Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.315
Filtrar
1.
Ther Adv Med Oncol ; 16: 17588359241265222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39099848

RESUMO

Parathyroid carcinoma (PC) is extremely rare in children and adolescent. PC is more often sporadic, but also it could be associated with germline mutations. The clinical features of primary hyperparathyroidism (PHPT) are nonspecific in children and adolescent, which delays the diagnosis for years. This case of PC in a pediatric patient, caused by germline heterozygous pathogenic variant in exon 1 of the CDC73 gene (c.70 G > T, p. Glu24Ter) is the first to be reported in Russia. Due to the rarity of pediatric parathyroid malignancy, the diagnosis of this endocrine neoplasm remains a challenge. The main difficulties that we faced in the management of the patient were the morphological confirmation of diagnosis, multiple surgical interventions, and disseminated PC metastases. We describe a 13-year-old girl with delayed diagnosis of PC and subsequent local recurrence after several surgeries, who underwent specific radiation therapy that allowed controlling hypercalcemia.

2.
Am J Cancer Res ; 14(7): 3372-3387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113855

RESUMO

Glioma, a prevalent primary tumor of the central nervous system, is targeted by molecular therapies aiming to intervene in specific genes and signaling pathways to inhibit tumor growth and spread. Our previous bioinformatics study revealed that significant CDC6 overexpression in gliomas was closely correlated with poor patient prognosis. Through qPCR, western blotting, and immunohistochemistry, we will further validate CDC6 expression in clinical glioma specimens, while the effects of silencing and overexpressing CDC6 in the U87 and LN229 glioma cell lines on malignancy will be assessed through MTS, EdU, transwell, and migration assays. Luciferase reporter assays, ChIP, qPCR, and western blotting were used to explore the upstream and downstream molecular mechanisms of CDC6. Our study confirmed the abnormal overexpression of CDC6 in gliomas, particularly in glioblastomas. CDC6 promotes glioma cell activity, proliferation, invasion, and migration by activating the IL6-mediated JAK2/STAT3 signaling pathway. The transcription Factor E2F8 directly regulates CDC6 transcription, playing a crucial role in its abnormal overexpression in gliomas. This research provides vital evidence supporting CDC6 as a molecular target for glioma therapy.

3.
Am J Cancer Res ; 14(7): 3565-3583, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113868

RESUMO

Cell division cycle 5-like (CDC5L) protein is implicated in the development of various cancers. However, its role in the progression of lung adenocarcinoma (LUAD) remains uncertain. Our findings revealed frequent upregulation of CDC5L in LUAD, which correlated with poorer overall survival rates and advanced clinical stages. In vitro experiments demonstrated that CDC5L overexpression stimulated the proliferation, migration, and invasion of LUAD cells, whereas CDC5L knockdown exerted suppressive effects on these cellular processes. Furthermore, silencing CDC5L significantly inhibited tumor growth and metastasis in a xenograft mouse model. Mechanistically, CDC5L activates the Wnt/ß-catenin signaling pathway by transcriptionally regulating WNT7B, thereby promoting LUAD progression. Besides, METTL14-mediated m6A modification contributed to CDC5L upregulation in an IGF2BP2-dependent manner. Collectively, our study uncovers a novel molecular mechanism by which the m6A-induced CDC5L functions as an oncogene in LUAD by activating the Wnt/ß-catenin pathway through transcriptional regulation of WNT7B, suggesting that CDC5L may serve as a promising prognostic marker and therapeutic target for LUAD.

