Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Rep Pract Oncol Radiother ; 27(2): 226-234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299382

RESUMO

Background: The presence of heterogeneity within the radiation field increases the challenges of small field dosimetry. In this study, the performance of MAGIC polymer gel was evaluated in the dosimetry of small fields beyond bone heterogeneity. Materials and methods: Circular field sizes of 5, 10, 20 and 30 mm were used and Polytetrafluoroethylene with density of 2.2 g/cm3 was used as the bone equivalent material. The PDD curves, beam profiles, and penumbra widths were measured using MAGIC polymer gel, EBT2 film, and Monte Carlo simulation. Results: The maximum differences between MAGIC and EBT2 are 6.1, 4.7, 2.4, and 2.2 for PDD curves at 5, 10, 20, and 30 mm circular fields, respectively. The dose differences and distance to agreement between MAGIC and MC were within 1.89%/0.46 mm, 1.66%/0.43 mm, 1.28%/0.77 mm, and 1.31%/0.81 mm for beam profile values behind bone heterogeneity at 5, 10, 20, and 30 mm field sizes, respectively. Conclusion: The results presented that the MAGIC polymer gel dosimeter is a proper instrument for dosimetry beyond high density heterogeneity.

2.
J Funct Biomater ; 11(4)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271801

RESUMO

Bone is a nanocomposite material where the hard inorganic (hydroxyapatite crystallites) and organic (collagen fibrils) components are hierarchically arranged in the nanometer scale. Bone quality is dependent on the spatial distributions in the shape, size and composition of bone constituents (mineral, collagen and water). Bone hardness is an important property of bone, which includes both elastic and plastic deformation. In this study, a microhardness test was performed on a deer bone samples. The deer tibia shaft (diaphysis) was divided into several cross-sections of equal thickness; samples were prepared in untreated, boiled water treatment (100 °C for 30 min) and sodium hypochlorite (NaOCl) treatment conditions. Microhardness tests were performed on various regions of the tibial diaphysis to study the heterogeneous characteristics of bone microhardness and highlight the role of the organic matrix in bone hardness. The results indicated that boiled water treatment has a strong negative correlation with bone hardness. The untreated bone was significantly (+20%) harder than the boiled-water-treated bone. In general, the hardness values near the periosteal surface was significantly (23 to 45%) higher than the ones near the endosteal surface. Samples treated with NaOCl showed a significant reduction in hardness.

3.
J Mech Behav Biomed Mater ; 93: 81-92, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30776678

RESUMO

This paper investigates the elastic properties of bone tissue in the adult mouse femur through Atomic Force Microscopy (AFM) indentation with the goal of understanding its microstructure and underlying mechanics at the nano length scale. Both trabecular and cortical bone types are studied. In particular, we examined the elasticity of cortical bone and individual trabeculae in the longitudinal and transverse directions of the samples. For cortical bone, the elastic modulus in the longitudinal direction was found to be 10-15% higher than that in the transverse direction; for trabecular bone, this difference was 42%. For the trabeculae, this value was found to be in a lower range (0.92 ± 0.22 GPa). As per the transverse elastic modulus, an average of 1.58 ± 0.36 GPa was measured for cortical bone, and 0.55 ± 0.21 GPa for trabecular bone. The anisotropy ratio was within the range of 1.2-1.5 for cortical bone and 1.7-2 for trabecular bone. While the elastic modulus of cortical bone varied along the length of the femur with up to 30% variation, no significant differences were observed within each transverse section. The effect of indentation frequency (1-500 Hz) on the longitudinal elastic moduli was also investigated for cortical and trabecular bone, with results showing a correlation between indentation frequency and elastic modulus. Statement of significance: This study examines the adult mouse femur with a twofold aim: to investigate the anisotropy and inhomogeneity of cortical and trabecular bone tissues and to elucidate their elastic behavior at the nanometer length scale. The elastic moduli of cortical bone and individual trabecula are measured in the longitudinal and transverse cross-sections via AFM indentation at selected locations and in specific directions of the adult mouse femur. The results provide insights into the relationship between mechanical properties and structural morphology of cortical and trabecular bone tissue.


