Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Clin Neurol ; 20(1): 59-66, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38179633

RESUMO

BACKGROUND AND PURPOSE: X-linked Charcot-Marie-Tooth disease type 1 (CMTX1) is characterized by peripheral neuropathy with or without episodic neurological dysfunction. We performed clinical, neuropathological, and genetic investigations of a series of patients with mutations of the gap-junction beta-1 gene (GJB1) to extend the phenotypic and genetic description of CMTX1. METHODS: Detailed clinical evaluations, sural nerve biopsy, and genetic analysis were applied to patients with CMTX1. RESULTS: We collected 27 patients with CMTX1 with GJB1 mutations from 14 unrelated families. The age at onset (AAO) was 20.9±12.2 years (mean±standard deviation; range, 2-45 years). Walking difficulties, weakness in the legs, and pes cavus were common initial symptoms. Compared with female patients, males tended to have a younger AAO (males vs. females=15.4±9.6 vs. 32.0±8.8 years, p=0.002), a longer disease course (16.8±16.1 vs. 5.5±3.8 years, p=0.034), and more-severe electrophysiological results. Besides peripheral neuropathy, six of the patients had special episodic central nervous system (CNS) evidence from symptoms, signs, and/or reversible white-matter lesions. Neuropathology revealed the loss of large myelinated fibers, increased number of regenerated axon clusters with abnormally thin myelin sheaths, and excessively folded myelin. Genetic analysis identified 14 GJB1 variants, 6 of which were novel. CONCLUSIONS: These findings expand the phenotypic and genetic spectrum of CMTX1. Although CMTX1 was found to have high phenotypic and CNS involvement variabilities, detailed neurological examinations and nerve conduction studies will provide critical clues for accurate diagnoses. Further exploration of the underlying mechanisms of connexin 32 involvement in neuropathy or CNS dysfunction is warranted to develop promising therapies.

2.
Handb Clin Neurol ; 195: 609-617, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37562889

RESUMO

The hereditary neuropathies, collectively referred as Charcot-Marie-Tooth disease (CMT) and related disorders, are heterogeneous genetic peripheral nerve disorders that collectively comprise the commonest inherited neurological disease with an estimated prevalence of 1:2500 individuals. The field of hereditary neuropathies has made significant progress in recent years with respect to both gene discovery and treatment as a result of next-generation sequencing (NGS) approach. These investigations which have identified over 100 causative genes and new mutations have made the classification of CMT even more challenging. Despite so many different mutated genes, the majority of CMT forms share a similar clinical phenotype, and due to this phenotypic homogeneity, genetic testing in CMT is increasingly being performed through the use of NGS panels. The majority of patients still have a mutation in one the four most common genes (PMP22 duplication-CMT1A, MPZ-CMT1B, GJB1-CMTX1, and MFN2-CMT2A). This chapter focuses primarily on these four forms and their potential therapeutic approaches.


Assuntos
Doença de Charcot-Marie-Tooth , Humanos , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Testes Genéticos , Mutação/genética , Fenótipo
3.
J Peripher Nerv Syst ; 27(2): 113-119, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35383424

RESUMO

X-linked Charcot-Marie-Tooth type 1 (CMTX1) disease is one of the most common subtypes of inherited neuropathies and is caused by mutations in the GJB1 gene. To date, more than 400 mutations have been reported in GJB1 worldwide but none in sub-Saharan Africa (SSA). We aimed to clinically characterize patients with CMTX1 and identify the genetic defects. All patients were examined thoroughly, and Nerve Conduction Studies (NCS) were done. EEG and pure tone audiometry (PTA) were also done in select individuals having additional symptoms. DNA was extracted for CMT gene panel testing (50 genes + mtDNA and PMP22 duplication), and putative variants were screened in available relatives. The predominant starting symptom was tingling, and the chief complaint was gait difficulty. Neurological examination found a distal muscle weakness and atrophy, and sensory loss, skeletal deformities, decreased or absent reflexes and steppage gait. The inheritance pattern was consistent with dominant X-linked. NCS showed no response in most of the tested nerves in lower limbs, and normal or reduced amplitudes in upper limbs. A severe sensorineural hearing impairment and a focal epileptic seizure were observed in one patient each. A high intra and inter-familial clinical variability was observed. Genetic testing found three pathogenic missense variants in GJB1, one in each of the families (Val91Met, Arg15Trp, and Phe235Cys). This is the first report of genetically confirmed cases of CMTX1 in SSA, and confirms its clinical and genetic heterogeneity.


