Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(11): 13335-13343, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35263078

RESUMO

Polyamide RO membranes are widely used for seawater desalination owing to their high salt rejection and water permeability; however, improved selectivity-permeability trade-off is still desired. "Molecular plugs," small molecules immobilized within the polyamide structure, offer an attractive approach; however, their overall effect on polyamide physicochemical properties poses many questions. Here, we analyze the effect of decylamine, a promising plug, and a few charged and uncharged mimics on polyamide films using several in situ techniques. Electrochemical impedance spectroscopy (EIS) reveals a complex pH-dependent response, whereby, upon exposure to amine solution, conductivity first rapidly drops; however, under alkaline conditions, when amine is uncharged, the trend subsequently slowly reverses, and conductivity increases. This slow reversal was observed for noncharged alcohols of similar size as well, but not for larger surfactant molecules. The reversal was assigned to the uptake of plug molecules within polyamide, as opposed to the fast initial drop assigned to surface adsorption. EIS and quartz-crystal microbalance (QCM) results showed that exposure to decylamine under alkaline conditions ultimately led to an irreversible decrease in conductivity, that is, stronger ion rejection, remaining after re-exposure of polyamide to amine-free buffer. This suggests that plug uptake within polyamide resulted in polymer stress, indeed observed in surface stress measurements, and subsequent relaxation. The results indicate that the moderate size of decylamine and conditions minimizing its charge were optimal for irreversible change; however, charge interactions helped maximize its binding within polymer and induce the desired sustained change in selectivity. The results have many potential implications for improving current membrane desalination technology and increasing inherent membrane selectivity toward hard-to-remove species.

2.
J Hazard Mater ; 351: 224-231, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29550556

RESUMO

The volatilization of boron in thermal desalination processes, namely multi-stage flash (MSF) and air-gap membrane distillation (AGMD) was investigated for the first time. This phenomenon was observed at feed temperatures above 55 °C in both studied processes. In simulated MSF process with two feeds, model boric acid and Red Sea water, boron concentration in distillate increased with feed temperature increase from 55 °C to 104 °C because of the increase in boric acid vapor pressure. Salinity and pH were the main factors controlling boron evaporation. The achieved boron concentrations in simulated MSF process were consistent with those measured in distillate samples collected from commercial MSF plants. The AGMD process also revealed a strong influence of operating temperature on boron removal. However, unlike MSF process, the boron concentration in AGMD permeate decreased with the feed temperature increase from 55 °C to 80 °C due probably to increase in vapor production and corresponding permeate dilution. When AGMD was operated in concentrating mode at a constant feed temperature of 80 °C, permeate boron concentration increased with process time due to concentration polarization and membrane fouling. A 10% flux decline observed after 21 h was attributed to CaCO3 scaling on the membrane surface.

3.
Waste Manag ; 76: 566-574, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29551229

RESUMO

Recovery of high quality water from municipal landfill leachate was studied by three-stage disc tube reverse osmosis optimized in pilot-scale. Following UF-membrane-assisted activated sludge plant, overall 46.5 tons of leachate were post-treated in real environment and analyzed for conventional contaminants and hazardous compounds (e.g. heavy metals, boron, selenium) throughout operation of membrane system. Operating pressure ranged from 21 to 76 bar, while permeate flux varied in the range 7.1-32.5 L m-2 h-1. Rejection factors of specific ions were related to the pressure and global removals were assessed for each stage (e.g. E%COD = 92.4-99.2%, E%NH4 = 46.2-95.8%, E%NOx = 84.8-97.9%; E%TDS = 88-95.5%). Boron removal was assessed in the range 34-48%, so as to require the third stage to reach standard for discharge or reuse. Two stages were sufficient to reach water recovery higher than 91%. Long-term operation and mathematical modeling demonstrated how the Δπ/ΔP ratio can support the decisions for membrane cleaning and predictive maintenance: permeability decline was associated to the ratio increase from 0.72 to 0.73 to 1.13-1.21.


Assuntos
Osmose , Poluentes Químicos da Água , Purificação da Água , Filtração , Instalações de Eliminação de Resíduos , Água
4.
Water Res ; 118: 20-25, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28412549

RESUMO

This study provides a novel method to enhance boron removal in a forward osmosis (FO) process. It utilizes the reverse solute diffusion (RSD) of ions from alkaline draw solutions (DSs) and the concentration polarization of the hydroxyl ions to create a highly alkaline environment near the membrane active surface. The results show that boron rejection can be significantly enhanced by increasing the pH of NaCl DS to 12.5 in the active-layer-facing-feed-solution (AL-FS) orientation. The effect of RSD enhanced boron rejection was further promoted in the presence of concentration polarization (e.g., in the active-layer-facing-draw-solution (AL-DS) orientation). The current study opens a new dimension for controlling contaminant removal by FO using tailored DS chemistry, where the RSD-induced localized water chemistry change is taken advantage in contrast to the conventional method of chemical dosing to the bulk feed water.


Assuntos
Boro/química , Purificação da Água , Membranas Artificiais , Osmose , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...