Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 781
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39093001

RESUMO

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Excessive stimulation of the IP3 signalling pathway has been linked to AF through abnormal calcium handling. However, little is known about the mechanisms involved in this process. We expressed the fluorescence resonance energy transfer (FRET) based cytosolic cAMP sensor EPAC-SH187 in neonatal rat atrial myocytes (NRAMs) and neonatal rat ventricular myocytes (NRVMs). In NRAMs, addition of the α-1 agonist phenylephrine (PE, 3 µM) resulted in a FRET change 21.20 ± 7.43 % and addition of membrane permeant IP3 derivative, 2,3,6-tri-O-Butyryl-myo-IP3(1,4,5)-hexakis(acetoxymethyl)ester (IP3-AM, 20 µM) resulted in a peak of 20.31 ± 6.74 %. These FRET changes imply an increase in cAMP. Prior application of IP3 receptor (IP3R) inhibitors 2-Aminoethyl diphenylborinate (2-APB, 2.5µM) or Xestospongin-C (0.3 µM) significantly inhibited the change in FRET in NRAMs in response to PE. Xestospongin-C (0.3 µM) significantly inhibited the change in FRET in NRAMs in response to IP3-AM. The FRET change in response to PE in NRVMs were not inhibited by 2-APB or Xestospongin-C. Finally, the localisation of cAMP signals was tested by expressing the FRET-based cAMP sensor, AKAP79-CUTie, which targets the intracellular surface of the plasmalemma. We found in NRAMs that PE led to FRET change corresponding to an increase in cAMP that was inhibited by 2-APB and Xestospongin C. These data support further investigation of the pro-arrhythmic nature and components of IP3 induced cAMP signalling to identify potential pharmacological targets.

2.
Front Physiol ; 15: 1426783, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974517

RESUMO

Lysosomal Ca2+ signaling is emerging as a crucial regulator of endothelial Ca2+ dynamics. Ca2+ release from the acidic vesicles in response to extracellular stimulation is usually promoted via Two Pore Channels (TPCs) and is amplified by endoplasmic reticulum (ER)-embedded inositol-1,3,4-trisphosphate (InsP3) receptors and ryanodine receptors. Emerging evidence suggests that sub-cellular Ca2+ signals in vascular endothelial cells can also be generated by the Transient Receptor Potential Mucolipin 1 channel (TRPML1) channel, which controls vesicle trafficking, autophagy and gene expression. Herein, we adopted a multidisciplinary approach, including live cell imaging, pharmacological manipulation, and gene targeting, revealing that TRPML1 protein is expressed and triggers global Ca2+ signals in the human brain microvascular endothelial cell line, hCMEC/D3. The direct stimulation of TRPML1 with both the synthetic agonist, ML-SA1, and the endogenous ligand phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) induced a significant increase in [Ca2+]i, that was reduced by pharmacological blockade and genetic silencing of TRPML1. In addition, TRPML1-mediated lysosomal Ca2+ release was sustained both by lysosomal Ca2+ release and ER Ca2+- release through inositol-1,4,5-trisphophate receptors and store-operated Ca2+ entry. Notably, interfering with TRPML1-mediated lysosomal Ca2+ mobilization led to a decrease in the free ER Ca2+ concentration. Imaging of DAF-FM fluorescence revealed that TRPML1 stimulation could also induce a significant Ca2+-dependent increase in nitric oxide concentration. Finally, the pharmacological and genetic blockade of TRPML1 impaired ATP-induced intracellular Ca2+ release and NO production. These findings, therefore, shed novel light on the mechanisms whereby the lysosomal Ca2+ store can shape endothelial Ca2+ signaling and Ca2+-dependent functions in vascular endothelial cells.

