Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.174
Filtrar
1.
Int Microbiol ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352596

RESUMO

Meeting the demand for energy solely through fossil fuels has posed challenges. To mitigate the risk of energy shortage, woody bioenergy crops as a renewable energy feedstock have been the subject of many researchers. Also, mycorrhizas play an important role in crop productivity and inevitably affect the biomass yield of woody bioenergy crops. Based on a global synthesis of biomass yield of woody bioenergy crops, a framework for identifying and comparing bioenergy crop biomass in response to mycorrhizal type was developed. Our results found that the biomass yield of woody bioenergy crops in descending order was ectomycorrhizas (ECM) crops (10.2 ton DM ha-1 year-1) > arbuscular mycorrhizas (AM)+ECM crops (8.8 ton DM ha-1 year-1) > AM crops (8.0 ton DM ha-1 year-1). In addition, our analysis revealed that the climate had the strongest effect on biomass yield in AM and ECM crops, whereas geography exerted the most significant influence on biomass yield in AM+ECM crops. Furthermore, there were differences in the biomass yield response of different mycorrhizal and plant types to geographic (latitude and elevation) and climatic factors (mean annual temperature (MAT) and mean annual precipitation (MAP)). When cultivating AM crops, we can focus more on temperature conditions-warmer locations, whereas for ECM crops, selecting regions with higher precipitation levels is advantageous. This study revealed the relationship between mycorrhizae and bioenergy crops. It provides data and theoretical support to rationalize differences in different woody bioenergy crops and their different responses to global change and increased production of bioenergy crops.

2.
J Environ Manage ; 370: 122696, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39353242

RESUMO

Applying microbial electrolysis cells (MEC) is a biological approach to enhance the growth of high amounts of electroactive biofilm for extracellular electron transfer. The electroactive biofilm degrades the organics by oxidizing them at the anode and producing electrical energy. Addition of waste-activated sludge (WAS) with fat grease oil (FOG) produces an optimal reactor environment for microbial growth to enhance the exchange of electrons between cells via microbial electrolysis. The present work aimed to investigate the microbial approach to increase the extracellular electron transfer (EET) in microbial electrolysis cells. Results revealed that metabolites in electroactive microbes (EAM) grow viable cells that initiate high EET at anode sites. At optimum WAS with FOG addition, volatile fatty acid and current generation yield production was 2.94 ± 0.19 g/L and 17.91 ± 7.23 mA, accompanied by COD removal efficiency of 89.5 ± 14.4%, respectively. This study introduces a novel approach to anode biofilm engineering that significantly enhances extracellular electron transfer, offering a fresh perspective on bioenergy production. Our approach, which demonstrates that anodic biofilm enhances intercellular electron transfer, increases NADH-NAD ratio, and increases metabolite yield-fluxes, has the potential to revolutionize bio-electricity production. Results indicated that the electrolysis highlights MEC performance in power generation of 788 mV with 200 mL of anode volume of active viable cells by utilizing WAS with 11% FOG. The achievements of this study provide critical parameters for the anode biofilm engineering, demonstrating how growth cell volume, intercellular electron transfer, and increases in NADH-NAD ratio are evidence of an increase in the EET, compelling evidence for the resilience treatment and efficient current production. These findings are significant in advancing our understanding of bioenergy production.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39379652