4.
Front Oncol ; 14: 1351393, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114311

RESUMO

Objective: By utilizing machine learning, we can identify genes that are associated with recurrence, invasion, and tumor stemness, thus uncovering new therapeutic targets. Methods: To begin, we obtained a gene set related to recurrence and invasion from the GEO database, a comprehensive gene expression database. We then employed the Weighted Gene Co-expression Network Analysis (WGCNA) to identify core gene modules and perform functional enrichment analysis on them. Next, we utilized the random forest and random survival forest algorithms to calculate the genes within the key modules, resulting in the identification of three crucial genes. Subsequently, one of these key genes was selected for prognosis analysis and potential drug screening using the Kaplan-Meier tool. Finally, in order to examine the role of CDC20 in lung adenocarcinoma (LUAD), we conducted a variety of in vitro and in vivo experiments, including wound healing assay, colony formation assays, Transwell migration assays, flow cytometric cell cycle analysis, western blotting, and a mouse tumor model experiment. Results: First, we collected a total of 279 samples from two datasets, GSE166722 and GSE31210, to identify 91 differentially expressed genes associated with recurrence, invasion, and stemness in lung adenocarcinoma. Functional enrichment analysis revealed that these key gene clusters were primarily involved in microtubule binding, spindle, chromosomal region, organelle fission, and nuclear division. Next, using machine learning, we identified and validated three hub genes (CDC45, CDC20, TPX2), with CDC20 showing the highest correlation with tumor stemness and limited previous research. Furthermore, we found a close association between CDC20 and clinical pathological features, poor overall survival (OS), progression-free interval (PFI), progression-free survival (PFS), and adverse prognosis in lung adenocarcinoma patients. Lastly, our functional research demonstrated that knocking down CDC20 could inhibit cancer cell migration, invasion, proliferation, cell cycle progression, and tumor growth possibly through the MAPK signaling pathway. Conclusion: CDC20 has emerged as a novel biomarker for monitoring treatment response, recurrence, and disease progression in patients with lung adenocarcinoma. Due to its significance, further research studying CDC20 as a potential therapeutic target is warranted. Investigating the role of CDC20 could lead to valuable insights for developing new treatments and improving patient outcomes.

5.
J Clin Immunol ; 44(8): 173, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110257

RESUMO

Health-related quality of life (HRQoL) measures individual well-being across physical, psychological, and social domains. Patients with predominantly antibody deficiency (PAD) are at risk for morbidity and mortality, however, the effect of these complications on HRQoL requires additional study. Patients with PAD were asked to voluntarily complete the Centers for Disease Control (CDC) HRQoL-14 Healthy Days Measure questionnaire. These results were compared to data from the CDC-initiated Behavioral Risk Factor Surveillance System (BRFSS), a cross-sectional questionnaire including questions from CDC-HRQOL-14. Statistical analyses included two-proportion Z-test, t-tests, and analysis of variance. 83 patients with PAD completed the survey. Patients were sub-stratified into mild (23.7%), moderate (35.5%), severe (40.8%), and secondary (8.4%) PAD. "Fair or poor" health status was reported in 52.6% of PAD patients. Mental health challenges ≥ 14 days/month occurred in 25% of patients. Physical health issues ≥ 14 days/month was reported in 44.7% of patients. Activity limitations were noted by 80.3% of patients. There were no statistically significant differences by PAD severity. Patients with autoimmune and inflammatory disease co-morbidities reported more mental health challenges compared to those without (78% vs. 54.3%, p = 0.02). Compared to the CDC-BRFSS data, significantly more patients with PAD reported "fair or poor" health status (53% vs 12.0%; p < 0.0001), mental health challenges (24.1% vs 14.7%; p = 0.02), and poor physical health (44.6% vs 8.0%; p < 0.0001). Patients with PAD had significantly reduced HRQoL compared to CDC-BRFSS respondents from a similar geographical region. Decreased HRQoL was prevalent across all PAD severity levels. Additional research is needed to improve HRQoL for patients with PAD.


Assuntos
Qualidade de Vida , Humanos , Estudos Transversais , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Inquéritos e Questionários , Nível de Saúde , Idoso , Adulto Jovem , Síndromes de Imunodeficiência/epidemiologia , Estados Unidos/epidemiologia , Adolescente
6.
J Biol Chem ; : 107644, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39122012

