Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; : 101752, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39353441

RESUMO

Cyclin-dependent kinases 12/13 play pivotal roles in orchestrating transcription elongation, DNA damage response, and maintenance of genomic stability. Biallelic CDK12 loss has been documented in various malignancies. Here, we develop a selective CDK12/13 PROTAC degrader, YJ9069, which effectively inhibits proliferation in subsets of prostate cancer cells preferentially over benign immortalized cells. CDK12/13 degradation rapidly triggers gene-length-dependent transcriptional elongation defects, leading to DNA damage and cell-cycle arrest. In vivo, YJ9069 significantly suppresses prostate tumor growth. Modifications of YJ9069 yielded an orally bioavailable CDK12/13 degrader, YJ1206, which exhibits comparable efficacy with significantly less toxicity. To identify pathways synthetically lethal upon CDK12/13 degradation, phosphorylation pathway arrays were performed using cell lines treated with YJ1206. Interestingly, degradation or genetic knockdown of CDK12/13 led to activation of the AKT pathway. Targeting CDK12/13 for degradation, in conjunction with inhibiting the AKT pathway, resulted in a synthetic lethal effect in preclinical prostate cancer models.

2.
Cureus ; 16(5): e60970, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38910624

RESUMO

Cyclin-dependent kinase 13 (CDK13)-related disorder is a rare autosomal dominant disease caused by pathogenic variants in the CDK13 gene. This disorder was found to be related to several clinical features, including structural cardiac anomalies, developmental delay, anomalies of the corpus callosum, and a variety of facial dysmorphisms. In addition, feeding difficulties and neonatal hypotonia might also present. The diagnosis of this disorder is based on molecular genetic testing to detect the causative pathogenic variants. Here, we report a case of a one-year-old girl from Yemen, residing in Bahrain, with a CDK13-related disorder who was found to have an unusual association of abdominal situs inversus along with multiple structural cardiac anomalies, including atrial septal defect, ventricular septal defect, patent ductus arteriosus, interrupted inferior vena cava, bilateral superior vena cava, mild coarctation of the aorta, dilated coronary sinuses, and mild regurgitation in the tricuspid valve. Moreover, facial dysmorphism including medial epicanthal folds, posteriorly rotated ears, and a depressed nasal bridge was also noted. Further assessment showed a delay in reaching developmental milestones, including speech and motor delay. The patient also presented with recurrent episodes of upper respiratory tract infections, acute bronchiolitis, and lobar pneumonia which required admission to the intensive care unit and ventilation. The last infection episode was at the age of one year. Thereafter, the patient underwent cardiac repair of the ventricular septal defect followed by no more infection episodes until the age of one year and two months. The diagnosis of CDK13 was confirmed by a whole exome sequencing test which demonstrated a novel missense variant in exon 14 of the CDK13 gene as a variant of uncertain significance in a heterozygous state.

3.
Adv Exp Med Biol ; 1441: 467-480, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884726

RESUMO

Although atrial septal defects (ASD) can be subdivided based on their anatomical location, an essential aspect of human genetics and genetic counseling is distinguishing between isolated and familiar cases without extracardiac features and syndromic cases with the co-occurrence of extracardiac abnormalities, such as developmental delay. Isolated or familial cases tend to show genetic alterations in genes related to important cardiac transcription factors and genes encoding for sarcomeric proteins. By contrast, the spectrum of genes with genetic alterations observed in syndromic cases is diverse. Currently, it points to different pathways and gene networks relevant to the dysregulation of cardiomyogenesis and ASD pathogenesis. Therefore, this chapter reflects the current knowledge and highlights stable associations observed in human genetics studies. It gives an overview of the different types of genetic alterations in these subtypes, including common associations based on genome-wide association studies (GWAS), and it highlights the most frequently observed syndromes associated with ASD pathogenesis.


Assuntos
Estudo de Associação Genômica Ampla , Comunicação Interatrial , Humanos , Comunicação Interatrial/genética , Predisposição Genética para Doença/genética , Mutação
4.
BMC Biol ; 22(1): 132, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38835016

RESUMO

BACKGROUND: ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, is thought to play a significant role both in tumor suppression and tumor initiation, which is highly dependent upon context. Previous studies have suggested that ARID1A deficiency may contribute to cancer development. The specific mechanisms of whether ARID1A loss affects tumorigenesis by RNA editing remain unclear. RESULTS: Our findings indicate that the deficiency of ARID1A leads to an increase in RNA editing levels and alterations in RNA editing categories mediated by adenosine deaminases acting on RNA 1 (ADAR1). ADAR1 edits the CDK13 gene at two previously unidentified sites, namely Q113R and K117R. Given the crucial role of CDK13 as a cyclin-dependent kinase, we further observed that ADAR1 deficiency results in changes in the cell cycle. Importantly, the sensitivity of ARID1A-deficient tumor cells to SR-4835, a CDK12/CDK13 inhibitor, suggests a promising therapeutic approach for individuals with ARID1A-mutant tumors. Knockdown of ADAR1 restored the sensitivity of ARID1A deficient cells to SR-4835 treatment. CONCLUSIONS: ARID1A deficiency promotes RNA editing of CDK13 by regulating ADAR1.


