RESUMO
One of the characteristics of aging and age-related disorders is the formation and evolution of a chronic, low-grade, and hence subclinical, inflammatory state known as inflammaging. Although the progression of inflammaging is now recognized as one of the main driving forces of aging and one of the main risk factors for morbidity and mortality in older subjects, current knowledge on the causative agents of inflammaging itself and chronic, aging-related diseases is still incomplete. In this chapter, we offer a methodological approach for assessing inflammation associated with aging through the use of multiplex immunoassay, which enables the rapid, reproducible, and simultaneous dosage of several cytokines, chemokines, and inflammatory mediators with little biological sample usage.
Assuntos
Envelhecimento , Citocinas , Envelhecimento/imunologia , Humanos , Imunoensaio/métodos , Citocinas/metabolismo , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , BiomarcadoresRESUMO
Glaucoma is a leading cause of irreversible blindness worldwide. Current treatments focus on reducing intraocular pressure but cannot restore lost visual function once it is lost due to retinal ganglion cell (RGC) degeneration and death. Recent advances suggest that transplantation of stem cell-derived RGCs could offer new therapeutic approaches for glaucoma and vision restoration. Here, we present a detailed protocol for differentiating human RGCs from embryonic stem cells using both three-dimensional retinal organoid and two-dimensional culture approaches. Following differentiation, we describe methods for isolating and purifying retinal ganglion cells from these cultures and their subsequent transplantation into the mouse retina, with careful monitoring and postoperative care to ensure successful integration. Finally, we describe a quantitative method for assessing transplantation outcomes involving confocal imaging of retinal flat-mounts and custom ImageJ and MATLAB scripts to map and analyze the spatial distribution of donor RGCs within the host retina. Altogether, this approach provides a robust framework for exploring RGC transplantation as a potential therapy for vision loss in glaucoma and other optic neuropathies.
Assuntos
Diferenciação Celular , Glaucoma , Células Ganglionares da Retina , Células Ganglionares da Retina/citologia , Animais , Camundongos , Humanos , Glaucoma/terapia , Glaucoma/cirurgia , Transplante de Células-Tronco/métodos , Técnicas de Cultura de Células/métodos , Retina/citologia , Organoides/citologia , Organoides/transplanteRESUMO
Ribonucleic acid (RNA) extraction is the first critical step in gene expression analysis. In this chapter, we describe a high-throughput RNA extraction method using guanidine thiocyanate and isopropyl alcohol (HighGI). The use of carboxyl-coated paramagnetic beads, instead of silica membrane columns, enables semi-automation using a liquid handling system and high-throughput RNA extraction for large-scale transcriptome studies. Homemade mixes of paramagnetic beads and buffers make HighGI inexpensive. In addition, HighGI-extracted RNA retains low molecular weight RNA molecules less than 200 bp, which is typically lost in commercial column-based kits.
Assuntos
Guanidinas , Oryza , RNA de Plantas , Oryza/genética , Oryza/química , RNA de Plantas/isolamento & purificação , RNA de Plantas/genética , Guanidinas/química , Tiocianatos/química , 2-Propanol/químicaRESUMO
Salmonella contamination in pig slaughterhouses is linked to infection rate on farms. Accurate diagnosis in heavy pigs relies on isolating pathogens from the gut wall or lymph nodes. A key technique is Immunocapture using Magnetic Beads (IMS), which purifies target bacteria from Salmonella enrichment broths. This is followed by an Enzyme-Linked Immunomagnetic Electrochemical (ELIME) assay for rapid detection. In our study, we developed an ELIME-IMS hybrid assay to detect Salmonella in swine mesenteric lymph nodes (MNL), involving a clean-up with N-acetylcysteine and centrifugation. Detection limits for S. Typhimurium and S. Derby were estimated at 2.80 and 3.52 Log CFU/ml, respectively. We analysed 103 MNL samples from a northern Italy slaughterhouse. Additionally, we examined 15 carcass swabs. Both the ELIME assay and the IMS-based culture method showed strong agreement with the ISO 6579-1:2017 method, especially after 20 h of enrichment (89.47% concordance). The clean-up step significantly influenced the results, as samples processed without it showed higher variability. A logistic regression model indicated high classification accuracy for negative samples using ELIME values. The ELIME-IMS assay facilitates rapid Salmonella screening and isolation in swine mesenteric lymph nodes.