Assuntos
Doença de Charcot-Marie-Tooth , Conexinas , Doença de Charcot-Marie-Tooth/patologia , Conexinas/genética , Humanos , Mali , Mutação/genética , Mutação de Sentido Incorreto , Proteína beta-1 de Junções Comunicantes
4.
Neurogenetics ; 22(3): 149-160, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34089394

RESUMO

The second most common form of Charcot-Marie-Tooth neuropathy (CMT), X-linked CMT type X1 (CMTX1), is caused by coding and non-coding mutations in the gap junction beta 1 (GJB1) gene. The non-coding GJB1 c.-103C > T mutation (NM_000166.5) has been reported to cause CMTX1 in multiple families. This study assessed the internal ribosomal entry site (IRES) activity previously reported for the rat Gjb1 P2 5' untranslated region (UTR). Using a bicistronic assay and transfecting RT4 Schwann cells, IRES activity of the human GJB1 P2 5' UTR was compared to the GJB1 P2 5' UTR containing either the c.-103C > T mutation or the non-pathogenic c.-102G > A variant. No differences in GJB1 P2 5' UTR IRES activity were observed between the negative control, the wild-type P2 5' UTR, the c.-103C > T 5' UTR or the c.-102G > A 5' UTR, irrespective of the GJB1 intron being present (p = .429 with intron, and p = .865 without). A theoretical c.-131A > G variant was predicted to result in the same RNA secondary structure as the GJB1 c.-103C > T P2 5' UTR. However, no significant difference was observed between expression from the wild-type GJB1 P2 5' UTR and the GJB1 c.-131A > G variant (p = .688). Deletion of the conserved region surrounding the c.-103C > T mutation (c.-108_-103del) resulted in significantly higher expression than the c.-103C > T mutation alone (p = .019), suggesting that the conserved c.-108_-103 region was not essential for translation. The reporter assays in this study do not recapitulate the previously reported GJB1 IRES activity and suggest an alternate pathogenic mechanism for the c.-103C > T CMTX1 non-coding mutation.


Assuntos
Regiões 5' não Traduzidas/efeitos dos fármacos , Doença de Charcot-Marie-Tooth/genética , Genes Ligados ao Cromossomo X/genética , Animais , Doença de Charcot-Marie-Tooth/etiologia , Conexinas/genética , Junções Comunicantes/genética , Junções Comunicantes/patologia , Mutação/genética , Ratos
5.
Ann Clin Transl Neurol ; 8(1): 213-223, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33314704

RESUMO

OBJECTIVE: X-linked Charcot-Marie-Tooth type 1 (CMTX1) is an inherited peripheral neuropathy caused by mutations in the gap junction beta 1 (GJB1) gene, which encodes the connexin32 protein. A small number of patients with GJB1 mutations present with episodic neurological dysfunction and reversible white matter lesions, which has not been adequately reported. Here, we aim to enable clinicians to further understand this particular situation through systematically reviewing all published relevant cases. METHODS: We conducted a comprehensive search of the PubMed electronic database for medical literature relevant to CMTX1 patients with episodic neurological dysfunction and then fully analyzed the general information, clinical manifestations, and characteristics of magnetic resonance imaging (MRI), cerebrospinal fluid (CSF) analysis, and nerve conduction study (NCS). RESULTS: We identified 47 cases of CMTX1 associated with episodic central nervous system (CNS) dysfunction from 38 publications. CMTX1 patients experienced episodic CNS deficits at a young age, ranging from infancy to 26 years, and 45 (95.7%) of them were male. The CNS symptoms manifested as facial, lingual, or limb weakness in 44 (93.6%), dysarthria or dysphagia in 39 (83.0%), facial or limb numbness in 15 (31.9%), and ataxia in 10 (21.3%) patients. The duration of episodic symptoms ranged from 3 minutes to 6 months. Thirty (63.8%) CMTX1 cases have reported obvious predisposing factors, among which the most common factors were infection or fever (27.7%), travel to high altitude (12.8%), and intensive exercise (8.5%). As for brain MRI, most abnormal signals were found in bilateral deep white matter (88.9%) and corpus callosum (80.0%). In addition, most of the NCS results were abnormal, including prolonged latency, reduced amplitude, and slowed conduction velocity. The motor nerve conduction velocity (MNCV) of median nerve was the most detectable and valuable, ranging from 25 to 45 m/s. INTERPRETATION: We have reported the most comprehensive summary of the demographic and clinical profile from 47 CMTX1 patients with episodic CNS deficits and provided new insight into the phenotype spectrum of CMTX1. We hope that our study can help clinicians make early diagnosis and implement the best prevention and treatment strategies for CMTX1 patients with episodic CNS deficits.