RESUMO

Cdc14 phosphatases are related structurally and mechanistically to protein tyrosine phosphatases (PTP) but evolved a unique specificity for phosphoSer-Pro-X-Lys/Arg sites primarily deposited by cyclin-dependent kinases. This specialization is widely conserved in eukaryotes. The evolutionary reconfiguration of the Cdc14 active site to selectively accommodate phosphoSer-Pro likely required modification to the canonical PTP catalytic cycle. While studying Saccharomyces cerevisiae Cdc14 we discovered a short sequence in the disordered C-terminus, distal to the catalytic domain, that mimics an optimal substrate. Kinetic analyses demonstrated this pseudosubstrate binds the active site and strongly stimulates rate-limiting phosphoenzyme hydrolysis, and we named it "substrate-like catalytic enhancer" (SLiCE). The SLiCE motif is found in all Dikarya fungal Cdc14 orthologs and contains an invariant glutamine, which we propose is positioned via substrate-like contacts to assist orientation of the hydrolytic water, similar to a conserved active site glutamine in other PTPs that Cdc14 lacks. AlphaFold2 predictions revealed vertebrate Cdc14 orthologs contain a conserved C-terminal alpha helix bound to the active site. Although apparently unrelated to the fungal sequence, this motif also makes substrate-like contacts and has an invariant glutamine in the catalytic pocket. Altering these residues in human Cdc14A and Cdc14B demonstrated that it functions by the same mechanism as the fungal motif. However, the fungal and vertebrate SLiCE motifs were not functionally interchangeable, illuminating potential active site differences during catalysis. Finally, we show that the fungal SLiCE motif is a target for phosphoregulation of Cdc14 activity. Our study uncovered evolution of an unusual stimulatory pseudosubstrate motif in Cdc14 phosphatases.

7.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125953

RESUMO

Targeting CDC20 can enhance the radiosensitivity of tumor cells, but the function and mechanism of CDC20 on DNA damage repair response remains vague. To examine that issue, tumor cell lines, including KYSE200, KYSE450, and HCT116, were utilized to detect the expression, function, and underlying mechanism of CDC20 in radio-chemoresistance. Western blot and immunofluorescence staining were employed to confirm CDC20 expression and location, and radiation could upregulate the expression of CDC20 in the cell nucleus. The homologous recombination (HR) and non-homologous end joining (NHEJ) reporter gene systems were utilized to explore the impact of CDC20 on DNA damage repair, indicating that CDC20 could promote HR repair and radio/chemo-resistance. In the early stages of DNA damage, CDC20 stabilizes the RPA1 protein through protein-protein interactions, activating the ATR-mediated signaling cascade, thereby aiding in genomic repair. In the later stages, CDC20 assists in the subsequent steps of damage repair by the ubiquitin-mediated degradation of RPA1. CCK-8 and colony formation assay were used to detect the function of CDC20 in cell vitality and proliferation, and targeting CDC20 can exacerbate the increase in DNA damage levels caused by cisplatin or etoposide. A tumor xenograft model was conducted in BALB/c-nu/nu mice to confirm the function of CDC20 in vivo, confirming the in vitro results. In conclusion, this study provides further validation of the potential clinical significance of CDC20 as a strategy to overcome radio-chemoresistance via uncovering a novel role of CDC20 in regulating RPA1 during DNA damage repair.


Assuntos
Proteínas Cdc20 , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos , Tolerância a Radiação , Proteína de Replicação A , Humanos , Animais , Proteína de Replicação A/metabolismo , Proteína de Replicação A/genética , Camundongos , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Cdc20/metabolismo , Proteínas Cdc20/genética , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Camundongos Nus , Reparo do DNA/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Células HCT116 , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
8.
Mol Ther ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39086134