Assuntos
Matadouros , Linfonodos , Animais , Suínos , Linfonodos/microbiologia , Salmonella/isolamento & purificação , Salmonelose Animal/microbiologia , Salmonelose Animal/diagnóstico , Doenças dos Suínos/microbiologia , Doenças dos Suínos/diagnóstico , Separação Imunomagnética/métodos , Itália , Contaminação de Alimentos/análiseRESUMO
This study involved the design and fabrication of a microfluidic chip integrated with permalloy micromagnets. The device was used with aptamer-modified magnetic beads (MBs) of various sizes to successfully separate lung cancer cells from a mixture of other cells. The overall separation efficiency was evaluated based on the ratios of cells in the different outlets and inlets of the chip. The results showed efficiencies ranging from 43.4% to 50.2% for MB sizes between 1.36 and 4.50 µm. Interestingly, efficiency slightly decreased as the size of the MBs increased, contrary to predictions. Further examination revealed that larger MBs exerted gravitational force on the cell-bound MBs at low flow rates, causing the targets to settle before reaching the main microchannel region. This was attributed to fluidic resistance caused by a size mismatch between the inlet tube and the microfluidic conduit. An increase in cell accumulation at the inlet was observed with larger MB sizes due to gravity. Therefore, the definition of effective separation efficiency was revised to exclude the effect of cell accumulation at the inlet. Effective separation efficiencies were found to be 71.6%, 76.4%, and 79.4% for MB sizes of 1.36, 3.00, and 4.50 µm, respectively. The study concluded that larger MBs interacted more with the magnetic force, resulting in better separation. However, cells with smaller MBs were more likely to evade the magnetic force. The investigation provides valuable insights into isolating lung cancer cells using this method, with the potential for clinical application in cancer diagnosis and treatment.
RESUMO
Objectives: The purpose of this study was to compare the safety and efficacy of drug-eluting bead (DEB) transarterial chemoembolization combined with lenvatinib and camrelizumab (DEB-TACE-Len-C) and DEB-TACE-Len for the treatment of unresectable hepatocellular carcinoma (uHCC). Methods: This retrospective study consecutively included uHCC patients who underwent DEB-TACE-Len-C or DEB-TACE-Len treatment at our hospital and Qujing Second People's Hospital from April 2020 to April 2022. In total, 85 patients were enrolled. There were 42 patients in the DEB-TACE-Len-C group and 43 patients in the DEB-TACE-Len group. The disease control rate (DCR), objective response rate (ORR), overall survival (OS), progression-free survival (PFS), and adverse events (AEs) were compared between the two groups, and the factors influencing OS and PFS were analysed. Results: The ORR, DCR, PFS and OS were significantly greater in the DEB-TACE-Len-C group than in the DEB-TACE-Len group (ORR: 76.2% vs. 46.5%, P = 0.005; DCR: 88.1% vs. 67.8%, P = 0.039; PFS: 10 months vs. 6 months, P <0.0001; OS: 24 months vs. 16 months, P = 0.0038). Multivariate Cox proportional hazard regression analysis revealed that portal tumour thrombus (PVTT) and therapeutic approach were independent factors affecting PFS and OS. There were no statistically significant differences in the incidence of AEs between the two groups (P > 0.05). Conclusion: Compared with DEB-TACE-Len, DEB-TACE-Len-C is an effective treatment option that can improve the tumour therapeutic response and prolong the OS and PFS in uHCC patients.