RESUMO

Lignocellulosic biomass offers substantial potential as an ideal feedstock for dark fermentative hydrogen production due to its sustainability and cost-effectiveness. The current study examined the influence of furfural on fermentative hydrogen production using lignocellulosic hydrolysate in the presence of furfural. Synthetic lignocellulosic hydrolysate, consisting primarily of 76% xylose, 10% glucose, 9% arabinose, and a mixture of other sugars such as galactose and mannose (85% pentose sugars and 15% hexose sugars), was employed as the substrate. Various substrate concentrations ranging from 2 to 32 g/L were tested, along with furfural concentrations of 0, 1, and 2 g/L. The investigation aimed to assess the effects of initial substrate concentration, initial furfural concentration, furfural-to-biomass ratio (F/B), and furfural-to-substrate ratio (F/S) on biohydrogen production yields. The maximum specific substrate utilization rates at different substrate concentrations were effectively characterized using Haldane's substrate inhibition model. Among the tested concentrations, the 16 g/L emerged as the optimal substrate concentration. The initial furfural concentration was identified as the most significant parameter impacting biohydrogen production, with complete inhibition observed at a furfural concentration of 2 g/L. Higher F/S ratios at substrate concentrations ranging from 2 to 16 g/L resulted in reduced maximum specific hydrogen production rates (MSHPR) and hydrogen yields. Substrate inhibition was observed at 24 g/L and 32 g/L. Lactate was the predominant metabolite in all batches containing 2-g/L furfural, as well as in batches with 1-g/L furfural and substrate concentrations of 24 and 32 g/L. Furfural at a concentration of 1 g/L was not inhibitory in any of the batches. Overall, the mixed cultures in this study could efficiently produce hydrogen from lignocellulosic hydrolysates and degrade furfural, providing new insights into fermentative hydrogen-producing bacteria with furfural tolerance.

4.
New Phytol ; 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39370539

RESUMO

Roots are important in agricultural and natural systems for determining plant productivity and soil carbon inputs. Sometimes, the amount of roots in a sample is too much to fit into a single scanned image, so the sample is divided among several scans, and there is no standard method to aggregate the data. Here, we describe and validate two methods for standardizing measurements across multiple scans: image concatenation and statistical aggregation. We developed a Python script that identifies which images belong to the same sample and returns a single, larger concatenated image. These concatenated images and the original images were processed with RhizoVision Explorer, a free and open-source software. An R script was developed, which identifies rows of data belonging to the same sample and applies correct statistical methods to return a single data row for each sample. These two methods were compared using example images from switchgrass, poplar, and various tree and ericaceous shrub species from a northern peatland and the Arctic. Most root measurements were nearly identical between the two methods except median diameter, which cannot be accurately computed by statistical aggregation. We believe the availability of these methods will be useful to the root biology community.

5.
Sci Total Environ ; 954: 176687, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39366586

RESUMO

Optimal livestock production is a key contributor to the achievement of sustainable development goals. The management and disposal of livestock manure is one of the main issues facing the sector in terms of soil, water and air pollution. Proper and sustainable management of livestock manure also requires a systemic approach to the problem, considering it at different territorial levels. In order to identify existing strategies to support this issue, this review investigated the use of Geographic Information System (GIS) analysis as a support for livestock manure management, highlighting the several GIS methodologies used to provide insight into the complexity, power, and potential offered by these approaches in study areas with different economic, social, and environmental variables, and to provide insights for future research. The study was performed on 139 papers chosen from a literature screening. Three study themes were identified by co-word analysis: Bioenergy, Environmental pollution and Landscape management/development, with a percentage division of research articles of 38 %, 47 % and 15 %, respectively. This study provides a theoretical and prospective framework for the long-term expansion of the livestock sector, which is critical to promoting a balance between sector development and environmental impact. The use of spatial analysis, along with additional tools and methods such as modelling, multivariate and spatial statistics, life cycle assessment, machine learning and multi-criteria analysis, has proven to be widely applied.

6.
Bioresour Technol ; 413: 131535, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39326536

RESUMO

The recovery of furfural from hemicellulosic biowastes is important for developing sustainable and renewable energy alternatives to fossil fuels. However, current methods are inefficient and environmentally questionable. To address this issue, this study introduces neoteric hydrophobic solvents, specifically deep eutectic solvents (DESs) and ionic liquids (ILs). Of the 32 solvents tested, thymol:decanoic acid 1:1 (Thy:DecA) DES and trihexyltetradecyl phosphonium bis(trifluoro methylsulfonyl) imide [P14,6,6,6][NTf2] IL were the most effective, with extraction efficiencies of 94.1% and 97.1%, respectively. These solvents outperformed the reference solvent toluene, with an efficiency of 81.2%, while also showing favorable characteristics in multiple investigated criterions. For the first time, excellent performance stability was demonstrated under various operational conditions and reusability over multiple extraction and regeneration cycles. Furthermore, to provide insights into the molecular mechanisms of extraction, computational quantum chemistry modeling was employed, which showed a strong agreement with the experimental results. The development of these new neoteric solvents for furfural recovery from biowaste offers a highly effective, sustainable, and eco-friendly alternative to traditional solvents, representing a significant breakthrough in the field of renewable bioenergy production and sustainable materials recovery.