Assuntos
Doenças do Sistema Nervoso Central/epidemiologia , Doenças do Sistema Nervoso Central/etiologia , Doença de Charcot-Marie-Tooth/complicações , Feminino , Humanos , Masculino
6.
Brain Sci ; 11(1)2020 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-33375465

RESUMO

The second most common form of Charcot-Marie-Tooth disease (CMT) follows an X-linked dominant inheritance pattern (CMTX1), referring to mutations in the gap junction protein beta 1 gene (GJB1) that affect connexin 32 protein (Cx32) and its ability to form gap junctions in the myelin sheath of peripheral nerves. Despite the advances of next-generation sequencing (NGS), attention has only recently also focused on noncoding regions. We describe two unrelated families with a c.-17+1G>T transversion in the 5' untranslated region (UTR) of GJB1 that cosegregates with typical features of CMTX1. As suggested by in silico analysis, the mutation affects the regulatory sequence that controls the proper splicing of the intron in the corresponding mRNA. The retention of the intron is also associated with reduced levels of the transcript and the loss of immunofluorescent staining for Cx32 in the nerve biopsy, thus supporting the hypothesis of mRNA instability as a pathogenic mechanism in these families. Therefore, our report corroborates the role of 5' UTR of GJB1 in the pathogenesis of CMTX1 and emphasizes the need to include this region in routine GJB1 screening, as well as in NGS panels.

7.
Front Neurol ; 11: 690, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903794

RESUMO

Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous group of inherited neuropathies. The GJB1 gene is the pathogenic gene of CMTX1. In this study, we screened a cohort of 465 unrelated Chinese CMT patients from years 2007 to 2019 and 650 controls by direct Sanger sequencing in GJB1 gene or targeted next-generation sequencing (NGS) or whole-exome sequencing (WES). A bidirectional Sanger sequencing would be performed on the 600 bases in the upstream promoter region and 30 bases in the 3' untranslated region (UTR), if no mutation was found in the coding region of GJB1 of the patient. According to the results, 24 missense mutations, 4 nonsense mutation, 1 entire deletion, 1 intronic mutation, and 4 frameshift mutations in GJB1 were identified. Three of them were novel mutations (c.104 T>C, c.658-659 ins C, and c.811 del G). Moreover, central nervous system involvement was observed in five patients carrying mutations of R15W, V95M, R142W, R164W, and E186K. Our findings expand the mutational spectrum of the GJB1 gene in CMT patients. We also explored the genotype-phenotype correlation according to the collected information in this study. NGS panels for detecting inherited neuropathy should cover the non-coding region of GJB1.

8.
J Clin Neurosci ; 73: 311-313, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31987637

RESUMO

Charcot-Marie-Tooth (CMT) disease is the most common hereditary peripheral neuropathy. X-linked Charcot-Marie-Tooth disease in the GJB1 gene is known as CMTX1. We report a 14 years-old young man with walked unstably, bilateral strephenopodia, severe alopecia and paroxysmal bilateral upper limbs tremor without obvious muscle atrophy. Diagnostic whole-exome sequencing revealed a hemizygote missense mutation c.278 T > A in exon 2 of the GJB1 gene, with lysine at position 93 of the mature protein (p.M93K). This is the first CMT case with alopecia areata reported in the world.