Assuntos
Anticorpos Monoclonais Humanizados , Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Compostos de Fenilureia , Quinolinas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/mortalidade , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/mortalidade , Quinolinas/uso terapêutico , Quinolinas/efeitos adversos , Quinolinas/administração & dosagem , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Compostos de Fenilureia/efeitos adversos , Compostos de Fenilureia/uso terapêutico , Compostos de Fenilureia/administração & dosagem , Idoso , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/administração & dosagem , Quimioembolização Terapêutica/efeitos adversos , Quimioembolização Terapêutica/métodos , Resultado do Tratamento , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Adulto , Terapia CombinadaRESUMO
The study addresses the challenge of developing sustainable and efficient catalytic systems for the synthesis of benzimidazole derivatives, which are of significant importance in the field of medicinal chemistry due to their diverse biological activities. The objective is to develop a recyclable and environmentally friendly catalyst utilizing copper(II)-loaded alginate hydrogel beads, which can facilitate the synthesis of these compounds while minimizing environmental impact. The preparation process entails crosslinking sodium alginate with copper(II) ions to form hydrogel beads, which are then washed and characterized through techniques such as scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), Inductively coupled plasma (ICP), and Zeta potential to analyses the morphology, composition and porosity of the beads. The catalytic performance is evaluated through recycling tests, which demonstrate the catalyst's ability to maintain selectivity and activity over multiple reaction cycles. The Cu(II)-Alg hydrogel beads were used for synthesizing substituted benzimidazole derivatives in a water-ethanol solvent at room temperature. This method offers significant advantages, including extremely mild reaction conditions, short reaction times (<1â¯h), high yields (70-94â¯%), and ease of processing. The most significant results indicate that the Cu(II)-alginate catalyst exhibits a high loading capacity and retains its catalytic efficiency for at least 3â¯cycles, thereby highlighting its potential for sustainable applications in organic synthesis.
RESUMO
Isolated mitochondria have been widely utilized in various model organisms to investigate the diverse functions of the organelle. Techniques such as differential centrifugation, density gradient ultracentrifugation and antibody-coated magnetic beads are employed for isolation of the organelle from whole cells. However, mitochondria isolated using differential centrifugation are often contaminated with other organelles; isolation using density gradient ultracentrifugation can reduce contamination but is time-intensive and requires large amounts of starting materials; and mitochondria isolated using antibody-coated magnetic beads are irreversibly bound to the beads. Here, we provide a step-by-step protocol for the isolation of highly pure mitochondria from Saccharomyces cerevisiae using a magnetic bead affinity purification method that overcomes these limitations. This protocol describes how to isolate mitochondria, tagged by insertion of 6 histidines (6xHis) into the chromosomal copy of the TOM70 (Translocase of outer membrane 70) gene using Ni-NTA (nickel(II) nitrilotriacetic acid) paramagnetic beads, and the subsequent release of mitochondria from the beads using a buffer containing imidazole. We provide examples of expected results, highlighting the purity, integrity and import activity of isolated mitochondria. These affinity-purified mitochondria are intact and functional, containing less contamination with cytosol and other organelles compared to mitochondria isolated by other methods. Our method is adaptable and can be applied to other model organisms that can be genetically manipulated using CRISPR or other methods.
Assuntos
Cromatografia de Afinidade , Mitocôndrias , Saccharomyces cerevisiae , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatografia de Afinidade/métodos , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Fracionamento Celular/métodos , Histidina/metabolismo , Histidina/química , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Ácido Nitrilotriacético/análogos & derivados , Compostos OrganometálicosRESUMO
A simple and efficient one-step method combining ion crosslinking and antisolvent exchange has been developed to construct gellan gum/corn starch@zein (GG/CS@Z) core-shell structured beads. This novel approach aims to reduce the digestibility and digestion rate of starch. The GG/CS@Z beads were comprehensively characterized using scanning electron microscopy (SEM), confocal laser scanning microscope (CLSM), differential scanning calorimetry (DSC), swelling power experiments and in vitro simulated digestion tests, respectively. SEM and CLSM analyses unequivocally confirmed the successful construction of the core-shell structure in GG/CS@Z beads. The encapsulation of starch within the core-shell structure effectively restricted its swelling and gelatinization by inhibiting water contact. Notably, compared to native corn starch, the GG/CS@Z5 beads exhibited significantly enhanced contents of slowly digestible starch (SDS) and resistant starch (RS), reaching 34.07 % and 26.86 %, respectively. These findings demonstrate the potential of GG/CS@Z core-shell structured beads as functional food ingredients for individuals with cardiovascular diseases and diabetes.