Assuntos
Osso Esponjoso , Osso Cortical , Elasticidade , Fêmur , Teste de Materiais , Microscopia de Força Atômica , Animais , Anisotropia , Masculino , Camundongos
4.
Bone Rep ; 8: 46-56, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29955622

RESUMO

Osteoporosis is one of the most important but often neglected bone disease associated with aging and postmenopausal condition leading to bone loss and fragility. Probiotics have been associated with various immunomodulatory properties and have the potential to ameliorate several inflammatory conditions including osteoporosis. Lactobacillus acidophilus (LA) was selected as probiotic of choice in our present study due its common availability and established immunomodulatory properties. In the present study, we report for the first time that administration of LA in ovariectomized (ovx) mice enhances both trabecular and cortical bone microarchitecture along with increasing the mineral density and heterogeneity of bones. This effect of LA administration is due to its immunomodulatory effect on host immune system. LA thus skews the Treg-Th17 cell balance by inhibiting osteoclastogenic Th17 cells and promoting anti-osteoclastogenic Treg cells in ovx mice. LA administration also suppressed expression of osteoclastogenic factors (IL-6, IL-17, TNF-α and RANKL) and increased expression of anti-osteoclastogenic factors (IL-10, IFN-γ). Taken together the present study for the first time clearly demonstrates the therapeutic potential of LA as an osteo-protective agent in enhancing bone health (via tweaking Treg-Th17 cell balance) in postmenopausal osteoporosis.

5.
Environ Pollut ; 238: 792-802, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29626823

RESUMO

Osteoporosis or enhanced bone loss is one of the most commonly occurring bone conditions in the world, responsible for higher incidence of fractures leading to increased morbidity and mortality in adults. Bone loss is affected by various environmental factors including diet, age, drugs, toxins etc. Microcystins are toxins produced by cyanobacteria with microcystin-LR being the most abundantly found around the world effecting both human and animal health. The present study demonstrates that MC-LR treatment induces bone loss and impairs both trabecular and cortical bone microarchitecture along with decreasing the mineral density and heterogeneity of bones in mice. This effect of MC-LR was found due to its immunomodulatory effects on the host immune system, wherein MC-LR skews both T cell (CD4+ and CD8+ T cells) and B cell populations in various lymphoid tissues. MC-LR further was found to significantly enhance the levels of osteoclastogenic cytokines (IL-6, IL-17 and TNF-α) along with simultaneously decreasing the levels of anti-osteoclastogenic cytokines (IL-10 and IFN-γ). Taken together, our study for the first time establishes a direct link between MC-LR intake and enhanced bone loss thereby giving a strong impetus to the naïve field of "osteo-toxicology", to delineate the effects of various toxins (including cyanotoxins) on bone health.


Assuntos
Osso e Ossos/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Microcistinas/toxicidade , Animais , Arginina , Cianobactérias , Leucina , Toxinas Marinhas , Camundongos , Minerais , Testes de Toxicidade , Fator de Necrose Tumoral alfa
6.
Rep Pract Oncol Radiother ; 21(1): 63-70, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26900360

RESUMO

AIM: Using flattened and unflattened photon beams, this study investigated the spectral variations of surface photon energy and energy fluence in the bone heterogeneity and beam obliquity. BACKGROUND: Surface dose enhancement is a dosimetric concern when using unflattened photon beam in radiotherapy. It is because the unflattened photon beam contains more low-energy photons which are removed by the flattening filter of the flattened photon beam. MATERIALS AND METHODS: We used a water and bone heterogeneity phantom to study the distributions of energy, energy fluence and mean energy of the 6 MV flattened and unflattened photon beams (field size = 10 cm × 10 cm) produced by a Varian TrueBEAM linear accelerator. These elements were calculated at the phantom surfaces using Monte Carlo simulations. The photon energy and energy fluence calculations were repeated with the beam angle turned from 0° to 15°, 30° and 45° in the water and bone phantom. RESULTS: Spectral results at the phantom surfaces showed that the unflattened photon beams contained more photons concentrated mainly in the low-energy range (0-2 MeV) than the flattened beams associated with a flattening filter. With a bone layer of 1 cm under the phantom surface and within the build-up region of the 6 MV photon beam, it is found that both the flattened and unflattened beams had slightly less photons in the energy range <0.4 MeV compared to the water phantom. This shows that the presence of the bone decreased the low-energy photon backscatters to the phantom surface. When both the flattened and unflattened photon beams were rotated from 0° to 45°, the number of photon and mean photon energy increased. This indicates that both photon beams became more hardened or penetrate when the beam angle increased. In the presence of bone, the mean energies of both photon beams increased. This is due to the absorption of low-energy photons by the bone, resulting in more beam hardening. CONCLUSIONS: This study explores the spectral relationships of surface photon energy and energy fluence with bone heterogeneity and beam obliquity for the flattened and unflattened photon beams. The photon spectral information is important in studies on the patient's surface dose enhancement using unflattened photon beams in radiotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...