RESUMO

Immune checkpoint blockade has been used to treat breast cancer, but the clinical responses remain relatively poor. We have used the CRISPR-Cas9 kinome knockout library consisting of 763 kinase genes to identify tumor-intrinsic kinases conferring resistance to anti-PD-1 immune checkpoint blockade. We have identified the CDC42BPB kinase as a potential target to overcome the resistance to anti-PD-1 immune checkpoint blockade immunotherapy. We found that CDC42BPB is highly expressed in breast cancer patients who are non-responsive to immunotherapy. Furthermore, a small-molecule pharmacological inhibitor, BDP5290, which targets CDC42BPB, synergized with anti-PD-1 and enhanced tumor cell killing by promoting T cell proliferation in both in vitro and in vivo assays. Moreover, anti-PD-1-resistant breast cancer cells showed higher expression of CDC42BPB, and its inhibition rendered the resistant cells more susceptible to T cell killing in the presence of anti-PD-1. We also found that CDC42BPB phosphorylated AURKA, which in turn upregulated PD-L1 through cMYC. Our results have revealed a robust link between tumor-intrinsic kinase and immunotherapy resistance and have provided a rationale for a unique combination therapy of CDC42BPB inhibition and anti-PD-1 immunotherapy for breast cancer.

9.
Mol Syndromol ; 15(4): 269-274, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39119445

RESUMO

Background: Hereditary hearing loss is a genetically heterogeneous neurosensory disorder that affects many people. Deafness and infertility can coexist in some cases, creating the hearing impairment infertile male syndrome. There are several known molecular mechanisms that can cause deafness either on its own or in conjunction with infertility. Methods and Results: Here, we represent two consanguineous families (A, B), both families had clinical evidence of deafness, and family B also had infertility, so we referred to them as having nonsyndromic hearing loss (NSHL) and hearing impairment infertile male syndrome (HIIMS), respectively. These families' genetic makeup was examined using an Affymetrix GeneChip 250K Nsp array followed by Sanger sequencing. In family A, we identified a novel homozygous stop gain variant [NM_003672.4; c.1000C>T; p.(Gln334*)] and a homozygous missense variant [NM_003672.4; c.684C>A; p.(Asn228Lys)] in family B in CDC14A gene (MIM#603504). In animal models, the CDC14A gene causes both hearing loss and infertility; in addition, it also causes NSHL and HIIMS in humans. Conclusions: Our study on the CDC14A gene has identified two novel variants, crucial for delineating disease boundaries. Variants in exon 10 and upstream cause HIIMS, and those in exon 11 and downstream are linked exclusively to hearing impairment. This precision enhances diagnostics and offers potential for targeted interventions, marking a significant advancement in understanding the genetic basis of these conditions.

10.
Artigo em Inglês | MEDLINE | ID: mdl-39104325

RESUMO

Increased intestinal permeability is a manifestation of cystic fibrosis (CF) in people with CF (pwCF) and in CF mouse models. CF transmembrane conductance regulator knockout (Cftr KO) mouse intestine exhibits increased proliferation and Wnt/ß-catenin signaling relative to wild-type mice (WT). Since the Rho GTPase Cdc42 plays a central role in intestinal epithelial proliferation and tight junction remodeling, we hypothesized that Cdc42 may be altered in the Cftr KO crypts. Immunofluorescence showed distinct tight junction localization of Cdc42 in Cftr KO fresh crypts and enteroids, the latter indicating an epithelial-autonomous feature. Quantitative PCR and immunoblots revealed similar expression of Cdc42 in the Cftr KO crypts/enteroids relative to WT, whereas pull-down assays showed increased GTP-bound (active) Cdc42 in proportion to total Cdc42 in Cftr KO enteroids. Cdc42 activity in the Cftr KO and WT enteroids could be reduced by inhibition of the Wnt transducer Disheveled 2. Using a dye permeability assay, Cftr KO enteroids exhibited increased paracellular permeability to 3kD dextran relative to WT. In Cftr KO relative to WT enteroids, leak permeability and Cdc42 tight junction localization were reduced to a greater extent by inhibition of Wnt/ß-catenin signaling with Endo-IWR1. Increased proliferation or inhibition of Cdc42 activity with ML141 had no effect on WT enteroid permeability. In contrast, inhibition of Cdc42 with ML141 increased permeability to both 3kD dextran and tight-junction impermeant 500 kD dextran in Cftr KO enteroids. These data suggest that increased constitutive Cdc42 activity may alter the stability of paracellular permeability in Cftr KO crypt epithelium.