RESUMO
In recent years, the enhancement of resource utilization for water treatment plant sludge has emerged as a significant global concern. This study utilized aluminum-rich water treatment plant sludge and applied the sodium alginate crosslinking solidification method to produce Microspheres based on water treatment plant sludge (MS-WTPS). The study investigated their properties as an adsorbent material and their effectiveness in treating high-phosphorus wastewater. The resultant material exhibited a porous structure with an elevated specific surface area of 119.35 m2 gâ»1, and it demonstrated exceptional phosphate adsorption capabilities, showcasing a maximum adsorption capacity of 27.69 mg gâ»1, which surpassies reported literature values for analogous adsorbents. Furthermore, the adsorption process maintained stability, displaying low sensitivity to pH fluctuations and resilience against interference from coexisting ions. In the complex environment of the actual wastewater, MS-WTPS achieved a phosphate removal rate of 91.02%, and was not easily dispersed and lost by water flow, which makes it easy to be recycled. Utilizing microscopic structural analysis, adsorption kinetics, and pre- and post-adsorption XPS analysis, it is hypothesized that the adsorption of phosphate ions by MS-WTPS is mainly through electrostatic gravitational interaction, ligand exchange and Al-P complexes formation. These works furnish essential technical and theoretical groundwork for the pragmatic implementation of MS-WTPS in high-phosphate wastewater remediation.
RESUMO
This study pioneers the use of continuous flow methods to modify the nanoporous metal-organic framework Fe-BTC (MIL-100(Fe)) with redox-active poly-p-phenylenediamine (PpPDA). The Fe-BTC/PpPDA composite, known for its gold extraction capabilities, was synthesized in continuous flow on a 250 g scale. Fe-BTC/PpPDA was then tested in eight industrial leachates (e.g., cyanide, thiourea, aqua regia) exhibiting varying effectiveness, pH, and gold speciation, which led to significant differences in the composite's performance for gold extraction. The composite performed best in solutions containing [AuCl4]- species. Structured into spherical beads using a novel continuous flow microdroplet technique, these adsorbents were tested for gold recovery from real e-waste solutions in a breakthrough epemriment. They achieved a capacity of ~600 mg of gold per gram before breakthrough and ~900 mg per gram at a 60% recovery rate. Selectivity ratios for Au/Ni, Au/Co, and Au/Fe were 972, 262, and 193, respectively. In situ X-ray absorption near edge spectroscopy (XANES) provided evidence of the reduction of Au³âº to Au°, facilitated by the redox-active oligomers. Outperforming several commercial resins, Fe-BTC/PpPDA shows great promise for scalable, selective metal recovery from waste streams. This study highlights the potential of MOF/polymer composites and continuous flow methods for large-scale production.
RESUMO
This study aimed to assess the effectiveness and safety of 5-Fluorouracil (5-Fu) combined with conventional transarterial chemoembolization (cTACE) compared to 5-Fu combined with drug-eluting bead transarterial chemoembolization (DEB-TACE) using CalliSpheres for the treatment of unresectable hepatocellular carcinoma (HCC) using propensity score weighting methods. This retrospective analysis included 131 patients with HCC treated with 5-Fu combined with cTACE (5-Fu-cTACE group, n = 65) or DEB-TACE (5-Fu-DEB-TACE group, n = 66) at the Affiliated Hospital of North Sichuan Medical College from January 2019 to December 2022. Based on the baseline data and laboratory indicators, propensity score weighting was used to reduce confounding bias. Modified response evaluation criteria in solid tumors (mRECIST) were used to evaluate clinical efficacy. The primary endpoint was progression-free survival (PFS), and the secondary endpoints were the disease control rate (DCR), objective response rate (ORR) and adverse events (AEs). PFS was assessed using KaplanâMeier analysis and Cox proportional hazards models. The ORRs at 1 month (M1) after treatment in the 5-Fu-DEB-TACE group and 5-Fu-cTACE group were 90.9% and 76.9%, respectively (P = 0.029), while at this time, the DCRs were 93.9% in the 5-Fu-DEB-TACE group and 90.8% in the 5-Fu-cTACE group (P = 0.494). At 3 months (M3) after treatment, the 5-Fu-DEB-TACE group had a higher ORR (84.8% vs. 56.9%, P < 0.001) and DCR (84.8% vs. 72.3%, P = 0.08). The ORR at 6 months (M6) was also higher in the 5-Fu-DEB-TACE group than in the 5-Fu-cTACE group (72.7% vs. 50.8%, P = 0.01). The median PFS after treatment with 5-Fu-DEB-TACE was longer than that after treatment with 5-Fu-cTACE (11 months vs. 6 months) (P = 0.004). Cox proportional hazards regression analysis indicated that 5-Fu-DEB-TACE (HR = 0.590, P = 0.044), Model for End-Stage Liver Disease (MELD) intermediate risk (HR = 2.470, P = 0.010), BCLC stage B (HR = 2.303, P = 0.036), BCLC stage