7.
Artigo em Inglês | MEDLINE | ID: mdl-39331296

RESUMO

Investigation of Lantana camara biomass for potential bioenergy generation integrates invasive species (IS) management with the unabated demand for bio-energy. In the present investigation, L. camara was used to produce bio-oil by thermochemical conversion (pyrolysis). The resultant product evinced energy yield of 62.58% with 64.95% of elemental carbon (C) content and endorsed the suitability of L. camara bio-oil for biofuel applications and value addition. Thermogravimetric (TG-DTG) analysis revealed a short thermal degradation profile, whereas spectroscopic analyses detected a host of organic compounds such as esters, phenols, ketones, aldehydes, aliphatics, and aromatics. The economic analysis of L. camara biomass conversion technology carried out in this study proved to be commercially competitive and viable versus petroleum refining. Antimicrobial and antioxidant assays with bio-oil evinced highest zone of inhibition (ZOI) against Candida albicans (31.02 mm), and displayed strong antioxidant property (DPPH IC50 value 233.72 ± 0.2 µg/ml). The bio-oil exhibited rheological characteristics of shear thinning and pseudoplastic fluid, particularly at low and intermediate shear rates. The present study highlights the multifaceted advantages of utilizing L. camara biomass, which include environmental remediation via waste management, bioenergy generation, and the feasibility of generating value-added products.

8.
Heliyon ; 10(17): e37180, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39296037

RESUMO

This study examines biomass energy policies in the EU, US, and Japan, noting high implementation rates in Poland (86.5 %) and Finland (90.6 %). Germany's biogas utilization is particularly noteworthy, accounting for 29.6 %. The paper summarizes China's national and provincial waste biomass management and energization policies, encompassing agriculture, biomass energy, and environmental governance aspects. Analyzing China's biomass energy industry reveals challenges requiring a comprehensive development plan based on waste biomass resources and environmental zoning. Proposed solutions include establishing ecological energy agriculture demonstration zones, optimizing policies for environmental benefits, encouraging technological innovation, establishing a trade association, improving standards, setting up a waste biomass fund, introducing green certificates and quotas, and integrating waste biomass into the national carbon trading system.

9.
Heliyon ; 10(17): e37105, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39296224

RESUMO

The management of solid waste poses a worldwide obstacle in the pursuit of a sustainable society. This issue has intensified with the increase in waste production caused by rapid population expansion, industrialization, and urbanization. The continuously growing volume of municipal solid waste, particularly the substantial volume of organic waste, along with improper disposal practices, results in the release of greenhouse gases and other harmful airborne substances which simultaneously causes health risks and socioeconomic concerns. This article examines various waste-to-energy (energy production in the form of heat and electricity) concepts as well as waste-to-materials (various value-added materials including biofuel, biochemical, char, bio-oil, soil fertilizer, etc.) methods of converting municipal solid waste into environmentally friendly fuels, which appear to be economically feasible and attractive. It starts with a thorough analysis of the characteristics of municipal solid waste followed by the generation procedure. The study provides an overview of different thermochemical conversion methods including incineration, pyrolysis, co-pyrolysis, liquefaction, hydrothermal carbonization, gasification, combustion for transformation of municipal solid waste, and their recent advancement. The review comprehensively discussed the pros and cons of each method highlighting their strength, weakness, opportunities, and threats to transforming MSW. The current state of municipal solid waste management, including effective dumping and deviation, is comprehensively assessed, along with the prospects and challenges involved. Energy justice concepts and fuzzy logic tool is used to address the selection criteria for choosing the best waste treatment techniques. Moreover, several recommendations are offered to enhance the existing solid waste management system. This review could assist scholars, researchers, authorities, and stakeholders in making informed decisions regarding MSW management.