3.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119796, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038610

RESUMO

Pyruvate kinase M2 (PKM2) is a key glycolytic enzyme interacting with the inositol 1,4,5-trisphosphate receptor (IP3R). This interaction suppresses IP3R-mediated cytosolic [Ca2+] rises. As PKM2 exists in monomeric, dimeric and tetrameric forms displaying different properties including catalytic activity, we investigated the molecular determinants of PKM2 enabling its interaction with IP3Rs. Treatment of HeLa cells with TEPP-46, a compound stabilizing the tetrameric form of PKM2, increased both its catalytic activity and the suppression of IP3R-mediated Ca2+ signals. Consistently, in PKM2 knock-out HeLa cells, PKM2C424L, a tetrameric, highly active PKM2 mutant, but not inactive PKM2K270M or the less active PKM2K305Q, suppressed IP3R-mediated Ca2+ release. Surprisingly, however, in vitro assays did not reveal a direct interaction between purified PKM2 and either the purified Fragment 5 of IP3R1 (a.a. 1932-2216) or the therein located D5SD peptide (a.a. 2078-2098 of IP3R1), the presumed interaction sites of PKM2 on the IP3R. Moreover, on-nucleus patch clamp of heterologously expressed IP3R1 in DT40 cells devoid of endogenous IP3Rs did not reveal any functional effect of purified wild-type PKM2, mutant PKM2 or PKM1 proteins. These results indicate that an additional factor mediates the regulation of the IP3R by PKM2 in cellulo. Immunoprecipitation of GRP75 using HeLa cell lysates co-precipitated IP3R1, IP3R3 and PKM2. Moreover, the D5SD peptide not only disrupted PKM2:IP3R, but also PKM2:GRP75 and GRP75:IP3R interactions. Our data therefore support a model in which catalytically active, tetrameric PKM2 suppresses Ca2+ signaling via the IP3R through a multiprotein complex involving GRP75.

4.
Front Endocrinol (Lausanne) ; 15: 1412411, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015185

RESUMO

Early in the development of Type 2 diabetes (T2D), metabolic stress brought on by insulin resistance and nutrient overload causes ß-cell hyperstimulation. Herein we summarize recent studies that have explored the premise that an increase in the intracellular Ca2+ concentration ([Ca2+]i), brought on by persistent metabolic stimulation of ß-cells, causes ß-cell dysfunction and failure by adversely affecting ß-cell function, structure, and identity. This mini-review builds on several recent reviews that also describe how excess [Ca2+]i impairs ß-cell function.


Assuntos
Sinalização do Cálcio , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Estresse Fisiológico , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Humanos , Sinalização do Cálcio/fisiologia , Animais , Estresse Fisiológico/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Cálcio/metabolismo , Resistência à Insulina/fisiologia
5.
J Am Heart Assoc ; : e034203, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023067

RESUMO

BACKGROUND: Vascular smooth muscle cell (VSMC) proliferation is involved in many types of arterial diseases, including neointima hyperplasia, in which Ca2+ has been recognized as a key player. However, the physiological role of Ca2+ release via inositol 1,4,5-trisphosphate receptors (IP3Rs) from endoplasmic reticulum in regulating VSMC proliferation has not been well determined. METHODS AND RESULTS: Both in vitro cell culture models and in vivo mouse models were generated to investigate the role of IP3Rs in regulating VSMC proliferation. Expression of all 3 IP3R subtypes was increased in cultured VSMCs upon platelet-derived growth factor-BB and FBS stimulation as well as in the left carotid artery undergoing intimal thickening after vascular occlusion. Genetic ablation of all 3 IP3R subtypes abolished endoplasmic reticulum Ca2+ release in cultured VSMCs, significantly reduced cell proliferation induced by platelet-derived growth factor-BB and FBS stimulation, and also decreased cell migration of VSMCs. Furthermore, smooth muscle-specific deletion of all IP3R subtypes in adult mice dramatically attenuated neointima formation induced by left carotid artery ligation, accompanied by significant decreases in cell proliferation and matrix metalloproteinase-9 expression in injured vessels. Mechanistically, IP3R-mediated Ca2+ release may activate cAMP response element-binding protein, a key player in controlling VSMC proliferation, via Ca2+/calmodulin-dependent protein kinase II and Akt. Loss of IP3Rs suppressed cAMP response element-binding protein phosphorylation at Ser133 in both cultured VSMCs and injured vessels, whereas application of Ca2+ permeable ionophore, ionomycin, can reverse cAMP response element-binding protein phosphorylation in IP3R triple knockout VSMCs. CONCLUSIONS: Our results demonstrated an essential role of IP3R-mediated Ca2+ release from endoplasmic reticulum in regulating cAMP response element-binding protein activation, VSMC proliferation, and neointima formation in mouse arteries.