Assuntos
Adenosina Desaminase , Quinases Ciclina-Dependentes , Proteínas de Ligação a DNA , Edição de RNA , Proteínas de Ligação a RNA , Fatores de Transcrição , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Linhagem Celular Tumoral , Proteína Quinase CDC2
5.
bioRxiv ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38562774

RESUMO

Biallelic loss of cyclin-dependent kinase 12 (CDK12) defines a unique molecular subtype of metastatic castration-resistant prostate cancer (mCRPC). It remains unclear, however, whether CDK12 loss per se is sufficient to drive prostate cancer development-either alone, or in the context of other genetic alterations-and whether CDK12-mutant tumors exhibit sensitivity to specific pharmacotherapies. Here, we demonstrate that tissue-specific Cdk12 ablation is sufficient to induce preneoplastic lesions and robust T cell infiltration in the mouse prostate. Allograft-based CRISPR screening demonstrated that Cdk12 loss is positively associated with Trp53 inactivation but negatively associated with Pten inactivation-akin to what is observed in human mCRPC. Consistent with this, ablation of Cdk12 in prostate organoids with concurrent Trp53 loss promotes their proliferation and ability to form tumors in mice, while Cdk12 knockout in the Pten-null prostate cancer mouse model abrogates tumor growth. Bigenic Cdk12 and Trp53 loss allografts represent a new syngeneic model for the study of androgen receptor (AR)-positive, luminal prostate cancer. Notably, Cdk12/Trp53 loss prostate tumors are sensitive to immune checkpoint blockade. Cdk12-null organoids (either with or without Trp53 co-ablation) and patient-derived xenografts from tumors with CDK12 inactivation are highly sensitive to inhibition or degradation of its paralog kinase, CDK13. Together, these data identify CDK12 as a bona fide tumor suppressor gene with impact on tumor progression and lends support to paralog-based synthetic lethality as a promising strategy for treating CDK12-mutant mCRPC.

6.
Dis Model Mech ; 17(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38511331

RESUMO

CDK13-related disorder, also known as congenital heart defects, dysmorphic facial features and intellectual developmental disorder (CHDFIDD) is associated with mutations in the CDK13 gene encoding transcription-regulating cyclin-dependent kinase 13 (CDK13). Here, we focused on the development of craniofacial structures and analyzed early embryonic stages in CHDFIDD mouse models, with one model comprising a hypomorphic mutation in Cdk13 and exhibiting cleft lip/palate, and another model comprising knockout of Cdk13, featuring a stronger phenotype including midfacial cleft. Cdk13 was found to be physiologically expressed at high levels in the mouse embryonic craniofacial structures, namely in the forebrain, nasal epithelium and maxillary mesenchyme. We also uncovered that Cdk13 deficiency leads to development of hypoplastic branches of the trigeminal nerve including the maxillary branch. Additionally, we detected significant changes in the expression levels of genes involved in neurogenesis (Ache, Dcx, Mef2c, Neurog1, Ntn1, Pou4f1) within the developing palatal shelves. These results, together with changes in the expression pattern of other key face-specific genes (Fgf8, Foxd1, Msx1, Meis2 and Shh) at early stages in Cdk13 mutant embryos, demonstrate a key role of CDK13 in the regulation of craniofacial morphogenesis.


Assuntos
Modelos Animais de Doenças , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese , Animais , Neurogênese/genética , Desenvolvimento Embrionário/genética , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Crânio/embriologia , Crânio/patologia , Camundongos , Fissura Palatina/genética , Fissura Palatina/patologia , Fissura Palatina/embriologia , Fenda Labial/genética , Fenda Labial/patologia , Fenda Labial/embriologia , Nervo Trigêmeo/embriologia , Embrião de Mamíferos/metabolismo , Face/embriologia , Face/anormalidades , Fenótipo , Deficiência Intelectual/genética , Mutação/genética , Proteína Duplacortina
7.
Ann Agric Environ Med ; 31(1): 147-150, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38549490

RESUMO

There are 21 human cyclin-dependent kinases which are involved in regulation of the cell cycle, transcription, RNA splicing, apoptosis and neurogenesis. Five of them: CDK4, CDK5, CDK6, CDK10 and CDK13 are associated with human phenotypes. To date, only 62 patients have been presented with mutated CDK13 gene. Those patients had developmental delay, dysmorphic facial features, feeding difficulties, different structural heart and brain defects. 36 of them had missense mutation affecting the protein kinase domain of CDK13. Our patient is the first person reported so far with a frameshift mutation which introduce premature stop codon in the first exon of the CDK13 gene. She has symptoms characteristic for congenital heart defects, facial dysmorphism and intellectual developmental disorder (CHDFIDD).