C (HR = 3.354, P = 0.002) and ascitic fluid (HR = 2.004, P = 0.046) were independent predictors of PFS. No treatment-related deaths occurred in this study. The 5-Fu-DEB-TACE group had a greater incidence of abdominal pain (72.7% vs. 47.7%, P = 0.003). However, the incidence of postoperative elevated transaminase levels was higher in the 5-Fu-cTACE group (83.1% vs. 66.6%, P = 0.031). Subgroups analysis showed patients receiving 5-Fu-DEB-TACE have better PFS compared to those receiving 5-Fu-cTACE in the BCLC stage A group (P = 0.0093), BCLC stage B group (P = 0.0096), multifocal group (P = 0.0056), Child-Pugh stage A group (P<0.001), non- extrahepatic metastasis group (P = 0.022), non-vascular invasion group (P = 0.0093), and the group with a largest tumor diameter ≥ 5 cm (P = 0.0048). At M1, M3, and M6, patients with preserved liver function and in some cases of low tumor burden had higher Objective Response Rate (ORR) and Disease Control Rate (DCR) (P < 0.05). Compared with 5-Fu-cTACE, 5-Fu-DEB-TACE has superior therapeutic efficacy, prolongs PFS, and reduces hepatotoxicity. However, it is associated with an increased incidence of postoperative abdominal pain.
Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Fluoruracila , Neoplasias Hepáticas , Pontuação de Propensão , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Fluoruracila/administração & dosagem , Fluoruracila/uso terapêutico , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Quimioembolização Terapêutica/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Resultado do Tratamento , AdultoRESUMO
Due to its widespread use and incomplete breakdown in the human body, amoxicillin has been detected in receiving water bodies. This raises significant concerns, like the promotion of antibiotic resistance, toxicity towards aquatic life, disruption of the natural balance of microbial communities within these water bodies, and the struggle of effectively removal by the traditional wastewater treatment plants. Consequently, exploring new processes to complement the existing methods is crucial. Adsorption, a promising highly efficient, selective, and versatile technique, can effectively remove contaminants, making it useful in various industries such as water treatment, pharmaceuticals, and environmental remediation. Several adsorbents are documented in the literature for drug adsorption; however, their fabrication often involves more complex steps and substances compared to chitosan and alginate, which are natural polymers that are biocompatible, non-toxic, and biodegradable. Their tunable properties and ease of modification enhance their efficacy in environmental remediation. Therefore, the novelty of this article is to understand the interaction of amoxicillin with chitosan and alginate adsorbents easily synthetized using the dripping technique. This approach allows us to explore basic principles that can be applied to more complex systems in future studies. The optimal pH for both beads was found to be 4, with adsorption capacities of 74.2 ± 0.3 mg g-1 for alginate and 80.4 ± 0.2 mg g-1 for chitosan, using 1 g of adsorbent. Kinetics studies indicated that external diffusion governs adsorption for alginate, while internal diffusion governs adsorption for chitosan. This approach underscores the potential of chitosan and alginate beads as effective adsorbents for mitigating antibiotic contamination in water systems, offering a sustainable complement to traditional treatment methods.
RESUMO
Metal-organic frameworks (MOFs) are attractive adsorbents for heavy metal capture due to their superior stability, easy modification, and adjustable pore size. However, their inherent microporous structure poses challenges in achieving a higher adsorption capacity. Defect engineering is considered a simple method to create hierarchical MOFs with larger pores. Here, we employed l-aspartic acid as a mixed linker to bind Zr4+ clusters in competition with fumaric acid of MOF-801 to create defects, and the pore size was increased from 4.66 to 15.65 nm. Mercaptosuccinic acid was subsequently used as a postexchange ligand to graft the resultant MOF-801 by acid-ammonia condensation to further expand the pore size to 22.73 nm. Notably, the -NH2, -COOH, and -SH groups contributed by these two ligands increased the adsorption sites for Pb(II). The obtained defective MOF-801 with larger pores was thereafter loaded onto sodium alginate to form aerogel beads as adsorbents, and an adsorption capacity of 375.48 mg/g for Pb(II) was achieved, which is â¼51 times that of pristine MOF-801. The aerogel beads also exhibited outstanding reusability with a removal efficiency of â¼90.23% after 5 cycles of use. The adsorption mechanism of Pb(II) included ion-exchange interaction, as well as chelation interactions of Pb-O, Pb-NH2, and Pb-S. The versatile combination of defect engineering and composite beads provides novel inspirations for MOF modification for boosting heavy metal adsorption.