6.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1048-1058, 2024 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-38977334

RESUMO

OBJECTIVE: To explore the mechanism by which soybean isoflavone (SI) reduces calcium overload induced by cerebral ischemia-reperfusion (I/R). METHODS: Forty-eight SD rats were randomized into 4 groups to receive sham operation, cerebral middle artery occlusion for 2 h followed by 24 h of reperfusion (I/R model group), or injection of adeno-associated virus carrying Frizzled-2 siRNA or empty viral vector into the lateral cerebral ventricle after modeling.Western blotting was used to examine Frizzled-2 knockdown efficiency and changes in protein expressions in the Wnt/Ca2+ signaling pathway.Calcium levels and pathological changes in the ischemic penumbra (IP) were measured using calcium chromogenic assay and HE staining, respectively.Another 72 SD randomly allocated for sham operation, I/R modeling, or soy isoflavones pretreatment before modeling were examined for regional cerebral blood flow using a Doppler flowmeter, and the cerebral infarct volume was assessed using TTC staining.Pathologies in the IP area were evaluated using HE and Nissl staining, and ROS level, Ca2+ level, cell apoptosis, and intracellular calcium concentration were analyzed using immunofluorescence assay or flow cytometry; the protein expressions of Wnt5a, Frizzled-2, and P-CaMK Ⅱ in the IP were detected with Western blotting and immunohistochemistry. RESULTS: In rats with cerebral I/R, Frizzled-2 knockdown significantly lowered calcium concentration (P < 0.001) and the expression levels of Wnt5a, Frizzled-2, and P-CaMK Ⅱ in the IP area.In soy isoflavones-pretreated rats, calcium concentration, ROS and MDA levels, cell apoptosis rate, cerebral infarct volume, and expression levels of Wnt/Ca2+ signaling pathway-related proteins were all significantly lower while SOD level was higher than those in rats in I/R model group. CONCLUSION: Soy isoflavones can mitigate calcium overload in rats with cerebral I/R by inhibiting the Wnt/Ca2+ signaling pathway.


Assuntos
Isquemia Encefálica , Cálcio , Glycine max , Isoflavonas , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Via de Sinalização Wnt , Animais , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Ratos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Via de Sinalização Wnt/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Cálcio/metabolismo , Glycine max/química , Apoptose/efeitos dos fármacos , Masculino , Proteína Wnt-5a/metabolismo , RNA Interferente Pequeno/genética
7.
EMBO J ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965418

RESUMO

The gut microbiota and their metabolites are closely linked to obesity-related diseases, such as type 2 diabetes, but their causal relationship and underlying mechanisms remain largely elusive. Here, we found that dysbiosis-induced tyramine (TA) suppresses high-fat diet (HFD)-mediated insulin resistance in both Drosophila and mice. In Drosophila, HFD increases cytosolic Ca2+ signaling in enterocytes, which, in turn, suppresses intestinal lipid levels. 16 S rRNA sequencing and metabolomics revealed that HFD leads to increased prevalence of tyrosine decarboxylase (Tdc)-expressing bacteria and resulting tyramine production. Tyramine acts on the tyramine receptor, TyrR1, to promote cytosolic Ca2+ signaling and activation of the CRTC-CREB complex to transcriptionally suppress dietary lipid digestion and lipogenesis in enterocytes, while promoting mitochondrial biogenesis. Furthermore, the tyramine-induced cytosolic Ca2+ signaling is sufficient to suppress HFD-induced obesity and insulin resistance in Drosophila. In mice, tyramine intake also improves glucose tolerance and insulin sensitivity under HFD. These results indicate that dysbiosis-induced tyramine suppresses insulin resistance in both flies and mice under HFD, suggesting a potential therapeutic strategy for related metabolic disorders, such as diabetes.

