopsies were obtained one hour after exercise in the resting leg (Rest-leg) and the contracting leg (Ex-leg). Mitophagy was assessed using protein-related abundance, transmission electron microscopy (TEM), and fluorescence microscopy. RESULTS: Our results show that acute resistance exercise increased pro-fission protein phosphorylation (DRP1Ser616) and decreased mitophagy markers such as PARKIN and BNIP3L/NIX protein abundance in the Ex-leg. Additionally, mitochondrial complex IV decreased in the Ex-leg when compared to the Rest-leg. In the Ex-leg, TEM and immunofluorescence images showed mitochondrial cristae abnormalities, a mitochondrial fission phenotype, and increased mitophagosome-like structures in both subsarcolemmal and intermyofibrillar mitochondria. We also observed increased mitophagosome-like structures on the subsarcolemmal cleft and mitochondria in the extracellular space of SkM in the Ex-leg. We stimulated human primary myotubes with CCCP, which mimics mitophagy induction in the Ex-leg, and found that BNIP3L/NIX protein abundance decreased independently of lysosomal degradation. Finally, in another human cohort, we found a negative association between BNIP3L/NIX protein abundance with both mitophagosome-like structures and mitochondrial cristae density in the SkM. CONCLUSION: The findings suggest that a single bout of resistance exercise can initiate mitophagy, potentially involving mitochondrial ejection, in human skeletal muscle. BNIP3L/NIX is proposed as a sensitive marker for assessing mitophagy flux in SkM.


Assuntos
Mitofagia , Músculo Esquelético , Humanos , Mitofagia/fisiologia , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Adulto , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/ultraestrutura , Treinamento Resistido , Adulto Jovem , Proteínas de Membrana/metabolismo
2.
Aging (Albany NY) ; 16(11): 9334-9349, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834039

RESUMO

Mitophagy is a selective form of autophagy which permits the removal of dysfunctional or excess mitochondria. This occurs as an adaptative response to physiological stressors, such as hypoxia, nutrient deprivation, or DNA damage. Mitophagy is promoted by specific mitochondrial outer membrane receptors, among which are BNIP3 and BNIP3L. The role of mitophagy in cancer is being widely studied, and more specifically in the maintenance of cancer stem cell (CSC) properties, such as self-renewal. Given that CSCs are responsible for treatment failure and metastatic capacity, targeting mitophagy could be an interesting approach for CSC elimination. Herein, we describe a new model system to enrich sub-populations of cancer cells with high basal levels of mitophagy, based on the functional transcriptional activity of BNIP3 and BNIP3L. Briefly, we employed a BNIP3(L)-promoter-eGFP-reporter system to isolate cancer cells with high BNIP3/BNIP3L transcriptional activity by flow cytometry (FACS). The model was validated by using complementary lysosomal and mitophagy-specific probes, as well as the mitochondrially-targeted red fluorescent protein (RFP), namely mt-Keima. High BNIP3/BNIP3L transcriptional activity was accompanied by increases in i) BNIP3/BNIP3L protein levels, ii) lysosomal mass, and iii) basal mitophagy activity. Furthermore, cancer cells with increased BNIP3/BNIP3L transcriptional activity exhibited CSC features, such as greater mammosphere-forming ability and high CD44 levels. To further explore the model, we also analysed other stemness characteristics in MCF7 and MDA-MB-231 breast cancer cell lines, directly demonstrating that BNIP3(L)-high cells were more metabolically active, proliferative, migratory, and drug-resistant, with elevated anti-oxidant capacity. Therefore, high levels of basal mitophagy appear to enhance CSC features.


Assuntos
Movimento Celular , Proliferação de Células , Proteínas de Membrana , Mitofagia , Células-Tronco Neoplásicas , Proteínas Proto-Oncogênicas , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética
3.
Hematology ; 29(1): 2367918, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38934722