RESUMO
A capsaicinoids (CPCs) broad spectrum monoclonal antibody with same recognition ability to capsaicin (CPC), dihydrocapsaicin (DCPC), nordihydrocapsaicin (NDCPC), and N-vanillylnonanamide (NV) is prepared. Chitosan (CS) hydrogel is used as the carrier of multicolor quantum dots (QDs) to prepare fluorescence hydrogel beads, CPCs and aflatoxin B1 (AFB1) antibody are coupled with fluorescence hydrogel beads to prepare signal probes. Using AuNPs (or AgNPs) as fluorescence quenching agent to prepare quenching probes followed forming a fluorescence quenching test system. Based on optimal group of signal and quenching probes, a novel, simple, convenient, and ultra-sensitive homogeneous fluorescence immunoassay for the simultaneous detection of CPCs and AFB1 is constructed. The limit of detection (LOD) of assay for AFB1 and CPC is 0.00064 µg L-1 and 0.00049 µg L-1, respectively. This method can realize the simultaneous rapid detection of AFB1 and CPCs in food, which provides a new strategy for the identification of kitchen waste oil.
RESUMO
Seed storage life in tropical areas is shortened by high humidity and temperature and the general inaccessibility to dehumidifying and refrigeration systems, resulting in rapid decreases in seed viability in storage as well as a high incidence of fungal and insect infestations. The dry chain, based on rapid and deep drying of seeds after harvest followed by packaging in moisture-proof containers, has been proposed as an effective method to maintain seed quality during medium-term storage in humid climates, even without refrigeration. In addition, seed drying with zeolite drying beads can be more effective and economical than sun or heated-air drying under these warm, humid conditions. In this paper, we review recent published literature regarding the dry chain, considering different crop species, storage environments and seed traits. In addition, we provide new original data on the application of dry chain methods and their implementation at larger scales in South Asia, Latin America and Pacific Island Countries. The clear conclusion is that the combination of reusable drying beads and waterproof storage containers enables the implementation of the dry chain in tropical climates, enhancing seed viability and quality in storage of many crop species. The dry chain approach can therefore significantly enhance seed security for farmers in many tropical countries. Finally, we propose actions and strategies that could guide further scaling-up implementation of this technology.
Assuntos
Sementes , Clima Tropical , Dessecação/métodos , Produtos Agrícolas/crescimento & desenvolvimento , UmidadeRESUMO
Water contamination by pesticides threatens clean water availability, highlighting the need for advanced sustainable sanitation systems. Adsorption using biopolymers and minerals is prominent. Understanding process kinetics and influencing parameters is crucial for optimizing contaminant-adsorbent contact time for safe water disposal. The adsorption kinetics of Paraquat (PQ) at three initial concentrations (C0 = 19, 38, and 50 ppm) were studied using alginate-montmorillonite (Alg-Mt) beads with varying clay contents and a 30-min gelation time. The beads were characterized by elemental analysis, TG/DTG, FTIR, XRD, SEM, and EDX. The Shrinking Core Model (SCM) was applied to the experimental data to determine if the diffusion of PQ within the beads depended on clay content. The effective diffusion coefficient (Dp) in the adsorbent increased from 7 × 10-12 to 1 × 10-10 m2 s-1 with increasing clay content, suggesting that diffusion into the interior depended on interaction with the mineral. This investigation also demonstrated that the synthesis of beads at different gelation times does not impact either the adsorption capacity or the adsorption rate of the herbicide on the materials. These results indicate that diffusion depends solely on the interaction of the cationic herbicide with the clay encapsulated within the bead hydrogel.