8.
Methods Mol Biol ; 2816: 69-75, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977589

RESUMO

Intracellular Ca2+ can be conveniently monitored by sensitive Ca2+ fluorescent dyes in live cells. The Gαq involved lipid signaling pathways and, thus, can be studied by intracellular Ca2+ imaging. Here we describe the protocols to measure intracellular Ca2+ for studying PEG2-EP1 activity in esophageal smooth muscle cells. The ratiometric Fura-2 imaging provides quantitative data, and the Fluo-4 confocal microscopic imaging has high-spatial resolution.


Assuntos
Cálcio , Receptores Acoplados a Proteínas G , Cálcio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Microscopia Confocal/métodos , Transdução de Sinais , Miócitos de Músculo Liso/metabolismo , Sinalização do Cálcio , Humanos , Xantenos/metabolismo , Fura-2/metabolismo , Metabolismo dos Lipídeos , Esôfago/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Compostos de Anilina
9.
Inflammation ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904871

RESUMO

Recent evidence has highlighted the functions of enhancers in modulating transcriptional machinery and affecting the development of human diseases including rheumatoid arthritis (RA). Enhancer RNAs (eRNAs) are RNA molecules transcribed from active enhancer regions. This study investigates the specific function of eRNA in gene transcription and osteoclastogenesis in RA. Regulator of G protein signaling 1 (RGS1)-associated eRNA was highly activated in osteoclasts according to bioinformatics prediction. RGS1 mRNA was increased in mice with collagen-induced arthritis as well as in M-CSF/soluble RANKL-stimulated macrophages (derived from monocytes). This was ascribed to increased RGS1 eRNA activity. Silencing of 5'-eRNA blocked the binding between forkhead box J3 (FOXJ3) and the RGS1 promoter, thus suppressing RGS1 transcription. RGS1 accelerated osteoclastogenesis through PLC-IP3R-dependent Ca2+ response. Knockdown of either FOXJ3 or RGS1 ameliorated arthritis severity, improved pathological changes, and reduced osteoclastogenesis and bone erosion in vivo and in vitro. However, the effects of FOXJ3 silencing were negated by RGS1 overexpression. In conclusion, this study demonstrates that the RGS1 eRNA-driven transcriptional activation of the FOXJ3/RGS1 axis accelerates osteoclastogenesis through PLC-IP3R dependent Ca2+ response in RA. The finding may offer novel insights into the role of eRNA in gene transcription and osteoclastogenesis in RA.

10.
Biochim Biophys Acta Gen Subj ; 1868(8): 130649, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823731

RESUMO

The phosphoinositide 3-kinase (PI3K) is involved in regulation of multiple intracellular processes. Although the inhibitory analysis is generally employed for validating a physiological role of PI3K, increasing body of evidence suggests that PI3K inhibitors can exhibit PI3K-unrelated activity as well. Here we studied Ca2+ signaling initiated by aminergic agonists in a variety of different cells and analyzed effects of the PI3K inhibitor PI828 on cell responsiveness. It turned out that PI828 inhibited Ca2+ transients elicited by acetylcholine (ACh), histamine, and serotonin, but did not affect Ca2+ responses to norepinephrine and ATP. Another PI3K inhibitor wortmannin negligibly affected Ca2+ signaling initiated by any one of the tested agonists. Using the genetically encoded PIP3 sensor PH(Akt)-Venus, we confirmed that both PI828 and wortmannin effectively inhibited PI3K and ascertained that this kinase negligibly contributed to ACh transduction. These findings suggested that PI828 inhibited Ca2+ responses to aminergic agonists tested, involving an unknown cellular mechanism unrelated to the PI3K inhibition. Complementary physiological experiments provided evidence that PI828 could inhibit Ca2+ signals induced by certain agonists, by acting extracellularly, presumably, through their surface receptors. For the muscarinic M3 receptor, this possibility was verified with molecular docking and molecular dynamics. As demonstrated with these tools, wortmannin could be bound in the extracellular vestibule at the muscarinic M3 receptor but this did not preclude binding of ACh to the M3 receptor followed by its activation. In contrast, PI828 could sterically block the passage of ACh into the allosteric site, preventing activation of the muscarinic M3 receptor.