RESUMO

BACKGROUND: The BCL2 interacting protein 3-like (BNIP3L) protein is involved in multiple myeloma (MM) development and progression. This study aims to explore the connection between BNIP3L single-nucleotide polymorphisms (SNPs) and MM. METHODS: SNaPshot was used to examine six SNP loci of the BNIP3L gene in enrolled subjects. The relationship between these loci and MM susceptibility and prognosis was explored. Survival analysis was used to evaluate the impact of different factors on patient survival. RESULTS: The rs2874670 AA genotype and A allele were associated with increased MM risk (P < 0.05). The CCACAC haplotype had a higher frequency in MM, while CCGCAC had a higher frequency in normal patients (all P < 0.05). Patients with R-ISS stage I and II had higher survival rates than those with stage III (P < 0.05). Patients, who received chemotherapy followed by autologous stem cell transplantation, had longer survival time than those who only received chemotherapy (P < 0.05). Low levels of LDH and ß2-MG were associated with better survival rates (P < 0.05). Cox regression identified that LDH levels, ß2-MG levels, and R-ISS staging were the risk factors for the death of MM. Mann-Whitney U test found a significant difference in survival time between MM patients with different BNIP3L rs2874670 genotypes after BD chemotherapy (P < 0.05). CONCLUSION: To our knowledge, this is the first study to find that BNIP3L rs2874670 could increase MM susceptibility in China. Different BNIP3L rs2874670 genotypes may affect the prognosis of MM patients receiving BD chemotherapy.


Assuntos
Proteínas de Membrana , Mieloma Múltiplo , Polimorfismo de Nucleotídeo Único , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/mortalidade , Proteínas de Membrana/genética , Feminino , Masculino , Pessoa de Meia-Idade , China/epidemiologia , Proteínas Proto-Oncogênicas/genética , Predisposição Genética para Doença , Adulto , Idoso , Prognóstico , Genótipo , Proteínas Supressoras de Tumor
4.
J Biol Chem ; 300(7): 107416, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810696

RESUMO

Autophagy is a pivotal regulatory and catabolic process, induced under various stressful conditions, including hypoxia. However, little is known about alternative splicing of autophagy genes in the hypoxic landscape in breast cancer. Our research unravels the hitherto unreported alternative splicing of BNIP3L, a crucial hypoxia-induced autophagic gene. We showed that BNIP3L, under hypoxic condition, forms two isoforms, a full-length isoform (BNIP3L-F) and a shorter isoform lacking exon 1 (BNIP3L-Δ1). The hypoxia-induced BNIP3L-F promotes autophagy, while under normoxia, the BNIP3L-Δ1 inhibits autophagy. We discovered a novel dimension of hypoxia-mediated epigenetic modification that regulates the alternative splicing of BNIP3L. Here, we showed differential DNA methylation of BNIP3L intron 1, causing reciprocal binding of epigenetic factor CCCTC-binding factor (CTCF) and its paralog BORIS. Additionally, we highlighted the role of CTCF and BORIS impacting autophagy in breast cancer. The differential binding of CTCF and BORIS results in alternative splicing of BNIP3L forming BNIP3L-F and BNIP3L-Δ1, respectively. The binding of CTCF on unmethylated BNIP3L intron 1 under hypoxia results in RNA Pol-II pause and inclusion of exon 1, promoting BNIP3L-F and autophagy. Interestingly, the binding of BORIS on methylated BNIP3L intron 1 under normoxia also results in RNA Pol-II pause but leads to the exclusion of exon 1 from BNIP3L mRNA. Finally, we reported the critical role of BORIS-mediated RNA Pol-II pause, which subsequently recruits SRSF6, redirecting the proximal splice-site selection, promoting BNIP3L-Δ1, and inhibiting autophagy. Our study provides novel insights into the potential avenues for breast cancer therapy by targeting autophagy regulation, specifically under hypoxic condition.


Assuntos
Processamento Alternativo , Autofagia , Neoplasias da Mama , Fator de Ligação a CCCTC , Metilação de DNA , Proteínas de Membrana , Proteínas Proto-Oncogênicas , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Feminino , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Fator de Ligação a CCCTC/metabolismo , Fator de Ligação a CCCTC/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Epigênese Genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Células MCF-7 , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
5.
Autophagy ; 20(8): 1868-1878, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38695174