11.
Heliyon ; 10(14): e34487, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39130484

RESUMO

Targeted protein degradation (TPD) allows cells to maintain a functional proteome and to rapidly adapt to changing conditions. Methods that repurpose TPD for the deactivation of specific proteins have demonstrated significant potential in therapeutic and research applications. Most of these methods are based on proteolysis targeting chimaeras (PROTACs) which link the protein target to an E3 ubiquitin ligase, resulting in the ubiquitin-based degradation of the target protein. In this study, we introduce a method for ubiquitin-independent TPD based on nanobody-conjugated plant ubiquitin regulatory X domain-containing (PUX) adaptor proteins. We show that the PUX-based NAnobody Degraders (P-NADs) can unfold a target protein through the Arabidopsis and human orthologues of the CDC48 unfoldase without the need for ubiquitination or initiating motifs. We demonstrate that P-NAD plasmids can be transfected into a human cell line, where the produced P-NADs use the endogenous CDC48 machinery for ubiquitin-independent TPD of a 143 kDa multidomain protein. Thus, P-NADs pave the road for ubiquitin-independent therapeutic TPD approaches. In addition, the modular P-NAD design combined with in vitro and cellular assays provide a versatile platform for elucidating functional aspects of CDC48-based TPD in plants and animals.

12.
J Med Life ; 17(3): 246-260, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39044924

RESUMO

One of the biggest threats to human well-being and public health is antibiotic resistance. If allowed to spread unchecked, it might become a major health risk and trigger another pandemic. This proves the need to develop antibiotic resistance-related global health solutions that take into consideration microdata from various global locations. Establishing positive social norms, guiding individual and group behavioral habits that support global human health, and ultimately raising public awareness of the need for such action could all have a positive impact. Antibiotic resistance is not just a growing clinical concern but also complicates therapy, making adherence to current guidelines for managing antibiotic resistance extremely difficult. Numerous genetic components have been connected to the development of resistance; some of these components have intricate paths of transfer between microorganisms. Beyond this, the subject of antibiotic resistance is becoming increasingly significant in medical microbiology as new mechanisms underpinning its development are identified. In addition to genetic factors, behaviors such as misdiagnosis, exposure to broad-spectrum antibiotics, and delayed diagnosis contribute to the development of resistance. However, advancements in bioinformatics and DNA sequencing technology have completely transformed the diagnostic sector, enabling real-time identification of the components and causes of antibiotic resistance. This information is crucial for developing effective control and prevention strategies to counter the threat.


Assuntos
Antibacterianos , Resistência Microbiana a Medicamentos , Humanos , Resistência Microbiana a Medicamentos/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Bactérias/genética , Farmacorresistência Bacteriana/genética , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia
13.
Cureus ; 16(6): e63212, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39070429

RESUMO

INTRODUCTION: The Uniform Determination of Death Act (UDDA) ensures that individuals with irreversible cessation of circulatory, respiratory, or brain functions receive timely palliative care. Our research has focused on identifying disparities in mortality among individuals with Down syndrome (DS) based on gender, age, racial groups, and geographic regions within the United States over 22 years. This study aims to analyze differences in the location of death, including hospitals, nursing homes, hospice care facilities, and unspecified locations, considering demographic and regional variables. METHODOLOGY: Utilizing a cross-sectional observational study design, we extracted data from the Centers for Disease Control and Prevention's Wide-ranging Online Data for Epidemiologic Research (CDC-WONDER) database, specifically targeting deaths coded under the International Classification of Diseases, 11th Revision (ICD-11) code "Q-90." This analysis, covering 1999 to 2020, segmented the data by age, gender, race, and United States Census regions. Death locations were categorized into home/hospice, medical facilities, and nursing/other facilities. Data analysis was conducted using Microsoft Excel, and the Autoregressive Integrated Moving Average (ARIMA) model was applied for statistical assessments. RESULTS: Our analysis included 22604 deaths related to DS, as recorded in the CDC-WONDER database from 1999 to 2020. The majority of these deaths occurred in medical or nursing facilities, with home or hospice deaths accounting for 6106 cases and other locations for 5.29% of deaths. Univariate logistic regression was used to identify predictors of home or hospice deaths, revealing a trend of increasing deaths in these settings over time. CONCLUSIONS: Between 1999 and 2020, there was a notable increase in the number of individuals with DS dying at home or in hospice care, especially among those aged 55-64. Female individuals and those identified as white experienced higher mortality rates than other demographic groups. This shift highlights the need to understand the disparity in places of death within this population, ensuring equitable access to quality end-of-life care for all individuals with DS.