Assuntos
Sinalização do Cálcio , Cálcio , Inibidores de Fosfoinositídeo-3 Quinase , Humanos , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Wortmanina/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Células HEK293
11.
Poult Sci ; 103(8): 103862, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38843562

RESUMO

Oncomodulins (OCMs), also known as non-α-parvalbumins, are small molecules known for their high-affinity binding of Ca2+ ions. They play crucial roles as Ca2+ buffers and participate in signaling pathways within muscle and neuron cells. In chickens, 3 oncomodulin molecules have been identified at the protein level and are named chicken oncomodulin 1 (OCM1), -3 (OCM3), and alpha-parvalbumin (PVALB). OCM4 was newly assigned by genome annotation. A gene cluster containing OCM1, OCM3, and OCM4 is located in chromosome 14, while a single gene of PVALB is on chromosome 1. The Ca2+ signaling pathway may be a potential contributor to the onset of chicken breast myopathies. However, chicken OCMs have not been extensively studied in muscle tissues. In this study, the genetic specifications, tissue-specific and differential expression of OCM1, OCM3, OCM4, and PVALB in the context of chicken breast myopathies were investigated. OCM1 exhibited moderate expression in the liver, intestine, and kidney. OCM3 was highly expressed in thymus and breast muscle. A long noncoding RNA (lncRNA) transcribed from the antisense strand of the OCM3 gene was found to be expressed in liver, lung, heart, intestine, and kidney tissues. OCM4 was barely expressed in thymus, thigh-, and breast muscle. PVALB exhibited high expression across all tissues examined. Results of quantitative PCR (qPCR) indicated that the expression of OCM3 was significantly increased (4.4 ± 0.7 fold; P-value = 0.03) in woody breast (WB) muscle and even greater (8.5 ± 0.6 fold; P-value = 0.004) in WB/white striping (WS) muscles. The expression of PVALB showed no difference in WB muscle, but it was notably higher (4.6 ± 0.7 fold; P-value = 0.054) in WB/WS muscle, although statistical significance was not reached. These findings suggest that increased expression of OCM3 and PVALB may be linked to chicken breast myopathies with regard to disruption of Ca2+ buffering.


Assuntos
Proteínas Aviárias , Galinhas , Doenças Musculares , Doenças das Aves Domésticas , Animais , Galinhas/genética , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Doenças Musculares/veterinária , Doenças Musculares/genética , Doenças Musculares/metabolismo , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Músculos Peitorais/metabolismo , Perfilação da Expressão Gênica/veterinária
12.
Plant Signal Behav ; 19(1): 2370706, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38905329

RESUMO

Extracellular ATP (eATP) orchestrates vital processes in plants, akin to its role in animals. P2K1 is a crucial receptor mediating eATP effects. Immunoprecipitation tandem mass spectrometry data highlighted FERONIA's significant interaction with P2K1, driving us to explore its role in eATP signaling. Here, we investigated putative P2K1-interactor, FERONIA, which is a versatile receptor kinase pivotal in growth and stress responses. We employed a FERONIA loss-of-function mutant, fer-4, to dissect its effects on eATP signaling. Interestingly, fer-4 showed distinct calcium responses compared to wild type, while eATP-responsive genes were constitutively upregulated in fer-4. Additionally, fer-4 displayed insensitivity to eATP-regulated root growth and reduced cell wall accumulation. Together, these results uncover a role for FERONIA in regulating eATP signaling. Overall, our study deepens our understanding of eATP signaling, revealing the intricate interplay between P2K1 and FERONIA impacting the interface between growth and defense.