RESUMO

Defective mitophagy is consistently found in postmortem brain and iPSC-derived neurons from Alzheimer disease (AD) patients. However, there is a lack of extensive examination of mitophagy status in serum or cerebrospinal fluid (CSF), and the clinical potential of mitophagy biomarkers has not been tested. We quantified biomarkers of mitophagy/autophagy and lysosomal degradation (PINK1, BNIP3L and TFEB) in CSF and serum from 246 individuals, covering mild cognitive impairment due to AD (MCI-AD, n = 100), dementia due to AD (AD-dementia, n = 100), and cognitively unimpaired individuals (CU, n = 46), recruited from the Czech Brain Aging Study. Cognitive function and brain atrophy were also assessed. Our data show that serum and CSF PINK1 and serum BNIP3L were higher, and serum TFEB was lower in individuals with AD than in corresponding CU individuals. Additionally, the magnitude of mitophagy impairment correlated with the severity of clinical indicators in AD patients. Specifically, levels of PINK1 positively correlated with phosphorylated (p)-MAPT/tau (181), total (t)-MAPT/tau, NEFL (neurofilament light chain), and NRGN (neurogranin) levels in CSF and negatively with memory, executive function, and language domain. Serum TFEB levels negatively correlated with NEFL and positively with executive function and language. This study reveals mitophagy impairment reflected in biofluid biomarkers of individuals with AD and associated with more advanced AD pathology.Abbreviation: Aß: amyloid beta; AD: Alzheimer disease; AVs: autophagic vacuoles; BNIP3L: BCL2 interacting protein 3 like; CU: cognitively unimpaired; CSF: cerebrospinal fluid; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MCI: mild cognitive impairment; NRGN: neurogranin; NEFL: neurofilament light chain; p-MAPT/tau: phosphorylated microtubule associated protein tau; PINK1: PTEN induced kinase 1; t-MAPT/tau: total microtubule associated protein tau; TFEB: transcription factor EB; TMT: Trail Making Test.


Assuntos
Doença de Alzheimer , Biomarcadores , Mitofagia , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/sangue , Biomarcadores/metabolismo , Feminino , Masculino , Idoso , Proteínas de Membrana/líquido cefalorraquidiano , Proteínas de Membrana/metabolismo , Proteínas de Membrana/sangue , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/sangue , Disfunção Cognitiva/diagnóstico , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas/líquido cefalorraquidiano , Proteínas Proto-Oncogênicas/sangue , Proteínas Proto-Oncogênicas/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas Supressoras de Tumor
6.
Phytomedicine ; 128: 155279, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581801

RESUMO

BACKGROUND: Osteoarthritis (OA) is characterized by degeneration of articular cartilage, leading to joint pain and dysfunction. Gubi Zhitong formula (GBZTF), a traditional Chinese medicine formula, has been used in the clinical treatment of OA for decades, demonstrating definite efficacy. However, its mechanism of action remains unclear, hindering its further application. METHODS: The ingredients of GBZTF were analyzed and performed with liquid chromatography-mass spectrometry (LC-MS). 6 weeks old SD rats were underwent running exercise (25 m/min, 80 min, 0°) to construct OA model with cartilage wear and tear. It was estimated by Micro-CT, Gait Analysis, Histological Stain. RNA-seq technology was performed with OA Rats' cartilage, and primary chondrocytes induced by IL-1ß (mimics OA chondrocytes) were utilized to evaluated and investigated the mechanism of how GBZTF protected OA cartilage from being damaged with some functional experiments. RESULTS: A total of 1006 compounds were identified under positive and negative ion modes by LC-MS. Then, we assessed the function of GBZTF through in vitro and vivo. It was found GBZTF could significantly up-regulate OA rats' limb coordination and weight-bearing capacity, and reduce the surface and sub-chondral bone erosions of OA joints, and protect cartilage from being destroyed by inflammatory factors (iNOS, IL-6, IL-1ß, TNF- α, MMP13, ADAMTS5), and promote OA chondrocytes proliferation and increase the S phage of cell cycle. In terms of mechanism, RNA-seq analysis of cartilage tissues revealed 1,778 and 3,824 differentially expressed genes (DEGs) in model vs control group and GBZTF vs model group, respectively. The mitophagy pathway was most significantly enriched in these DEGs. Further results of subunits of OA chondrocytes confirmed that GBZTF could alleviate OA-associated inflammation and cartilage damage through modulation BCL2 interacting protein 3-like (BNIP3L)-mediated mitophagy. CONCLUSION: The therapeutic effectiveness of GBZTF on OA were first time verified in vivo and vitro through functional experiments and RNA-seq, which provides convincing evidence to support the molecular mechanisms of GBZTF as a promising therapeutic decoction for OA.


