RESUMO
Rare gene variants have been found to play a role in complex disorders. Preeclampsia, and especially early-onset preeclampsia, has a strong genetic link. However, the role of rare variants in the offspring of mothers with preeclampsia remains unclear. In this study, whole-exome sequencing (WES) was used to identify rare pathogenic variants in two families with early-onset preeclampsia. Two heterozygous rare variants in CCDC7, c.625C>T (p.R209C) and c.1015C>T (p.R339X), were detected in two families and were cosegregated in the offspring of preeclamptic pregnancies. We examined the spatiotemporal expression pattern of CCDC7 in human placental villi and the effects of CCDC7 on migration and invasion of trophoblast cells JEG-3. The quantitative real-time PCR and Western blot results showed that the expression of CCDC7 in placental villi was the lowest during the first trimester and increased as the pregnancy progressed. The CCDC7 p.R339X variant showed a decrease in mRNA and protein expressions. Loss-of-function assays showed that knockdown of CCDC7 suppressed the migration and invasion of JEG-3 cells. In conclusion, CCDC7 is a potential susceptibility gene for preeclampsia, which is key for the migration and invasion of trophoblast cells. Rare variants of preeclampsia in offspring may play a crucial role in the pathogenesis of preeclampsia and require further research.
RESUMO
RATIONALE & OBJECTIVE: Focal segmental glomerulosclerosis (FSGS) is a major cause of pediatric nephrotic syndrome, and African Americans exhibit an increased risk for developing FSGS compared with other populations. Predisposing genetic factors have previously been described in adults. Here we performed genomic screening of primary FSGS in a pediatric African American population. STUDY DESIGN: Prospective cohort with case-control genetic association study design. SETTING & PARTICIPANTS: 140 African American children with chronic kidney disease from the Chronic Kidney Disease in Children (CKiD) cohort, including 32 cases with FSGS. PREDICTORS: Over 680,000 common single-nucleotide polymorphisms (SNPs) were tested for association. We also ran a pathway enrichment analysis and a human leucocyte antigen (HLA)-focused association study. OUTCOME: Primary biopsy-proven pediatric FSGS. ANALYTICAL APPROACH: Multivariate logistic regression models. RESULTS: The genome-wide association study revealed 169 SNPs from 14 independent loci significantly associated with FSGS (false discovery rate [FDR]<5%). We observed notable signals for genetic variants within the APOL1 (P=8.6×10-7; OR, 25.8 [95% CI, 7.1-94.0]), ALMS1 (P=1.3×10-7; 13.0% in FSGS cases vs 0% in controls), and FGFR4 (P=4.3×10-6; OR, 24.8 [95% CI, 6.3-97.7]) genes, all of which had previously been associated with adult FSGS, kidney function, or chronic kidney disease. We also highlighted novel, functionally relevant genes, including GRB2 (which encodes a slit diaphragm protein promoting podocyte structure through actin polymerization) and ITGB1 (which is linked to renal injuries). Our results suggest a major role for immune responses and antigen presentation in pediatric FSGS through (1) associations with SNPs in PTPRJ (or CD148, P=3.5×10-7), which plays a role in T-cell receptor signaling, (2) HLA-DRB1∗11:01 association (P=6.1×10-3; OR, 4.5 [95% CI, 1.5-13.0]), and (3) signaling pathway enrichment (P=1.3×10-6). LIMITATIONS: Sample size and no independent replication cohort with genomic data readily available. CONCLUSIONS: Our genetic study has identified functionally relevant risk factors and the importance of immune regulation for pediatric primary FSGS, which contributes to a better description of its molecular pathophysiological mechanisms. PLAIN-LANGUAGE SUMMARY: We assessed the genetic risk factors for primary focal segmental glomerulosclerosis (FSGS) by simultaneously testing over 680,000 genetic markers spread across the genome in 140 children, including 32 with FSGS lesions. Fourteen independent genetic regions were significantly associated with pediatric FSGS, including APOL1 and ALMS1-NAT8, which were previously found to be associated with FSGS and chronic kidney diseases in adults. Novel genes with relevant biological functions were also highlighted, such as GRB2 and FGFR4, which play a role in the kidney filtration barrier and in kidney cell differentiation, respectively. Finally, we revealed the importance of immune regulation in pediatric FSGS through associations involving cell surface proteins presenting antigens to the immune system and interacting with T-cell receptors.
Assuntos
Glomerulosclerose Segmentar e Focal , Insuficiência Renal Crônica , Adulto , Humanos , Criança , Glomerulosclerose Segmentar e Focal/patologia , Apolipoproteína L1/genética , Estudo de Associação Genômica Ampla , Estudos Prospectivos , Fatores de Risco , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genéticaRESUMO
OBJECTIVE: Tumor growth is one of the most lethal attributes of human malignancy. The expression of CCDC7, a novel gene which has multiple functions, has been shown to be associated with tumor growth and poor prognosis in patients with cancer. However, the specific functions of CCDC7 remain unclear. Here, we investigated the molecular mechanisms underlying the effects of CCDC7 on proliferation in cervical cancer. MATERIALS AND METHODS: The MTT and EdU assays were performed to evaluate the function of CCDC7. The immunohistochemical, quantitative real-time PCR (qRT-PCR), ELISA and Western blot assay were used to detect the gene and protein expression in tissues and cells. A xenograft test was conducted to detect the impact of CCDC7 on tumor development in vivo . RESULTS: In immunohistochemical analysis of 193 cases, normal cervical tissue and cervical cancer tissue show that CCDC7 expression is closely correlated with the development of cervical cancer and was positively correlated with the clinical stage and histological grade. Overexpression or knockdown of CCDC7 affected cell proliferation in cervical cancer cells in vitro. In a nude mouse xenograft model in vivo, knockdown of CCDC7 inhibited cell proliferation and tumor growth. Furthermore, CCDC7 overexpression upregulated interleukin (IL)-6 and vascular endothelial growth factor (VEGF) at mRNA and protein levels, and treatment with recombinant IL-6 or VEGF proteins also increased CCDC7 expression. In a case set of 80 patients with cervical cancer, we found that CCDC7, IL-6, and VEGF affected patient prognosis. Finally, inhibition of various signaling pathways using specific inhibitors indicated that CCDC7 blocked the decrease in cell proliferation observed following suppression of the JAK-STAT3 pathway, suggesting that CCDC7 functioned via this critical signaling network. CONCLUSION: Those findings indicated that CCDC7 may be a novel target for the treatment of cervical cancer and may have applications as a predictive marker for tumor growth in cervical carcinoma.