14.
Semin Perinatol ; 48(4): 151923, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38960750

RESUMO

The COVID-19 pandemic exposed and exacerbated persistent health inequities in perinatal populations, resulting in disparities of maternal and fetal complications. In this narrative review, we present an adapted conceptual framework of perinatal social determinants of health in the setting of the COVID-19 pandemic and use this framework to contextualize the literature regarding disparities in COVID-19 vaccination and infection. We synthesize how elements of the structural context, individual socioeconomic position, and concrete intermediary determinants influence each other and perinatal COVID-19 vaccination and infection, arguing that systemic inequities at each level contribute to observed disparities in perinatal health outcomes. From there, we identify gaps in the literature, propose mechanisms for observed disparities, and conclude with a discussion of strategies to mitigate them.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Disparidades em Assistência à Saúde , Complicações Infecciosas na Gravidez , SARS-CoV-2 , Vacinação , Humanos , COVID-19/prevenção & controle , Gravidez , Feminino , Complicações Infecciosas na Gravidez/prevenção & controle , Determinantes Sociais da Saúde , Recém-Nascido , Fatores Socioeconômicos , Assistência Perinatal/métodos , Disparidades nos Níveis de Saúde
15.
J Occup Environ Hyg ; : 1-8, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976229

RESUMO

The World Health Organization and the Centers for Disease Control and Prevention (CDC) have established guidelines recommending the performance of hand hygiene routines for healthcare workers following glove removal. However, the completion of frequent hygiene routines can cause allergic and adverse skin reactions. This double-blind, randomized study aimed to address this concern by developing and evaluating a modified glove removal technique that minimizes contamination risk during routine phlebotomy procedures. Furthermore, this study used fluorescent detection to compare the frequency of contamination associated with the CDC-recommended technique and the modified technique using fluorescent detection. One hundred healthcare personnel were enrolled and divided into two groups: one group followed the CDC technique, while the other group implemented the modified technique. Participants received instructional videos and practiced under supervision. They subsequently performed blood collection using a simulation arm covered with fluorescent cream as a contamination marker. After removing gloves, hand contamination was assessed under a black light. The median time required for glove removal in the modified group was four seconds longer than that in the group that followed the CDC technique (p < 0.001). Contamination was observed in 2% (1/50) of subjects using the CDC-recommended technique, while no contamination was detected with the modified technique (p ≥ 0.05). Both the group that followed the CDC technique and the group that used modified glove removal techniques demonstrated the potential to prevent contamination during phlebotomy, thereby reducing the need for hand hygiene and the occurrence of contamination and adverse skin reactions. These findings prompt further exploration into whether proper glove removal can reduce the frequency of completing a hand hygiene routine after each glove removal, specifically within the context of phlebotomy. However, it is essential to note that hand hygiene following glove removal is still recommended to prevent contamination. Further research is warranted to validate these findings.