Assuntos
Condrócitos , Medicamentos de Ervas Chinesas , Mitofagia , Osteoartrite , Ratos Sprague-Dawley , Animais , Osteoartrite/tratamento farmacológico , Condrócitos/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Ratos , Mitofagia/efeitos dos fármacos , Masculino , Modelos Animais de Doenças , Proteínas de Membrana/metabolismo , Cartilagem Articular/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo
7.
Autophagy ; 20(6): 1459-1461, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38423516

RESUMO

Mitophagy is a critical mitochondrial quality control process that selectively removes dysfunctional or excess mitochondria through the autophagy-lysosome system. The process is tightly controlled to ensure cellular and physiological homeostasis. Insufficient mitophagy can result in failure to remove damaged mitochondria and consequent cellular degeneration, but it is equally important to appropriately restrain mitophagy to prevent excessive mitochondrial depletion. Here, we discuss our recent discovery that the SKP1-CUL1-F-box (SCF)-FBXL4 (F-box and leucine-rich repeat protein 4) E3 ubiquitin ligase localizes to the mitochondrial outer membrane, where it constitutively mediates the ubiquitination and degradation of BNIP3L/NIX and BNIP3 mitophagy receptors to suppress mitophagy. The post-translational regulation of BNIP3L and BNIP3 is disrupted in mitochondrial DNA depletion syndrome 13 (MTDPS13), a multi-systemic disorder caused by mutations in the FBXL4 gene and characterized by elevated mitophagy and mitochondrial DNA/mtDNA depletion in patient fibroblasts. Our results demonstrate that mitophagy is not solely stimulated in response to specific conditions but is instead also actively suppressed through the continuous degradation of BNIP3L and BNIP3 mediated by the SCF-FBXL4 ubiquitin ligase. Thus, cellular conditions or signaling events that prevent the FBXL4-mediated turnover of BNIP3L and BNIP3 on specific mitochondria are expected to facilitate their selective removal.


Assuntos
Proteínas F-Box , Mitocôndrias , Mitofagia , Mitofagia/fisiologia , Humanos , Proteínas F-Box/metabolismo , Mitocôndrias/metabolismo , Animais , Proteínas de Membrana/metabolismo , Modelos Biológicos , Ubiquitina-Proteína Ligases
8.
Curr Med Res Opin ; 40(4): 575-582, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38385550

RESUMO

BACKGROUND: Accurate identification of delirium in sepsis patients is crucial for guiding clinical diagnosis and treatment. However, there are no accurate biomarkers and indicators at present. We aimed to identify which combinations of cognitive impairment-related biomarkers and other easily accessible assessments best predict delirium in sepsis patients. METHODS: One hundred and one sepsis patients were enrolled in a prospective study cohort. S100B, NSE, and BNIP3 L biomarkers were detected in plasma and cerebrospinal fluid and patients' optic nerve sheath diameter (ONSD). The optimal biomarkers identified by Logistic regression are combined with other factors such as ONSD to filter out the perfect model to predict delirium in sepsis patients through Logistic regression, Naïve Bayes, decision tree, and neural network models. MAIN RESULTS: Among all biomarkers, compared with BNIP3 L (AUC = .706, 95% CI = .597-.815) and NSE (AUC = .711, 95% CI = .609-.813) in cerebrospinal fluid, plasma S100B (AUC = .729, 95% CI = .626-.832) had the best discrimination performance for delirium in sepsis patients. Logistic regression analysis showed that the combination of cerebrospinal fluid BNIP3 L with plasma S100B, ONSD, neutrophils, and age provided the best discrimination to cognitive impairment in sepsis patients (accuracy = .901, specificity = .923, sensitivity = .911), which was better than Naïve Bayes, decision tree, and neural network models. Neutrophils, ONSD, and cerebrospinal fluid BNIP3 L were consistently the major contributors in a few models. CONCLUSIONS: The logistic regression showed that the combination model was strongly correlated with cognitive dysfunction in sepsis patients.