10.
J Environ Manage ; 369: 122252, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39222584

RESUMO

Microbial Fuel Cells (MFCs) are a sophisticated and advanced system that uses exoelectrogenic microorganisms to generate bioenergy. Predicting performance outcomes under experimental settings is challenging due to the intricate interactions that occur in mixed-species bioelectrochemical reactors like MFCs. One of the key factors that limit the MFC's performance is the presence of a microbial consortium. Traditionally, multiple microbial consortia are implemented in MFCs to determine the best consortium. This approach is laborious, inefficient, and wasteful of time and resources. The increase in the availability of soft computational techniques has allowed for the development of alternative strategies like artificial intelligence (AI) despite the fact that a direct correlation between microbial strain, microbial consortium, and MFC performance has yet to be established. In this work, a novel generic AI model based on subspace k-Nearest Neighbour (SS-kNN) is developed to identify and forecast the best microbial consortium from the constituent microbes. The SS-kNN model is trained with thirty-five different microbial consortia sharing different effluent properties. Chemical oxygen demand (COD) reduction, voltage generation, exopolysaccharide (EPS) production, and standard deviation (SD) of voltage generation are used as input features to train the SS-kNN model. The proposed SS-kNN model offers an accuracy of 100% during training period and 85.71% when it is tested with the data obtained from existing literature. The implementation of selected consortium (as predicted by SS-kNN model) improves the COD reduction capability of MFC by 15.67% than that of its constituent microbes which is experimentally verified. In addition, to prevent the effects of climate change and mitigate water pollution, the implementation of MFC technology ensures clean and green electricity. Consequently, achieving sustainable development goals (SDG) 6, 7, and 13.


Assuntos
Fontes de Energia Bioelétrica , Consórcios Microbianos , Inteligência Artificial , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos/microbiologia
11.
J Environ Manage ; 369: 122353, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39222590

RESUMO

Several previous studies concerned of microbial fuel cells integrated into constructed wetlands, nevertheless, their application as a convenient treatment for wastewater is still developing. In this experimental investigation, five CW-MFC systems were similarly designed, setup, and operated in a batch mode for two subsequent cycles. Each cycle lasted for 10 days to evaluate the performance of CW-MFC system for the remediation of real leather tannery wastewater (LTW). Four CW-MFCs were planted, each with different type of vegetation including Conocarpus, Arundo donax, Canna lily, and Cyperus papyrus in CW1-MFC, CW2-MFC, CW3-MFC, and CW4-MFC, respectively. The fifth CW5-MFC was maintained unplanted and considered as the control system. The performance of each CW-MFCs systems was evaluated mainly based on the removal of organic content (COD), total dissolved solid (TDS) elimination, and power generation. The results demonstrated that the four types of plants maintained healthy and no sign of wilting was observed during the 20 days of monitoring. For the first cycle of batch operation, maximum removal efficiencies of COD were 99.8%, 99.5%, 99.7%, 99.6% and 99.5% with power outputs of 10,502.8, 10,254.6, 9956.4, 10,029.6, and 9888.0 mW/m3, while, maximum TDS elimination were 46.7%, 39.7%, 60.8%, 55.5%, and 13.8% observed in CW1-MFC, CW2-MFC, CW3-MFC, CW4-MFC, and CW5-MFC, respectively. Very comparable results were observed in the second operation cycle. Results of phototoxicity test indicated that the germination of Hordeum vulgare and Triticum aestivum were 100% watered with treated effluent compared to 90% accomplished with tap water as the control solution for both types of seeds.