Assuntos
Doença de Charcot-Marie-Tooth/diagnóstico , Conexinas/genética , Fenótipo , Adolescente , Doença de Charcot-Marie-Tooth/genética , Testes Genéticos , Humanos , Masculino , Mutação de Sentido Incorreto , Sequenciamento do Exoma , Proteína beta-1 de Junções Comunicantes
9.
Clin Neurol Neurosurg ; 184: 105430, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31323543

RESUMO

The X-linked form of Charcot-Marie-Tooth disease type1 (CMTX1) is the second most common hereditary motor and sensory neuropathy caused by mutations in the gap junction beta 1 (GJB1) gene. Here, we report the clinical and genetic features of six unrelated Chinese patients with CMTX1, which were identified by genetic analysis. Among the 6 identified mutations, 3 were previously unknown (c.31A > T, c.42 C > G and c.423 del C). The six patients showed typical signs of CMT with a median age of onset of 16.5 years (range: 13-30). Sensorineural hearing loss was confirmed in the patient with the c.423 del C mutation. White matter lesions on brain magnetic resonance imaging (MRI) were observed in two patients. The three newly identified GJB1 mutations expand the clinical and mutational spectrum of CMTX1.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Conexinas/genética , Mutação/genética , Adulto , Doença de Charcot-Marie-Tooth/diagnóstico , Feminino , Testes Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem , Proteína beta-1 de Junções Comunicantes
10.
Front Cell Neurosci ; 13: 69, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30881289

RESUMO

Peripheral nerves have the capacity to conduct action potentials along great distances and quickly recover following damage which is mainly due to Schwann cells (SCs), the most abundant glial cells of the peripheral nervous system (PNS). SCs wrap around an axonal segment multiple times, forming a myelin sheath, allowing for a significant increase in action potential conduction by insulating the axons. Mature myelin consists of compact and non-compact (or cytoplasmic) myelin zones. Non-compact myelin is found in paranodal loops bordering the nodes of Ranvier, and in the inner and outermost cytoplasmic tongues and is the region in which Schmidt-Lanterman incisures (SLI; continuous spirals of overlapping cytoplasmic expansions within areas of compact myelin) are located. Using different technologies, it was shown that the layers of non-compact myelin could be connected to each other by gap junction channels (GJCs), formed by connexin 32 (Cx32), and their relative abundance allows for the transfer of ions and different small molecules. Likewise, Cx29 is expressed in the innermost layer of the myelin sheath. Here it does not form GJCs but colocalizes with Kv1, which implies that the SCs play an active role in the electrical condition in mammals. The critical role of GJCs in the functioning of myelinating SCs is evident in Charcot-Marie-Tooth disease (CMT), X-linked form 1 (CMTX1), which is caused by mutations in the gap junction protein beta 1 (GJB1) gene that codes for Cx32. Although the management of CMT symptoms is currently supportive, there is a recent method for targeted gene delivery to myelinating cells, which rescues the phenotype in KO-Cx32 mice, a model of CMTX1. In this mini-review article, we discuss the current knowledge on the role of Cxs in myelin-forming SCs and summarize recent discoveries that may become a real treatment possibility for patients with disorders such as CMT.

11.
Front Neurol ; 10: 1406, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010055

RESUMO

Introduction: Patients with GJB1 mutations manifested as pure central nervous system (CNS) involvement without peripheral neuropathy have not been adequately reported. To expand the disease spectrum of GJB1 mutations, we report a case series. Methods: Eleven patients from 9 families with GJB1 mutations were reviewed. The clinical manifestations, electrophysiological studies, and gene tests were summarized. Results: Nine patients had peripheral neuropathy, one patient had both peripheral neuropathy and mild cognitive impairment, and one patient had recurrent episodic limbs weakness and aphasia with normal electrophysiological study, indicating CNS involvement only. Discussion: GJB1 mutations form a clinical spectrum, including most patients with peripheral nerve involvement, those with both peripheral neuropathy and CNS involvement, and patients with CNS involvement only.