Assuntos
Delírio , Encefalopatia Associada a Sepse , Sepse , Humanos , Encefalopatia Associada a Sepse/diagnóstico , Estudos Prospectivos , Prognóstico , Teorema de Bayes , Biomarcadores , Sepse/complicações , Sepse/diagnóstico , Proteínas de Membrana , Proteínas Proto-Oncogênicas , Subunidade beta da Proteína Ligante de Cálcio S100
9.
Trends Mol Med ; 30(2): 113-116, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38123379

RESUMO

Encephalomyopathic mitochondrial DNA (mtDNA) depletion syndrome 13 (MTDPS13) is an autosomal recessive disorder arising from biallelic F-box and leucine-rich repeat (LRR) protein 4 (FBXL4) gene mutations. Recent advances have shown that excessive BCL2 interacting protein 3 (BNIP3)/ BCL2 interacting protein 3 like (BNIP3L)-dependent mitophagy underlies the molecular pathogenesis of MTDPS13. Here, we provide an overview of these groundbreaking findings and discuss potential therapeutic strategies for this fatal disease.


Assuntos
Encefalomiopatias Mitocondriais , Mitofagia , Humanos , Mitofagia/genética , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , Mutação , Encefalomiopatias Mitocondriais/genética , Encefalomiopatias Mitocondriais/metabolismo , Encefalomiopatias Mitocondriais/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
10.
FASEB J ; 37(11): e23239, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37843818

RESUMO

Platelets are highly involved in inflammation and organ injury under pathological conditions. The mitophagy in platelets may restrict hyperactivation of the inflammasome and relieve acute kidney injury (AKI). Cecal ligation puncture (CLP)/LPS-induced AKI Triggering receptor expressed on myeloid cells (TREM-1)-knockout mice models were established. Additionally, septic patients with AKI were also included. TREM-1 expression in platelets and inflammasome activation were examined. Platelet transfer assays were performed to investigate the contribution of platelet TREM-1 to renal injury. Mitophagy was evaluated in the context of inflammation. BNIP3L/Nix knockout mice were used to examine the relationship between platelet mitophagy and inflammatory activation. The results showed that the level of TREM-1 was increased and the platelet inflammasome was hyperactivated in CLP mice and septic patients, and TREM-1 activated platelet inflammasomes. TREM-1 deletion significantly abrogated hyperactivation of the platelet inflammasome and dramatically reduced AKI, whereas ablation of the mitophagy receptor BNIP3L/Nix induced the accumulation of damaged mitochondria and hyperactivation of platelet inflammasomes in CLP mice. BNIP3L/Nix controlled platelet inflammasome activation, and an amplification loop of platelet inflammasome activation and dysfunctional mitochondria controlled sepsis-related AKI. Therefore, targeting TREM-1 and NLRP3/BNIP3L in platelets may represent a novel therapeutic strategy for treating septic AKI.


Assuntos
Injúria Renal Aguda , Sepse , Humanos , Camundongos , Animais , Inflamassomos/metabolismo , Mitofagia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides , Injúria Renal Aguda/metabolismo , Proteínas Reguladoras de Apoptose , Camundongos Knockout , Proteínas de Membrana/genética , Proteínas Mitocondriais
11.
Autophagy ; 19(11): 3022-3023, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37589593

RESUMO

Mitochondria are at the basis of various cellular functions ranging from metabolism and redox homeostasis to inflammation and cell death regulation. Mitochondria therefore constitute an attractive target for invading pathogens to fulfil their infectious cycle. This involves the modulation to their advantage of mitochondrial metabolism and dynamics, including the controlled degradation of mitochondria through mitophagy. Mitophagy might for instance be beneficial for bacterial survival as it can clear bactericidal mitochondrial ROS produced by damaged organelle fragments from the intracellular niche. In the case of the bacterial pathogen Brucella abortus, mitophagy induction has another role in the intracellular lifecycle of the bacteria. Indeed, in our study, we showed that B. abortus triggers an iron-dependent BNIP3L-mediated mitophagy response required for proper bacterial egress and infection of neighboring cells. These results highlight the diversity of mitophagy processes that might be crucial for several stages of cellular infection.