Assuntos
Fontes de Energia Bioelétrica , Curtume , Eliminação de Resíduos Líquidos , Águas Residuárias , Áreas Alagadas , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental , Poluentes Químicos da Água/metabolismo
12.
J Environ Manage ; 369: 122376, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39241597

RESUMO

This study evaluated anaerobic co-digestion as a promising strategy for managing organic-contaminated waste streams generated from nanomaterial synthesis. The novel approach enabled precise quantification of organic content, efficient biomethane recovery, and a sustainable redirection of ethanol-contaminated graphene oxide (GO) dispersions. The proposed method achieved high accuracy (93-97%) in detecting organic content in ethanol-contaminated GO dispersions, significantly outperforming the conventional total chemical oxygen demand (tCOD) method, which only reached 75-77% accuracy. Additionally, co-digestion of trace ethanol content in GO dispersions with municipal sludge substantially enhanced methane production kinetics, resulting in a 17.6% increase in specific methane yield (per tCOD added) and a 284% increase in total methane production. Parallel anaerobic digestion (AD) experiments using conductive GO nanosheets (without ethanol) revealed the synergistic impact of GO nanosheets and trace ethanol content as a key mechanism driving these improvements. Furthermore, the study provided evidence of the biological reduction of GO and its magnetite-decorated counterpart, magnetic GO, as indicated by a shift in the ID/IG ratio from 1.06 to 0.77 and a G-band shift from 1606 cm⁻1-1565 cm⁻1. This reduction decreased the stability of nanosheets in the AD liquid phase, promoting their partitioning into the solid phase. This process facilitates the adsorption of the GO phase within the digestate and allows for the slow release of micronutrients when used as soil amendments.


Assuntos
Grafite , Esgotos , Grafite/química , Anaerobiose , Metano , Análise da Demanda Biológica de Oxigênio , Óxidos/química
13.
Heliyon ; 10(18): e37539, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39309834

RESUMO

Hydroponic effluent (HE), enriched with inorganic nutrients, presents a viable, low-cost cultivation medium for microalgal biomass production and subsequent resource recovery. However, downstream processing, particularly biomass harvesting, remains a critical challenge for microalgal biorefineries. Therefore, the present study explored the potential of microalgal-fungal pellets (MAFP) in HE recycling for the production of biochemical-rich biomass. The optimized fungi-to-microalgae ratio (F:A) of 1:3 resulted in 100 % microalgal pelletization within 6 h. Surface characteristics suggested that metabolically active fungi with opposite charges facilitate microalgal pelletization. Further, MAFP exhibited a packed porous structure that was resilient to shear forces and had a high capacity for nutrient uptake. MAFP cultivation in HE demonstrated complete removal of ammonia-nitrogen (NH3-N), phosphate (PO4³â»), and nitrate-nitrogen (NO3⁻-N) within 7-9 days. The produced biomass was rich in biomolecules, including lipids (18.36 ± 0.12 % TS), protein (52.06 ± 2.1 % TS), and carbohydrates (28.95 ± 0.05 % TS). Besides, the high methane potential of MAFP (SMP ≈ 502.74 ± 19.1 mL CH4 g-1 VS, and TMP ≈ 817.68 ± 12.5 mL CH4 g-1 VS) indicated its suitability for biogas production. In essence, MAFP offers efficient HE recycling and biochemically rich biomass production, advancing towards a green and circular bioeconomy.

14.
J Biol Chem ; : 107793, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39305962

RESUMO

Ubiquitin-Specific Peptidases (USPs) are the main members of deubiquitinases (DUBs) that catalyze removing ubiquitin chains from target proteins, thereby modulating their half-life and function. Enzymatic activity of USP21 regulates protein degradation which is critical for maintaining cell homeostasis. USP21 determines the stability of oncogenic proteins and therefore is implicated in carcinogenesis. In this study, we investigated the effect of USP21 deletion on cancer cell metabolism. Transcriptomic and proteomic analysis of USP21 knockout HAP-1 cells revealed that endogenous USP21 is critical for the expression of genes and proteins involved in mitochondrial function. Additionally, we have found that deletion of USP21 reduced STAT3 activation and STAT3-dependent gene and protein expression in cancer cells. Genetic deletion of USP21 impaired mitochondrial respiration and disturbed ATP production. This resulted in cellular consequences such as inhibition of cell proliferation and migration. Presented results provide new insights into the biology of USP21, suggesting novel mechanisms for controlling STAT3 activity and mitochondrial function in tumor cells. Taken together, our findings indicate that targeting USP21 dysregulates the energy status of cancer cells offering new perspectives for anti-cancer therapy.