12.
Front Mol Neurosci ; 11: 227, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30042657

RESUMO

Connexin 32 (Cx32) is a fundamental protein in the peripheral nervous system (PNS) as its mutations cause the X-linked form of Charcot-Marie-Tooth disease (CMT1X), the second most common form of hereditary motor and sensory neuropathy and a demyelinating disease for which there is no effective therapy. Since mutations of the GJB1 gene encoding Cx32 were first reported in 1993, over 450 different mutations associated with CMT1X including missense, frameshift, deletion and non-sense ones have been identified. Despite the availability of a sizable number of studies focusing on normal and mutated Cx32 channel properties, the crucial role played by Cx32 in the PNS has not yet been elucidated, as well as the molecular pathogenesis of CMT1X. Is Cx32 fundamental during a particular phase of Schwann cell (SC) life? Are Cx32 paired (gap junction, GJ) channels in myelinated SCs important for peripheral nerve homeostasis? The attractive hypothesis that short coupling of adjacent myelin layers by Cx32 GJs is required for efficient diffusion of K+ and signaling molecules is still debated, while a growing body of evidence is supporting other possible functions of Cx32 in the PNS, mainly related to Cx32 unpaired channels (hemichannels), which could be involved in a purinergic-dependent pathway controlling myelination. Here we review the intriguing puzzle of findings about Cx32 function and dysfunction, discussing possible directions for future investigation.

13.
Neurol Neurochir Pol ; 52(2): 285-288, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29153916

RESUMO

Charcot-Marie-Tooth (CMT) disease is a hereditary neurologic disease which affects the sensorial and motor fibers of the peripheral nerves. CMTX1 is an X-linked dominantly inherited subtype of CMT and is caused by mutations in gap junction beta 1 gene (GJB1). A small proportion of GJB1 mutations are associated with recurrent central nervous system findings. We describe a 15-year-old male patient with CMTX1 who had stroke-like findings along with foot deformities and peripheral neuropathy. Strokes and stroke-like attacks are rarely seen in children and adolescents. Herein, neurological signs, MRI findings and genetic results of a CMTX1 case are presented and discussed.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Ataque Isquêmico Transitório , Acidente Vascular Cerebral , Adolescente , Conexinas , Humanos , Ataque Isquêmico Transitório/genética , Masculino , Mutação
14.
J Peripher Nerv Syst ; 22(3): 172-181, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28448691

RESUMO

Mutations in the gap junction protein beta 1 gene (GJB1) cause X-linked Charcot-Marie-Tooth disease type 1 (CMTX1). CMTX1 is representative of the intermediate type of CMT, having both demyelinating and axonal neuropathic features. We analyzed the clinical and genetic characterization of 128 patients with CMTX1 from 63 unrelated families. Genetic analysis revealed a total of 43 mutations including 6 novel mutations. Ten mutations were found from two or more unrelated families. p.V95M was most frequently observed. The frequency of CMTX1 was 9.6% of total Korean CMT family and was 14.8% when calculated within genetically identified cases. Among 67 male and 61 female patients, 22 females were asymptomatic. A high-arched foot, ataxia, and tremor were observed in 87%, 41%, and 35% of the patients, respectively. In the male patients, functional disability scale, CMT neuropathy score, and compound muscle action potential of the median/ulnar nerves were more severely affected than in the female patients. This study provides a comprehensive summary of the clinical features and spectrum of GJB1 gene mutations in Korean CMTX1 patients.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Conexinas/genética , Mutação/genética , Potenciais de Ação/genética , Adulto , Doença de Charcot-Marie-Tooth/diagnóstico por imagem , Doença de Charcot-Marie-Tooth/epidemiologia , Distribuição de Qui-Quadrado , Eletromiografia , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Feminino , Testes Genéticos , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Condução Nervosa/genética , República da Coreia/epidemiologia , Proteína beta-1 de Junções Comunicantes
15.
Neuromuscul Disord ; 26(10): 706-711, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27544631