Assuntos
Proteínas de Arabidopsis , Raízes de Plantas , Transdução de Sinais , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Trifosfato de Adenosina/metabolismo , Regulação da Expressão Gênica de Plantas , Fosfotransferases , Proteínas Serina-Treonina Quinases
13.
Pflugers Arch ; 476(7): 1077-1086, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38769127

RESUMO

Diabetes is commonly associated with an elevated level of reactive carbonyl species due to alteration of glucose and fatty acid metabolism. These metabolic changes cause an abnormality in cardiac Ca2+ regulation that can lead to cardiomyopathies. In this study, we explored how the reactive α-dicarbonyl methylglyoxal (MGO) affects Ca2+ regulation in mouse ventricular myocytes. Analysis of intracellular Ca2+ dynamics revealed that MGO (200 µM) increases action potential (AP)-induced Ca2+ transients and sarcoplasmic reticulum (SR) Ca2+ load, with a limited effect on L-type Ca2+ channel-mediated Ca2+ transients and SERCA-mediated Ca2+ uptake. At the same time, MGO significantly slowed down cytosolic Ca2+ extrusion by Na+/Ca2+ exchanger (NCX). MGO also increased the frequency of Ca2+ waves during rest and these Ca2+ release events were abolished by an external solution with zero [Na+] and [Ca2+]. Adrenergic receptor activation with isoproterenol (10 nM) increased Ca2+ transients and SR Ca2+ load, but it also triggered spontaneous Ca2+ waves in 27% of studied cells. Pretreatment of myocytes with MGO increased the fraction of cells with Ca2+ waves during adrenergic receptor stimulation by 163%. Measurements of intracellular [Na+] revealed that MGO increases cytosolic [Na+] by 57% from the maximal effect produced by the Na+-K+ ATPase inhibitor ouabain (20 µM). This increase in cytosolic [Na+] was a result of activation of a tetrodotoxin-sensitive Na+ influx, but not an inhibition of Na+-K+ ATPase. An increase in cytosolic [Na+] after treating cells with ouabain produced similar effects on Ca2+ regulation as MGO. These results suggest that protein carbonylation can affect cardiac Ca2+ regulation by increasing cytosolic [Na+] via a tetrodotoxin-sensitive pathway. This, in turn, reduces Ca2+ extrusion by NCX, causing SR Ca2+ overload and spontaneous Ca2+ waves.


Assuntos
Cálcio , Miócitos Cardíacos , Carbonilação Proteica , Retículo Sarcoplasmático , Sódio , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Camundongos , Cálcio/metabolismo , Sódio/metabolismo , Carbonilação Proteica/efeitos dos fármacos , Trocador de Sódio e Cálcio/metabolismo , Ventrículos do Coração/metabolismo , Ventrículos do Coração/citologia , Aldeído Pirúvico/farmacologia , Aldeído Pirúvico/metabolismo , Sinalização do Cálcio/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Potenciais de Ação/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Células Cultivadas , Masculino
15.
Plants (Basel) ; 13(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732435

RESUMO

Plant roots exert hydrotropism in response to moisture gradients to avoid drought stress. The regulatory mechanism underlying hydrotropism involves novel regulators such as MIZ1 and GNOM/MIZ2 as well as abscisic acid (ABA), reactive oxygen species (ROS), and Ca2+ signaling. ABA, ROS, and Ca2+ signaling are also involved in plant responses to drought stress. Although the mechanism of moisture gradient perception remains largely unknown, the sensory apparatus has been reported to reside in the root elongation zone rather than in the root cap. In Arabidopsis roots, hydrotropism is mediated by the action of MIZ1 and ABA in the cortex of the elongation zone, the accumulation of ROS at the root curvature, and the variation in the cytosolic Ca2+ concentration in the entire root tip including the root cap and stele of the elongation zone. Moreover, root exposure to moisture gradients has been proposed to cause asymmetric ABA distribution or Ca2+ signaling, leading to the induction of the hydrotropic response. A comprehensive and detailed analysis of hydrotropism regulators and their signaling network in relation to the tissues required for their function is apparently crucial for understanding the mechanisms unique to root hydrotropism. Here, referring to studies on plant responses to drought stress, we summarize the recent findings relating to the role of ABA, ROS, and Ca2+ signaling in hydrotropism, discuss their functional sites and plausible networks, and raise some questions that need to be answered in future studies.