Assuntos
Deficiências do Desenvolvimento , Cardiopatias Congênitas , Deficiência Intelectual , Criança , Feminino , Humanos , Proteína Quinase CDC2/genética , Quinases Ciclina-Dependentes/genética , Deficiências do Desenvolvimento/genética , Cardiopatias Congênitas/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Fenótipo
8.
J Biol Chem ; 300(1): 105501, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016516

RESUMO

Inhibition of cyclin-dependent kinases (CDKs) has evolved as an emerging anticancer strategy. In addition to the cell cycle-regulating CDKs, the transcriptional kinases Cdk12 and Cdk13 have become the focus of interest as they mediate a variety of functions, including the transition from transcription initiation to elongation and termination, precursor mRNA splicing, and intronic polyadenylation. Here, we determine the crystal structure of the small molecular inhibitor SR-4835 bound to the Cdk12/cyclin K complex at 2.68 Å resolution. The compound's benzimidazole moiety is embedded in a unique hydrogen bond network mediated by the kinase hinge region with flanking hydroxy groups of the Y815 and D819 side chains. Whereas the SR-4835 head group targets the adenine-binding pocket, the kinase's glycine-rich loop is shifted down toward the activation loop. Additionally, the αC-helix adopts an inward conformation, and the phosphorylated T-loop threonine interacts with all three canonical arginines, a hallmark of CDK activation that is altered in Cdk12 and Cdk13. Dose-response inhibition measurements with recombinant CMGC kinases show that SR-4835 is highly specific for Cdk12 and Cdk13 following a 10-fold lower potency for Cdk10. Whereas other CDK-targeting compounds exhibit tighter binding affinities and higher potencies for kinase inhibition, SR-4835 can be considered a selective transcription elongation antagonist. Our results provide the basis for a rational improvement of SR-4835 toward Cdk12 inhibition and a gain in selectivity over other transcription regulating CDKs.


Assuntos
Quinases Ciclina-Dependentes , Ciclinas , Poliadenilação , Ciclinas/metabolismo , Conformação Molecular , Humanos , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/química
9.
Genes (Basel) ; 14(10)2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37895297

RESUMO

Axenfeld-Rieger anomaly (ARA) is a specific ocular disorder that is frequently associated with other systemic abnormalities. PITX2 and FOXC1 variants explain the majority of individuals with Axenfeld-Rieger syndrome (ARS) but leave ~30% unsolved. Here, we present pathogenic/likely pathogenic variants in nine families with ARA/ARS or similar phenotypes affecting five different genes/regions. USP9X and JAG1 explained three families each. USP9X was recently linked with syndromic cognitive impairment that includes hearing loss, dental defects, ventriculomegaly, Dandy-Walker malformation, skeletal anomalies (hip dysplasia), and other features showing a significant overlap with FOXC1-ARS. Anterior segment anomalies are not currently associated with USP9X, yet our cases demonstrate ARA, congenital glaucoma, corneal neovascularization, and cataracts. The identification of JAG1 variants, linked with Alagille syndrome, in three separate families with a clinical diagnosis of ARA/ARS highlights the overlapping features and high variability of these two phenotypes. Finally, intragenic variants in CDK13, BCOR, and an X chromosome deletion encompassing HCCS and AMELX (linked with ocular and dental anomalies, correspondingly) were identified in three additional cases with ARS. Accurate diagnosis has important implications for clinical management. We suggest that broad testing such as exome sequencing be applied as a second-tier test for individuals with ARS with normal results for PITX2/FOXC1 sequencing and copy number analysis, with attention to the described genes/regions.


Assuntos
Anormalidades do Olho , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Proteínas de Homeodomínio/genética , Segmento Anterior do Olho/anormalidades , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Ubiquitina Tiolesterase
10.
Cancers (Basel) ; 15(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37190191

RESUMO

Osimertinib is a third-generation epidermal growth factor receptor and tyrosine kinase inhibitor (EGFR-TKI) approved for the treatment of lung adenocarcinoma patients harboring EGFR mutations. However, acquired resistance to this targeted therapy is inevitable, leading to disease relapse within a few years. Therefore, understanding the molecular mechanisms of osimertinib resistance and identifying novel targets to overcome such resistance are unmet needs of cancer patients. Here, we investigated the efficacy of two novel CDK12/13 inhibitors, AU-15506 and AU-16770, in osimertinib-resistant EGFR mutant lung adenocarcinoma cells in culture and xenograft models in vivo. We demonstrate that these drugs, either alone or in combination with osimertinib, are potent inhibitors of osimertinib-resistant as well as -sensitive lung adenocarcinoma cells in culture. Interestingly, only the CDK12/13 inhibitor in combination with osimertinib, although not as monotherapy, suppresses the growth of resistant tumors in xenograft models in vivo. Taken together, the results of this study suggest that inhibition of CDK12/13 in combination with osimertinib has the potential to overcome osimertinib resistance in EGFR mutant lung adenocarcinoma patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...