15.
Adv Sci (Weinh) ; : e2406287, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258577

RESUMO

Coordinating the immune response and bioenergy metabolism in bone defect environments is essential for promoting bone regeneration. Mitochondria are important organelles that control internal balance and metabolism. Repairing dysfunctional mitochondria has been proposed as a therapeutic approach for disease intervention. Here, an engineered hierarchical hydrogel with immune responsiveness can adapt to the bone regeneration environment and mediate the targeted mitochondria transfer between cells. The continuous supply of mitochondria by macrophages can restore the mitochondrial bioenergy of bone marrow mesenchymal stem cells (BMSC). Fundamentally solving the problem of insufficient energy support of BMSCs caused by local inflammation during bone repair and regeneration. This discovery provides a new therapeutic strategy for promoting bone regeneration and repair, which has research value and practical application prospects in the treatment of various diseases caused by mitochondrial dysfunction.

16.
Sci Rep ; 14(1): 20703, 2024 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237637

RESUMO

This work uses response surface methodology (RSM) to study the co-cultivation of symbiotic indigenous wastewater microalgae and bacteria under different conditions (inoculum ratio of bacteria to microalgae, CO2, light intensity, and harvest time) for optimal bioenergy feedstock production. The findings of this study demonstrate that the symbiotic microalgae-bacteria culture not only increases total microalgal biomass and lipid productivity, but also enlarges microalgal cell size and stimulates lipid accumulation. Meanwhile, inoculum ratio of bacteria to microalgae, light intensity, CO2, and harvest time significantly affect biomass and lipid productivity. CO2 concentration and harvest time have significant interactive effect on lipid productivity. The response of microalgal biomass and lipid productivity varies significantly from 2.1 × 105 to 1.9 × 107 cells/mL and 2.8 × 102 to 3.7 × 1012 Total Fluorescent Units/mL respectively. Conditions for optimum biomass and oil accumulation are 100% of inoculation ratio (bacteria/microalgae), 3.6% of CO2 (v/v), 205.8 µmol/m2/s of light intensity, and 10.6 days of harvest time. This work provides a systematic methodology with RSM to explore the benefits of symbiotic microalgae-bacteria culture, and to optimize various cultivation parameters within complex wastewater environments for practical applications of integrated wastewater-microalgae systems for cost-efficient bioenergy production.


Assuntos
Bactérias , Biocombustíveis , Biomassa , Dióxido de Carbono , Microalgas , Águas Residuárias , Águas Residuárias/microbiologia , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Biocombustíveis/microbiologia , Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , Técnicas de Cocultura/métodos , Simbiose , Lipídeos/biossíntese , Lipídeos/análise
17.
Int J Biol Macromol ; 279(Pt 2): 135169, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39218172

RESUMO

Replacing fossil resource with biomass is one of the promising approaches to reduce our carbon footprint. Lignin is one of the three major components of lignocellulosic biomass, accounting for 10-35 wt% of dried weight of the biomass. Hydrogenolytic depolymerization of lignin is attracting increasing attention because of its capacity of utilizing lignin in its uncondensed form and compatibility with the biomass fractionation processes. Lignin is a natural aromatic polymer composed of a variety of monolignols associated with a series of lignin linkage motifs. Hydrogenolysis cleaves various ether bonds in lignin and releases phenolic monomers which can be further upgraded into valuable products, i.e., drugs, terephthalic acid, phenol. This review provides an overview of the state-of-the-art advances of the reagent (lignin), products (hydrol lignin), mass balance, and mechanism of the lignin hydrogenolysis reaction. The chemical structure of lignin is reviewed associated with the free radical coupling of monolignols and the chemical reactions of lignin upon isolation processes. The reactions of lignin linkages upon hydrogenolysis are discussed. The components of hydrol lignin and the selectivity production of phenolic monomers are reviewed. Future challenges on hydrogenolysis of lignin are proposed. This article provides an overview of lignin hydrogenolysis reaction which shows light on the generation of optimized lignin ready for hydrogenolytic depolymerization.