16.
Front Physiol ; 15: 1382238, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737827

RESUMO

Background: Intestinal organoids are stem cell-derived, 3D "mini-guts" with similar functions as the native intestinal epithelium such as electrolyte transport or establishment of an epithelial barrier. During intestinal inflammation, epithelial functions are dysregulated by proinflammatory cytokines like tumor necrosis factor α (TNFα) and other messengers from the immune system resulting in a loss of electrolytes and water due to an impaired epithelial barrier and higher net secretion. Methods: A murine small intestinal organoid model was established to study (long-term) effects of TNFα on the intestinal epithelium in vitro using live imaging, immunohistochemical staining and qPCR. Results: TNFα induced apoptosis in intestinal organoids as indicated by an increased number of cells with immunoreactivity for cleaved caspase 3. Furthermore, TNFα exposure led to swelling of the organoids which was inhibited by bumetanide and was concomitant with an upregulation of the bumetanide-sensitive Na+-K+-2Cl- symporter 1 (NKCC1) as shown by qPCR. Fura-2 imaging experiments revealed time-dependent changes in Ca2+ signaling consisting of a rise in the basal cytosolic Ca2+ concentration at day 1 and an increase of the carbachol-induced Ca2+ response after 3 days TNFα exposure. This was prevented by preincubation with La3+, an inhibitor of non-selective cation channels, or by using a Ca2+-free buffer indicating an enhancement of the Ca2+ influx from the extracellular side by the cytokine. No significant changes in cDNA levels of epithelial barrier proteins could be observed in the presence of TNFα. Conclusion: Intestinal organoids are a useful tool to study the mechanism underlying the TNFα-induced secretion on enterocytes such as the regulation of NKCC1 expression or the modulation of cellular Ca2+ signaling.

17.
Trends Plant Sci ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38782620

RESUMO

Potassium (K) is an essential macronutrient for plant development. Although the low-K+-responsive calcium (Ca2+) signaling pathway is known, its regulator remained elusive. Li et al. recently demonstrated that the target of rapamycin complex (TORC) and Ca2+ signaling pathways show reciprocal regulation of K+-responsive growth in plants.

18.
Dev Cell ; 59(14): 1824-1841.e10, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38701784

RESUMO

The oxidative phosphorylation (OXPHOS) system is intricately organized, with respiratory complexes forming super-assembled quaternary structures whose assembly mechanisms and physiological roles remain under investigation. Cox7a2l, also known as Scaf1, facilitates complex III and complex IV (CIII-CIV) super-assembly, enhancing energetic efficiency in various species. We examined the role of Cox7a1, another Cox7a family member, in supercomplex assembly and muscle physiology. Zebrafish lacking Cox7a1 exhibited reduced CIV2 formation, metabolic alterations, and non-pathological muscle performance decline. Additionally, cox7a1-/- hearts displayed a pro-regenerative metabolic profile, impacting cardiac regenerative response. The distinct phenotypic effects of cox7a1-/- and cox7a2l-/- underscore the diverse metabolic and physiological consequences of impaired supercomplex formation, emphasizing the significance of Cox7a1 in muscle maturation within the OXPHOS system.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Coração , Músculo Esquelético , Fosforilação Oxidativa , Regeneração , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Músculo Esquelético/metabolismo , Regeneração/fisiologia , Coração/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Miocárdio/metabolismo , Multimerização Proteica
19.
Biomolecules ; 14(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38672424

RESUMO

Originally developed as a chemotherapeutic agent, miltefosine (hexadecylphosphocholine) is an inhibitor of phosphatidylcholine synthesis with proven antiparasitic effects. It is the only oral drug approved for the treatment of Leishmaniasis and American Trypanosomiasis (Chagas disease). Although its precise mechanisms are not yet fully understood, miltefosine exhibits broad-spectrum anti-parasitic effects primarily by disrupting the intracellular Ca2+ homeostasis of the parasites while sparing the human hosts. In addition to its inhibitory effects on phosphatidylcholine synthesis and cytochrome c oxidase, miltefosine has been found to affect the unique giant mitochondria and the acidocalcisomes of parasites. Both of these crucial organelles are involved in Ca2+ regulation. Furthermore, miltefosine has the ability to activate a specific parasite Ca2+ channel that responds to sphingosine, which is different to its L-type VGCC human ortholog. Here, we aimed to provide an overview of recent advancements of the anti-parasitic mechanisms of miltefosine. We also explored its multiple molecular targets and investigated how its pleiotropic effects translate into a rational therapeutic approach for patients afflicted by Leishmaniasis and American Trypanosomiasis. Notably, miltefosine's therapeutic effect extends beyond its impact on the parasite to also positively affect the host's immune system. These findings enhance our understanding on its multi-targeted mechanism of action. Overall, this review sheds light on the intricate molecular actions of miltefosine, highlighting its potential as a promising therapeutic option against these debilitating parasitic diseases.