Assuntos
Brucella abortus , Mitofagia , Brucella abortus/metabolismo , Autofagia , Mitocôndrias/metabolismo , Macrófagos/metabolismo
12.
Biochem Biophys Res Commun ; 674: 140-146, 2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37419035

RESUMO

Mitochondria, an important organelle implicated in programmed cell death, assumes a crucial role in necroptosis. However, the regulatory mechanisms through which mitochondria participates in necroptosis are largely unknown. To address this knowledge gap, our study aimed to identify mitochondrial proteins that engage in interactions with receptor-interacting protein kinase 3 (RIPK3), a significant upstream kinase involved in necroptosis. Among the candidates, BNIP3 and BNIP3L exhibited significant higher binding scores to RIPK3 compared to others. Computational modeling revealed specific interactions, as RIPK3 specifically binds to a conserved α-helix region within BNIP3 and BNIP3L. Validation experiments confirmed the significance of these helical peptides for RIPK3 binding. Conserved peptides were also identified in BNIP3 and BNIP3L proteins from various animal species, including humans. The binding between human RIPK3 and BNIP3/BNIP3L peptides demonstrated perfect shape and charge complementation, with highly conserved interface residues. Moreover, peptide binding stabilized an active conformation of RIPK3, potentially enhancing its kinase activity. These findings uncover the interactions between RIPK3 and BNIP3/BNIP3L, providing insights into RIPK3 regulation and its role in necroptosis.


Assuntos
Proteínas Mitocondriais , Necroptose , Animais , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo
13.
EMBO J ; 42(14): e112817, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37232029

RESUMO

The facultative intracellular pathogen Brucella abortus interacts with several organelles of the host cell to reach its replicative niche inside the endoplasmic reticulum. However, little is known about the interplay between the intracellular bacteria and the host cell mitochondria. Here, we showed that B. abortus triggers substantive mitochondrial network fragmentation, accompanied by mitophagy and the formation of mitochondrial Brucella-containing vacuoles during the late steps of cellular infection. Brucella-induced expression of the mitophagy receptor BNIP3L is essential for these events and relies on the iron-dependent stabilisation of the hypoxia-inducible factor 1α. Functionally, BNIP3L-mediated mitophagy appears to be advantageous for bacterial exit from the host cell as BNIP3L depletion drastically reduces the number of reinfection events. Altogether, these findings highlight the intricate link between Brucella trafficking and the mitochondria during host cell infection.


Assuntos
Brucella abortus , Mitofagia , Brucella abortus/metabolismo , Vacúolos/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias
14.
EMBO J ; 42(13): e112767, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37161784

RESUMO

To maintain both mitochondrial quality and quantity, cells selectively remove damaged or excessive mitochondria through mitophagy, which is a specialised form of autophagy. Mitophagy is induced in response to diverse conditions, including hypoxia, cellular differentiation and mitochondrial damage. However, the mechanisms that govern the removal of specific dysfunctional mitochondria under steady-state conditions to fine-tune mitochondrial content are not well understood. Here, we report that SCFFBXL4 , an SKP1/CUL1/F-box protein ubiquitin ligase complex, localises to the mitochondrial outer membrane in unstressed cells and mediates the constitutive ubiquitylation and degradation of the mitophagy receptors NIX and BNIP3 to suppress basal levels of mitophagy. We demonstrate that the pathogenic variants of FBXL4 that cause encephalopathic mtDNA depletion syndrome (MTDPS13) do not efficiently interact with the core SCF ubiquitin ligase machinery or mediate the degradation of NIX and BNIP3. Thus, we reveal a molecular mechanism whereby FBXL4 actively suppresses mitophagy by preventing NIX and BNIP3 accumulation. We propose that the dysregulation of NIX and BNIP3 turnover causes excessive basal mitophagy in FBXL4-associated mtDNA depletion syndrome.


Assuntos
Mitofagia , Fagocitose , Autofagia/fisiologia , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitofagia/fisiologia , Humanos , Animais , Camundongos
15.
Autophagy ; 19(7): 2162-2163, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36572844

RESUMO

Mitochondria, often called "the powerhouse" of the cell due to their role as the main energy supplier, regulate numerous complex processes including intracellular calcium homeostasis, reactive oxygen species (ROS) production, regulation of immune responses, and apoptosis. So, mitochondria are a fundamental metabolic hub that also control cell survival and cell death. However, they are not unique in all these functions. Indeed, peroxisomes are small cytoplasmic organelles that also ensure metabolic functions such as fatty acid oxidation and ROS production. This common relationship also extends beyond function as peroxisomes themselves can form from mitochondrial-derived precursors. Given this interconnection between mitochondria and peroxisomes involving biogenesis and function, in our recent work we determined if their turnover was also linked.


