Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38849301

RESUMO

CONTEXT: The CERT1 (Cardiovascular Event Risk Test) score derived from plasma ceramides has been applied clinically for cardiovascular risk assessment. OBJECTIVE: To study whether plasma ceramides predict risk of mortality in patients with type 2 diabetes. DESIGN, SETTING AND PARTICIPANTS: A prospective study which included 1903 outpatients with type 2 diabetes in a regional hospital and a primary care facility in Singapore. EXPOSURE AND OUTCOME: Plasma ceramides (d18:1/16:0, d18:1/18:0, d18:1/24:0, d18:1/24:1) were measured by mass spectrometry and CERT1 score was calculated accordingly. Main outcomes were all-cause and cause-specific mortality. RESULTS: 252 death events were identified during median of 9.3 years of follow-up. Compared to those with low score (≤ 2), participants with a high CERT1 score (≥ 7) had 1.86 (95% CI 1.30-3.65) fold increased risk for all-cause death after adjustment for cardio-renal risk factors including eGFR and albuminuria. As continuous variable, one- unit increment in CERT1 was associated with 8% increased risk for all-cause death (adjusted HR 1.08 [1.04-1.13]). Adding CERT1 onto RECODe (Risk Equations for Complications Of type 2 Diabetes) mortality risk engine significantly improved prediction of 10- year risk of all-cause death (AUC 0.810 to 0.823, delta 0.013 [0.005-0.022]). The association between CERT1 and non-cardiovascular death remained significant (adjusted HR 2.12 [1.32-3.42]), whereas its association with cardiovascular death became non-significant after adjustment for kidney measurements (adjusted HR 1.41 [0.78-2.56]). CONCLUSION: CERT1 score predicts mortality risk independent of clinical cardio-renal risk factors. Further studies are warranted to elucidate the mechanistic linkage between ceramide and mortality, especially non-cardiovascular mortality.

2.
J Clin Med ; 12(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38137595

RESUMO

Ceramides and other sphingolipids are implicated in vascular dysfunction and inflammation. They have been suggested as potential biomarkers for hypertension. However, their specific association with hypertension prevalence and onset requires further investigation. This study aimed to identify specific ceramide and phosphatidylcholine species associated with hypertension prevalence and onset. The 2002 FINRISK (Finnish non-communicable risk factor survey) study investigated the association between coronary event risk scores (CERT1 and CERT2) and hypertension using prevalent and new-onset hypertension groups, both consisting of 7722 participants, over a span of 10 years. Ceramide and phosphatidylcholine levels were measured using tandem liquid chromatography-mass spectrometry. Ceramide and phosphatidylcholine ratios, including ceramide (d18:1/18:0), ceramide (d18:1/24:1), phosphatidylcholine (16:0/16:0), and the ratio of ceramide (d18:1/18:0)/(d18:1/16:0), are consistently associated with both prevalence and new-onset hypertension. Ceramide (d18:1/24:0) was also linked to both hypertension measures. Adjusting for covariates, CERT1 and CERT2 showed no-longer-significant associations with hypertension prevalence, but only CERT2 predicted new-onset hypertension. Plasma ceramides and phosphatidylcholines are crucial biomarkers for hypertension, with imbalances potentially contributing to its development. Further research is needed to understand the underlying mechanisms by which ceramides will contribute to the development of hypertension.

3.
Int J Mol Sci ; 24(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37569827

RESUMO

Ceramide risk score (CERT1, ceramide test 1), based on specific ceramides (Cers) and their corresponding ratios in the plasma, has been reported as a promising biochemical marker for primary and secondary prediction of cardiovascular disease (CVD) risk in different populations of patients. Thus far, limited attention has been paid to metabolic syndrome, a condition considered at high CVD risk. The aim of the present study was to evaluate CERT1 in a group of obese subjects without (OB-MetS-) and with (OB-MetS+) metabolic syndrome (according to the International Diabetes Federation (IDF) diagnostic criteria), compared to an age- and sex-matched normal-weight (NW) group. In all participants, plasma levels of Cer 16:0, Cer 18:0, Cer 24:1, and Cer 24:0 were measured, and the corresponding ratios Cer 16:0/24:0, Cer 18:0/24:0, and Cer 24:1/24:0 were calculated together with CERT1. Subjects with obesity showed higher CERT1 values than the NW group (p < 0.05), with no difference between OB-MetS- and OB-MetS+ groups. Waist circumference (WC), homeostatic model assessment of insulin-resistance (HOMA-IR) (surrogates of IDF diagnostic criteria for metabolic syndrome), and C reactive protein (CRP) (a marker of inflammation) were predictors of CERT1 (p < 0.05), with the contribution of the other IDF criteria such as arterial hypertension and dyslipidemia being negligible. Adjustment for WC resulted in a loss of the difference in CERT1 between OB-MetS- and NW subjects, with the combination of WC and HOMA-IR or CRP as covariates being necessary to yield the same effect for the difference in CERT1 between OB-MetS+ and NW subjects. Importantly, an association was found between CERT1 and vascular age (VA) (p < 0.05). Proportions of NW, OB-MetS- and OB-MetS+ subjects appeared to be distributed according to the CERT1-based risk groups (i.e., low, moderate, increased, and high risk; p < 0.05), with some OB-MetS- subjects included in the increased/high-risk group and some OB-MetS+ in the low/moderate-risk one. In conclusion, the clinical diagnosis of metabolic syndrome seems to be inaccurate to assess CVD risk in the obese population; however, further studies are needed before considering CERT1 as an additional or substitutive biochemical marker in clinical practice.