18.
J Biotechnol ; 395: 110-121, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39343056

RESUMO

The rapid depletion of conventional fuel resources and rising energy demand has accelerated the search for alternative energy sources. Further, the expanding need to use bioenergy crops for sustainable fuel production has enhanced the competition for agricultural land, raising the "food vs. fuel" competition. Considering this, producing bioenergy crops on marginal land has a great perspective for achieving sustainable bioenergy production and mitigating the negative impacts of climate change. C4 crops are dual-purpose crops with better efficiency to fix atmospheric CO2 and convert solar energy into lignocellulosic biomass. Of these, millets have gained worldwide attention due to their climate resilience and nutraceutical properties. Due to close synteny with contemporary C4 bioenergy crops, millets are being considered a model crop for studying diverse agronomically important traits associated with biomass production. Millets can be cultivated on marginal land with minimum fertilizer inputs and maximum biomass production. In this regard, advanced molecular approaches, including marker-assisted breeding, multi-omics approaches, and gene-editing technologies, can be employed to genetically engineer these crops for enhanced biofuel production efficiency. The current study aims to provide an overview of millets as a sustainable bioenergy source and underlines the significance of millets as a C4 model to elucidate the genes and pathways involved in lignocellulosic biomass production using advanced molecular biology approaches.

19.
Bioresour Technol ; 413: 131543, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39341427

RESUMO

This study explores why large-scale biogas plants are not widely installed in India despite the wealth of biomass resources. The methodology includes an extensive literature review and surveyed biogas experts in different sectors, such as private, public, and academic, to identify and rank key obstacles using the Analytical Hierarchy Process (AHP) and Fuzzy-AHP techniques. Overall, 27 barrier elements were identified across six different categories. As perceived by different experts, except for financial barriers, notable differences were found in the relative importance of other barrier categories. Among the different barriers, competition from other fuels, subsidies, lack of financing mechanisms, and feedstock variation are the most influential. To overcome these challenges and successfully promote the growth of the biogas sector in India, a combination of financial strategies, collaborative efforts, standardized procedures, and comprehensive resource mapping were proposed. These measures can inform effective policy development and contribute to achieving numerous Sustainable Development Goals.

20.
Molecules ; 29(18)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39339383

RESUMO

Ceiba aesculifolia is an important species in Mexico that generates significant amounts of biomass waste during its exploitation, which can be utilized to produce energy. This study presents the characterization of this waste based on chemical (proximal and elemental) and thermal analyses (TGA-DTG) at different heating rates (ß = 10-30 °C/min (283-303 K/min)) in the presence of nitrogen and in a temperature range of 25-900 °C. Kinetic parameters were calculated and analyzed as well. Activation energy (Ea) and the pre-exponential factor (A) were determined using the Friedman (132.03 kJ/mol, 8.11E + 10 s -1), FWO (121.65 kJ/mol, 4.30E + 09), KAS (118.14 kJ/mol, 2.41E + 09), and Kissinger (155.85 kJ/mol, 3.47E + 11) kinetic methods. Variation in the reaction order, n (0.3937-0.6141), was obtained by Avrami's theory. We also calculated the thermodynamic parameters (ΔH, ΔG, ΔS) for each kinetic method applied. The results for Ea, A, n, ΔH, ΔG, and ΔS show that this biomass waste is apt for use in pyrolysis. Moreover, the moisture (<10%), ash (<2%), volatile material (>80%), and HHV (>19%) contents of C. aesculifolia allowed us to predict acceptable performance in generating energy and fuels. Finally, infrared spectroscopy analysis (FT-IR) allowed us to identify important functional groups, including one that belongs to the family of the aliphatic hydrocarbons.


Assuntos
Pirólise , Termodinâmica , Cinética , Biomassa , Biocombustíveis/análise , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...