16.
Genetics ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984710

RESUMO

Centromeric localization of evolutionarily conserved CENP-A (Cse4 in Saccharomyces cerevisiae) is essential for chromosomal stability. Mislocalization of overexpressed CENP-A to non-centromeric regions contributes to chromosomal instability (CIN) in yeasts, flies, and humans. Overexpression and mislocalization of CENP-A observed in many cancers is associated with poor prognosis. Previous studies have shown that F-box proteins, Cdc4 and Met30 of the Skp, Cullin, F-box (SCF) ubiquitin ligase cooperatively regulate proteolysis of Cse4 to prevent Cse4 mislocalization and CIN under normal physiological conditions. Mck1-mediated phosphorylation of SCF-Cdc4 substrates such as Cdc6 and Rcn1 enhances the interaction of the substrates with Cdc4. Here, we report that Mck1 interacts with Cse4, and Mck1-mediated proteolysis of Cse4 prevents Cse4 mislocalization for chromosomal stability. Our results showed that mck1Δ strain overexpressing CSE4 (GAL-CSE4) exhibits lethality, defects in ubiquitin-mediated proteolysis of Cse4, mislocalization of Cse4 and reduced Cse4-Cdc4 interaction. Strain expressing GAL-cse4-3A with mutations in three potential Mck1 phosphorylation consensus site (S10, S16, and T166) also exhibits growth defects, increased stability with mislocalization of Cse4-3A, CIN, and reduced interaction with Cdc4. Constitutive expression of histone H3 (Δ16H3) suppresses the CIN phenotype of GAL-cse4-3A strain, suggesting that the CIN phenotype is linked to Cse4-3A mislocalization. We conclude that Mck1 and its three potential phosphorylation sites on Cse4 promote Cse4-Cdc4 interaction and this contributes to ubiquitin-mediated proteolysis of Cse4 preventing its mislocalization and CIN. These studies advance our understanding of pathways that regulate cellular levels of CENP-A to prevent mislocalization of CENP-A in human cancers.

17.
Cell Mol Life Sci ; 81(1): 321, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078462

RESUMO

Allergic asthma is a complex inflammatory disorder predominantly orchestrated by T helper 2 (Th2) lymphocytes. The anti-inflammatory protein Clara Cell 10-kDa (CC10), also known as secretoglobin family 1A member 1 (SCGB1A1), shows promise in modulating respiratory diseases. However, its precise role in asthma remains unclear. This study examines the potential of CC10 to suppress allergic asthma inflammation, specifically assessing its regulatory effects on Th2 cell responses and dendritic cells (DCs). Lower CC10 levels in asthma were observed and correlated with increased IgE and lymphocytes. Cc10-/- mice exhibited exacerbated allergic airway inflammation marked by increased inflammatory cell infiltration, Th2 cytokines, serum antigen-specific IgE levels, and airway hyperresponsiveness (AHR) in house dust mite (HDM)-induced models. Conversely, recombinant CC10 significantly attenuated these inflammatory responses. Intriguingly, CC10 did not directly inhibit Th cell activation but significantly downregulated the population of CD11b+CD103- DCs subsets in lungs of asthmatic mice and modulated the immune activation functions of DCs through NF-κB signaling pathway. The mixed lymphocyte response assay revealed that DCs mediated the suppressive effect of CC10 on Th2 cell responses. Collectively, CC10 profoundly mitigates Th2-type allergic inflammation in asthma by modulating lung DC phenotype and functions, highlighting its therapeutic potential for inflammatory airway conditions and other related immunological disorders.


Assuntos
Asma , Células Dendríticas , Pulmão , Células Th2 , Uteroglobina , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Asma/imunologia , Asma/patologia , Células Th2/imunologia , Células Th2/metabolismo , Uteroglobina/genética , Uteroglobina/metabolismo , Camundongos , Pulmão/patologia , Pulmão/imunologia , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inflamação/patologia , Inflamação/imunologia , Inflamação/metabolismo , Imunoglobulina E/imunologia , Imunoglobulina E/sangue , Pyroglyphidae/imunologia , NF-kappa B/metabolismo , Citocinas/metabolismo , Feminino , Camundongos Endogâmicos BALB C
18.
Clin Transl Oncol ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066874