Assuntos
Autofagia , Peroxissomos , Espécies Reativas de Oxigênio/metabolismo , Peroxissomos/metabolismo , Mitocôndrias/metabolismo
16.
Autophagy Rep ; 2(1)2023.
Artigo em Inglês | MEDLINE | ID: mdl-38214011

RESUMO

Viral control of mitochondria via mitophagy has a dampening effect on mitochondrion-mediated innate immune responses. We previously found that human herpesvirus 8 (HHV-8) could activate mitophagy via its lytic gene product vIRF-1 (viral interferon regulatory factor 1). Mechanistically, we previously demonstrated that vIRF-1 interacts with the mitophagic proteins BNIP3L (BCL2 interacting protein 3 like) and TUFM (Tu translation elongation factor, mitochondrial). Despite these significant findings, however, the precise molecular mechanisms underlying vIRF-1-activated mitophagy, particularly with core components of the autophagy machinery, remained to be fully elucidated. We recently reported that vIRF-1 binds preferentially and directly to GABARAPL1 (GABA type A receptor associated protein like 1) in a noncanonical manner, and this interaction is essential for virus-productive replication. Furthermore, we found that BNIP3L is a crucial factor that promotes vIRF-1 oligomerization and associated mitophagy activation, including GABARAPL1 interaction with vIRF-1 and TUFM dimerization. Together, our findings deepen our understanding of lytic infection-induced mitophagy and provide the key protein-protein interactions involved in vIRF-1-mediated mitophagy.

17.
Front Immunol ; 13: 1095427, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569834

RESUMO

Objective: Sepsis Associated Encephalopathy (SAE) is a common complication in critically ill patients and perioperative period, but its pathogenesis is still unclear. This study aimed to explore the effect of the HIF-1α (hypoxia-inducible factor-1α)/BNIP3L (Bcl-2/adenovirus E1B 19-kDa interaction protein) signaling pathway on SAE. Methods: C57BL/6J male mice were divided into four groups, using a random number table method: control group, sham group, sepsis group, sepsis+HIF-1α activity inhibitor (echinomycin) group. Sepsis was induced by cecal ligation and puncture (CLP). At 24 h after surgery, brain tissue was sampled. HE was staining to observe changes in the hippocampus structure. Fluoroscopy observes changes in mitochondrial structure. Western blot, QT-PCR, and immunofluorescence were used to assess the amount of expression of HIF-1α and BNIP3L in the hippocampus and mitochondrion of hippocampus neurons. Observation of neuronal apoptosis by TUNEL staining. Seven days after surgery, mice were tested in a Morris water maze test to assess cognitive function after CLP. Results: Our results show that CLP-induced hippocampus-dependent cognitive deficits were accompanied with increased HIF 1a and decreased BNIP3L, increased protein levels of TNF-α, IL-6, and IL-ß, and damage to mitochondrial structures and neuronal apoptosis in the hippocampus. In addition, administration of echinomycin rescues cognitive deficits, ameliorates HIF-1α and BNIP3L-mediated neuronal pyroptosis and damaged mitochondrial structures, and decreases the expression of TNF-α and IL-6 in the hippocampus. Conclusions: HIF-1α and the BNIP3L promote mitochondrial damage, and neuronal apoptosis and the expression of inflammatory factors may be the mechanism of SAE in critically ill patients and perioperative period.


Assuntos
Equinomicina , Encefalopatia Associada a Sepse , Sepse , Camundongos , Masculino , Animais , Fator de Necrose Tumoral alfa , Estado Terminal , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Interleucina-6 , Camundongos Endogâmicos C57BL , Sepse/complicações , Cognição
18.
Ren Fail ; 44(1): 1961-1975, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36350669