RESUMO
Magnetically separable cross-linked carboxymethyl cellulose/gelatin/citrate-functionalized magnetite nanoparticles (Cit-Fe3O4) photo-nanocomposite beads (mCMC/Ge) were synthesized and applied in synergistic adsorption/photocatalytic degradation of ciprofloxacin (Cipro) pharmaceutical pollutant under sunlight irradiation. Various analytical techniques were employed to characterize their structural, textural, magnetic, thermal, and optical properties. The removal efficiency of mCMC/Ge beads was investigated considering different influencing parameters (pH, beads dosage, contact time, Cipro concentration, and temperature). Experimental data modeling indicated that the adsorption process followed pseudo-second-order kinetics and Langmuir isotherm models, with a maximum Langmuir adsorption capacity (qm) of 50 mg g-1 for mCMC/Ge, twice that of the matrix. Photocatalytic activity results showed prominent enhancement in Cipro removal using 1 g L-1 of mCMC/Ge at pH 7, as compared to Cit-Fe3O4, reaching 96 %, 85 %, and 63 % after 180 min of adsorption and 120 min of irradiation for initial pollutant concentrations of 10, 20, and 60 mg L-1, respectively. Furthermore, mCMC/Ge demonstrated efficient removal even in real water sample. The excellent removal performance of mCMC/Ge highlighted the synergy between polymeric matrix template and encapsulated Cit-Fe3O4 in improving Cipro adsorption and photodegradation. Furthermore, facile recyclability and sustained activity over five cycles identify mCMC/Ge photo-nanocomposite as a promising material for removing organic pollutants from contaminated waters.
RESUMO
Due to their worldwide distribution and persistence, mercury (Hg), and nano- and microplastics (NMPs) pose major threats to global ocean ecosystems. Hg and NMPs co-exist in the ocean and can interact with each other. However, information on the toxicity of this interaction to marine biota remains limited. Thus, we investigated the toxicological interaction between HgCl2 (Hg) and NMPs by studying the influence of different sizes of polystyrene beads (0.05-, 0.5-, and 6-µm) on Hg accumulation in the brackish water flea Diaphanosoma celebensis. The Hg adsorption capacity of NPs (0.05-µm) was higher than that of MPs (0.5- and 6-µm). Only the group co-exposed to both Hg and NPs showed increased Hg content in D. celebensis. Multixenobiotic resistance (MXR) activity and transcriptional modulation of transporter genes (ABCBs and ABCCs) were decreased by NMP exposure, particularly by NPs, suggesting MXR disruption by NPs. However, only the activity of multidrug resistance-associated proteins (MRPs; ABCCs) increased with Hg exposure and decreased upon NP+Hg co-exposure, indicating an important role of ABCC in Hg efflux. Furthermore, in vivo toxicity tests showed a synergistic toxic interaction between Hg and NPs on the reproduction of D. celebensis. Our findings suggest that NPs have the potential to enhance the toxicity of Hg, increasing Hg accumulation not only by serving Hg as a carrier but also by disrupting MXR.
RESUMO
Treatment and desalination of unconventional water are considered important alternatives to combat water scarcity in Tunisia. This study demonstrates a viable approach to the increasing possibility of the salinity reduction of industrial effluent through adsorption. In this work, a novel alginate complex was developed for reducing the salinity of the industrial wastewater to be reinjected and reused again within the industrial process and even in agriculture. The Calcium alginate/clinoptilolite beads (Ca-Alg/Clino beads) were prepared using sodium alginate (2%) solution and calcium chloride (4%) solution as the crosslinking agent with clinoptilolite. Batch experiments were carried out to test the adsorption capacity of the synthetised Ca-Alg/Clino beads. It was found that the salinity reduction process depends strongly on the pH, the adsorbent mass, the interaction time, and the initial salt concentration. The highest reduction efficiency and salinity reduction were achieved at pH (6-7). Batch adsorption experiments indicated that Ca-Alg/Clino beads allow an excellent salinity reduction of up to 96.83% for a dosage adsorbent/water of 2â g/L and a salinity of 6â g/L at a contact time of 20â min. The maximum adsorption capacity (qmax) was 30.1â mg/g. The optimal adsorption pH was 7. The adsorption isotherms data follow well the Langmuir model. The separation factor, RL = 0.74, indicates that the adsorption process is favourable. The kinetics data favour the pseudo-second-order model. The fabricated beads can be reused 5 times without any weight loss. This material has excellent efficiency when applied to real environmental water.