Assuntos
Cálcio , Doença de Chagas , Homeostase , Leishmaniose , Fosforilcolina , Fosforilcolina/análogos & derivados , Humanos , Fosforilcolina/farmacologia , Fosforilcolina/uso terapêutico , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Doença de Chagas/metabolismo , Cálcio/metabolismo , Leishmaniose/tratamento farmacológico , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Homeostase/efeitos dos fármacos , Animais , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Leishmania/efeitos dos fármacos , Leishmania/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/metabolismo
20.
BMC Musculoskelet Disord ; 25(1): 321, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654287

RESUMO

BACKGROUND: Increasing studies have shown degeneration of nucleus pulposus cells (NPCs) as an critical part of the progression of intervertebral disc degeneration (IVDD). However, there are relatively few studies on single-cell transcriptome contrasts in human degenerated NPCs. Moreover, differences in Wnt/Ca2+ signaling in human degenerated nucleus pulposus cells have not been elucidated. The aim of this study is to investigate the differential expression of Wnt/Ca2+ signaling pathway between normal and degenerated nucleus pulposus cells in humans and try to investigate its mechanism. METHODS: We performed bioinformatics analysis using our previously published findings to construct single cell expression profiles of normal and degenerated nucleus pulposus. Then, in-depth differential analysis was used to characterize the expression of Wnt/Ca2+ signaling pathway between normal and degenerated nucleus pulposus cells in humans. RESULTS: The obtained cell data were clustered into five different chondrocytes clusters, which chondrocyte 4 and chondrocyte 5 mainly accounted for a high proportion in degenerated nucleus pulposus tissues, but rarely in normal nucleus pulposus tissues. Genes associated within the Wnt/Ca2+ signaling pathway, such as Wnt5B, FZD1, PLC (PLCB1), CaN (PPP3CA) and NAFATC1 are mainly present in chondrocyte 3, chondrocyte 4 and chondrocyte 5 from degenerated nucleus pulposus tissues. In addition, as a receptor that activates Wnt signaling pathway, LRP5 is mainly highly expressed in chondrocyte 5 of degenerated nucleus pulposus cells. Six genes, ANGPTL4, PTGES, IGFBP3, GDF15, TRIB3 and TNFRSF10B, which are associated with apoptosis and inflammatory responses, and are widespread in chondrocyte 4 and chondrocyte 5, may be closely related to degenerative of nucleus pulposus cells. CONCLUSIONS: Single-cell RNA sequencing revealed differential expression of Wnt/Ca2+ signaling in human normal and degenerated nucleus pulposus cells, and this differential expression may be closely related to the abundance of chondrocyte 4 and chondrocyte 5 in degenerated nucleus pulposus cells. In degenerated nucleus pulposus cells, LRP5 activate Wnt5B, which promotes nucleus pulposus cell apoptosis and inflammatory response by regulating the Wnt/Ca2+ signaling pathway, thereby promoting disc degeneration. ANGPTL4, IGFBP3, PTGES in chondrocyte 4 and TRIB3, GDF15, TNFRSF10B in chondrocyte 5 may play an important role in this process.


Assuntos
Apoptose , Degeneração do Disco Intervertebral , Núcleo Pulposo , Análise de Célula Única , Via de Sinalização Wnt , Humanos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Via de Sinalização Wnt/genética , RNA-Seq , Masculino , Pessoa de Meia-Idade , Feminino , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Adulto , Sinalização do Cálcio/genética , Condrócitos/metabolismo , Condrócitos/patologia , Transcriptoma , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Análise da Expressão Gênica de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...