4.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35955719

RESUMO

Ceramide transport protein (CERT) mediates ceramide transfer from the endoplasmic reticulum to the Golgi for sphingomyelin (SM) biosynthesis. CERT is inactivated by multiple phosphorylation at the serine-repeat motif (SRM), and mutations that impair the SRM phosphorylation are associated with a group of inherited intellectual disorders in humans. It has been suggested that the N-terminal phosphatidylinositol 4-monophosphate [PtdIns(4)P] binding domain and the C-terminal ceramide-transfer domain of CERT physically interfere with each other in the SRM phosphorylated state, thereby repressing the function of CERT; however, it remains unclear which regions in CERT are involved in the SRM phosphorylation-dependent repression of CERT. Here, we identified a previously uncharacterized cluster of lysine/arginine residues that were predicted to be located on the outer surface of a probable coiled-coil fold in CERT. Substitutions of the basic amino acids in the cluster with alanine released the SRM-dependent repression of CERT activities, i.e., the synthesis of SM, PtdIns(4)P-binding, vesicle-associated membrane protein-associated protein (VAP) binding, ceramide-transfer activity, and localization to the Golgi, although the effect on SM synthesis activity was only partially compromised by the alanine substitutions, which moderately destabilized the trimeric status of CERT. These results suggest that the basic amino acid cluster in the coiled-coil region is involved in the regulation of CERT function.


Assuntos
Proteínas de Transporte , Ceramidas , Alanina/metabolismo , Aminoácidos Básicos/metabolismo , Transporte Biológico/fisiologia , Proteínas de Transporte/metabolismo , Ceramidas/metabolismo , Complexo de Golgi/metabolismo , Humanos , Fosfatidilinositóis/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases , Serina/metabolismo
5.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216212

RESUMO

Lipid transfer proteins (LTPs) are recognized as key players in the inter-organelle trafficking of lipids and are rapidly gaining attention as a novel molecular target for medicinal products. In mammalian cells, ceramide is newly synthesized in the endoplasmic reticulum (ER) and converted to sphingomyelin in the trans-Golgi regions. The ceramide transport protein CERT, a typical LTP, mediates the ER-to-Golgi transport of ceramide at an ER-distal Golgi membrane contact zone. About 20 years ago, a potent inhibitor of CERT, named (1R,3S)-HPA-12, was found by coincidence among ceramide analogs. Since then, various ceramide-resembling compounds have been found to act as CERT inhibitors. Nevertheless, the inevitable issue remains that natural ligand-mimetic compounds might directly bind both to the desired target and to various undesired targets that share the same natural ligand. To resolve this issue, a ceramide-unrelated compound named E16A, or (1S,2R)-HPCB-5, that potently inhibits the function of CERT has recently been developed, employing a series of in silico docking simulations, efficient chemical synthesis, quantitative affinity analysis, protein-ligand co-crystallography, and various in vivo assays. (1R,3S)-HPA-12 and E16A together provide a robust tool to discriminate on-target effects on CERT from off-target effects. This short review article will describe the history of the development of (1R,3S)-HPA-12 and E16A, summarize other CERT inhibitors, and discuss their possible applications.


Assuntos
Transporte Biológico/fisiologia , Ceramidas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos , Ligantes
6.
FEBS Lett ; 593(17): 2366-2377, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31254361

RESUMO

The inter-organelle transport of lipids must be regulated to ensure appropriate lipid composition of each organelle. In mammalian cells, ceramide synthesised in the endoplasmic reticulum (ER) is transported to the trans-Golgi regions, where ceramide is converted to sphingomyelin (SM) with the concomitant production of diacylglycerol. Ceramide transport protein (CERT) transports ceramide from the ER to the trans-Golgi regions at the ER-Golgi membrane contact sites (MCS). The function of CERT is down-regulated by multisite phosphorylation of a serine-repeat motif (SRM) and up-regulated by phosphorylation of serine 315 in CERT. Multisite phosphorylation of the SRM is primed by protein kinase D, which is activated by diacylglycerol. The function of CERT is regulated by a phosphorylation-dependent feedback mechanism in response to cellular requirements of SM. CERT-dependent ceramide transport is also affected by the pool of phosphatidylinositol (PtdIns)-4-phosphate (PtdIns(4)P) in the trans-Golgi regions, while the PtdIns(4)P pool is regulated by PtdIns-4-kinases and oxysterol-binding protein. The ER-Golgi MCS may serve as inter-organelle communication zones, in which many factors work in concert to serve as an extensive rheostat of SM, diacylglycerol, cholesterol and PtdIns(4)P.


Assuntos
Ceramidas/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Transporte Biológico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...