RESUMO

Numerous studies over the past few decades have shown that RNAs are multifaceted, multifunctional regulators of most cellular processes, contrary to the initial belief that they only act as mediators for translating DNA into proteins. LncRNAs, which refer to transcripts longer than 200nt and lack the ability to code for proteins, have recently been identified as central regulators of a variety of biochemical and cellular processes, particularly cancer. When they are abnormally expressed, they are closely associated with tumor occurrence, metastasis, and tumor staging. Therefore, through searches on Google Scholar, PubMed, and CNKI, we identified five five recently characterized lncRNAs-Lnc-SLC2A12-10:1, LncRNA BCRT1, lncRNA IGFBP4-1, LncRNA PCNAP1, and LncRNA CDC6-that have been linked to the promotion of cancer cell proliferation, invasion, and metastasis. Consequently, this review encapsulates the existing research and molecular underpinnings of these five newly identified lncRNAs across various types of cancer. It suggests that these novel lncRNAs hold potential as independent biomarkers for clinical diagnosis and prognosis, as well as candidates for therapeutic intervention. In parallel, we discuss the challenges inherent in the research on these five newly discovered lncRNAs and look forward to the avenues for future exploration in this field.

19.
Cell Signal ; 122: 111321, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39067837

RESUMO

Cytokine release from airway epithelial cells is a key immunological process that coordinates an immune response in the lungs. We propose that the Rho GTPase, Cdc42, regulates both transcription and trafficking of cytokines, ultimately affecting the essential process of cytokine release and subsequent inflammation in the lungs. Here, we examined the pro-inflammatory transcriptional profile that occurs in bronchial epithelial cells (BEAS-2B) in response to TNF-α using RNA-Seq and differential gene expression analysis. To interrogate the role of Cdc42 in inflammatory gene expression, we used a pharmacological inhibitor of Cdc42, ML141, and determined changes in the transcriptomic profile induced by Cdc42 inhibition. Our results indicated that Cdc42 inhibition with ML141 resulted in a unique inflammatory phenotype concomitant with increased gene expression of ER stress genes, Golgi membrane and vesicle transport genes. To further interrogate the inflammatory pathways regulated by Cdc42, we made BEAS-2B knockdown strains for the signaling targets TRIB3, DUSP5, SESN2 and BMP4, which showed high differential expression in response to Cdc42 inhibition. Depletion of DUSP5 and TRIB3 reduced the pro-inflammatory response triggered by Cdc42 inhibition as shown by a reduction in cytokine transcript levels. Depletion of SESN2 and BMP4 did not affect cytokine transcript level, however, Golgi fragmentation was reduced. These results provide further evidence that in airway epithelial cells, Cdc42 is part of a signaling network that controls inflammatory gene expression and secretion by regulating Golgi integrity. Summary sentence:We define the Cdc42-regulated gene networks for inflammatory signaling in airway epithelial cells which includes regulation of ER stress response and vesicle trafficking pathways.

20.
Cancers (Basel) ; 16(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39061186

RESUMO

Cell division cycle 20 homolog (CDC20) is a well-known regulator of cell cycle progression. Abnormal expression of CDC20 leads to mitotic defects, which play a significant role in cancer development. In breast cancer (BC), CDC20 has been identified as a biomarker that has been linked to poor patient outcomes. In this study, we investigated the association of CDC20 with BC prognosis and immune cell infiltration by using multiple online databases, including UALCAN, KM plotter, TIMER2.0, HPA, TNM-plot, bc-GenExMiner, LinkedOmics, STRING, and GEPIA. The results demonstrate that BC patients have an elevated CDC20 expression in tumor tissues compared with the adjacent normal tissue. In addition, BC patients with overexpressed CDC20 had a median survival of 63.6 months compared to 169.2 months in patients with low CDC20 expression. Prognostic analysis of the examined data indicated that elevated expression of CDC20 was associated with poor prognosis and a reduction of overall survival in BC patients. These findings were even more prevalent in chemoresistance triple-negative breast cancer (TNBC) patients. Furthermore, the Gene Set Enrichment Analysis tool indicated that CDC20 regulates BC cells' cell cycle and apoptosis. CDC20 also significantly correlates with increased infiltrating B cells, CD4+ T cells, neutrophils, and dendritic cells in BC. In conclusion, the findings of this study suggest that CDC20 may be involved in immunomodulating the tumor microenvironment and provide evidence that CDC20 inhibition may serve as a potential therapeutic approach for the treatment of BC patients. In addition, the data indicates that CDC20 can be a reliable prognostic biomarker for BC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...