RESUMO

BACKGROUND: Given the reported effects of nuclear paraspeckle assembly transcript 1 (NEAT1) on kidney injury, a study is worth formulating to investigate whether and how NEAT1 impacts podocytes. MATERIALS AND METHODS: A mouse podocyte injury model was established using the adriamycin (ADR)-induced mouse podocyte cell line (MPC5). The target relationships between NEAT1 and microRNA (miR)-23b-3p and between miR-23b-3p and Bcl-2 interacting protein 3 like (BNIP3L) were verified by dual-luciferase reporter assay and RNA immunoprecipitation assay. After ADR-induced MPC5 cells were transfected with NEAT1 overexpression plasmid (oe-NEAT1) or shNEAT1, the viability and apoptosis of MPC5 cells were evaluated by Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. The expressions of MPC5, miR-23b-3p, BNIP3L and the factors related to podocyte injury, apoptosis and epithelial-mesenchymal transition were determined using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. RESULTS: NEAT1 was high-expressed in ADR-induced cell model. After transfection with oe-NEAT1, the expression of NEAT1, the levels of marker (Desmin) and apoptosis were promoted, while the viability and the levels of podocyte injury markers (WT1, Nephrin) were inhibited in ADR-induced cells. However, shNEAT1 generated the effects opposite to oe-NEAT1. Besides, miR-23b-3p competitively bound to NEAT1 and targeted BNIP3L. MiR-23b-3p inhibitor reversed the effect of shNEAT1, while its effect could be further offset by shBNIP3L. Furthermore, miR-23b-3p inhibitor affected mouse podocyte injury through downregulating Bcl-2 and E-cadherin levels and upregulating Cleaved-caspase-3, Bax, N-cadherin, Vimentin and Snail levels, but shBNIP3L did oppositely. CONCLUSION: NEAT1 promotes the podocyte injury via targeting miR-23b-3p/BNIP3L axis.


Assuntos
MicroRNAs , Podócitos , RNA Longo não Codificante , Animais , Camundongos , Apoptose/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Paraspeckles , Podócitos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
19.
Mol Biol Rep ; 49(11): 10749-10760, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35794507

RESUMO

Mitochondria dysfunction has been defined as one of the hallmarks of aging-related diseases as is characterized by the destroyed integrity, abnormal distribution and size, insufficient ATP supply, increased ROS production, and subsequently damage and oxidize the proteins, lipids and nucleic acid. Mitophagy, an efficient way of removing damaged or defective mitochondria by autophagy, plays a pivotal role in maintaining the mitochondrial quantity and quality control enabling the degradation of unwanted mitochondria, and thus rescues cellular homeostasis in response to stress. Accumulating evidence demonstrates that impaired mitophagy has been associated with many neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) in a variety of patients and disease models with neural death, oxidative stress and disturbed metabolism, either as the cause or consequence. These findings suggest that modulation of mitophagy may be considered as a valid therapeutic strategy in neurodegenerative diseases. In this review, we summarize recent findings on the mechanisms of mitophagy and its role in neurodegenerative diseases, with a particular focus on mitochondrial proteins acting as receptors that mediate mitophagy in these diseases.


Assuntos
Mitofagia , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/terapia , Doenças Neurodegenerativas/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Autofagia
20.
Cancers (Basel) ; 14(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35267517

RESUMO

(1) Background: The heritability of breast cancer is partly explained but much of the genetic contribution remains to be identified. Haplotypes are often used as markers of ethnicity as they are preserved through generations. We have previously demonstrated that haplotype analysis, in addition to standard SNP association studies, could give novel and more detailed information on genetic cancer susceptibility. (2) Methods: In order to examine the association of a SNP or a haplotype to breast cancer risk, we performed a genome wide haplotype association study, using sliding window analysis of window sizes 1−25 and 50 SNPs, in 3200 Swedish breast cancer cases and 5021 controls. (3) Results: We identified a novel breast cancer susceptibility locus in 8p21.1 (OR 2.08; p 3.92 × 10−8), confirmed three known loci in 10q26.13, 11q13.3, 16q12.1-2 and further identified novel subloci within these three loci. Altogether 76 risk SNPs, 3302 risk haplotypes of window size 2−25 and 113 risk haplotypes of window size 50 at p < 5 × 10−8 on chromosomes 8, 10, 11 and 16 were identified. In the known loci haplotype analysis reached an OR of 1.48 in overall breast cancer and in familial cases OR 1.68. (4) Conclusions: Analyzing haplotypes, rather than single variants, could detect novel susceptibility loci even in small study populations but the method requires a fairly homogenous study population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...