RESUMO

Pathogenic variants of the gap junction beta 1 (GJB1) gene are responsible for the Charcot-Marie-Tooth neuropathy X type 1 (CMTX1). In this study, we report the mutation frequency of GJB1 in 210 Hungarian CMT patients and the phenotype comparison between male and female CMTX1 patients. Altogether, 13 missense substitutions were found in the GJB1 gene. Among them, 10 have been previously described as pathogenic variants (p.Arg15Trp, p.Val63Ile, p.Leu89Val, p.Ala96Gly, p.Arg107Trp, p.Arg142Gln, p.Arg164Trp, p.Arg164Gln, p.Pro172Ala and p.Asn205Ser), while 3 were novel, likely pathogenic alterations (p.Val13Glu, p.Glu186Gly, p.Met194Ile). These variants were not present in controls and were predicted as disease causing by in silico analysis. The frequency of the variants was 6.7% in our cohort which refers to a common cause of hereditary neuropathy among Hungarian patients. In addition to the classical phenotype, CNS involvement was proved in 26.1% of the CMTX1 patients. GJB1 pathogenic alterations were found mainly in males but we also detected them in female probands. The statistical analysis of CMTX1 patients revealed a significant difference between the two genders regarding the age of onset, Charcot-Marie-Tooth neuropathy and examination scores.


Assuntos
Doença de Charcot-Marie-Tooth/epidemiologia , Doença de Charcot-Marie-Tooth/genética , Conexinas/genética , Mutação de Sentido Incorreto , Adulto , Idade de Início , Estudos de Coortes , Feminino , Humanos , Hungria/epidemiologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Índice de Gravidade de Doença , Fatores Sexuais , Proteína beta-1 de Junções Comunicantes
16.
Exp Neurol ; 267: 209-18, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25792482

RESUMO

Myelinated nerve fibers are highly compartmentalized. Helically wrapped lipoprotein membranes of myelin are integrated with subsets of proteins specifically in each compartment to shape the physiological behavior of these nerve fibers. With the advance of molecular biology and genetics, many functions of these proteins have been revealed over the past decade. In this review, we will first discuss how action potential propagation has been understood by classical electrophysiological studies. In particular, the discussion will be concentrated on how the geometric dimensions of myelinated nerve fibers (such as internodal length and myelin thickness) may affect nerve conduction velocity. This discussion will then extend into how specific myelin proteins may shape these geometric parameters, thereby regulating action potential propagation. For instance, periaxin may specifically affect the internodal length, but not other parameters. In contrast, neuregulin-1 may affect myelin thickness, but not axon diameter or internodal length. Finally, we will discuss how these basic neurobiological observations can be applied to inherited peripheral nerve diseases.


Assuntos
Condução Nervosa/genética , Doenças do Sistema Nervoso Periférico , Potenciais de Ação/genética , Animais , Modelos Animais de Doenças , Proteínas da Mielina/metabolismo , Fibras Nervosas Mielinizadas/patologia , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/patologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Roedores
17.
Case Rep Neurol ; 7(3): 247-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26955336

RESUMO

Charcot-Marie-Tooth disease (CMT), also known as hereditary motor sensory neuropathy, is a heterogeneous group of disorders best known for causing inherited forms of peripheral neuropathy. The X-linked form, CMTX1, is caused by mutations in the gap junction protein beta 1 (GJB1) gene, expressed both by peripheral Schwann cells and central oligodendrocytes. Central manifestations are known but are rare, and there are few case reports of leukoencephalopathy with transient or persistent neurological deficits in patients with this CMT subtype. Here, we report the case of a man with multiple male and female family members affected by neuropathy who carries a pathologic mutation in GJB1. He has experienced three transient episodes with variable neurological deficits over the course of 7 years with corresponding changes on magnetic resonance imaging (MRI). This case illustrates CMT1X as a rare cause of transient neurological deficit and demonstrates the evolution of associated reversible abnormalities on MRI over time. To the best of our knowledge, this report provides the longest period of serial imaging in a single patient with this condition in the English language literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...