Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels ; 14(1): 244, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34952627

RESUMO

BACKGROUND: Cellulolytic enzyme production in filamentous fungi requires a release from carbon catabolite repression (CCR). The protein CRE1/CreA (CRE = catabolite responsive element) is a key transcription factor (TF) that is involved in CCR and represses cellulolytic gene expression. CRE1/CreA represents the functional equivalent of Mig1p, an important Saccharomyces cerevisiae TF in CCR that exerts its repressive effect by recruiting a corepressor complex Tup1p-Cyc8p. Although it is known from S. cerevisiae that CRE1/CreA might repress gene expression via interacting with the corepressor complex Tup1-Cyc8, this mechanism is unconfirmed in other filamentous fungi, since the physical interaction has not yet been verified in these organisms. The precise mechanism on how CRE1/CreA achieves transcriptional repression after DNA binding remains unknown. RESULTS: The results from tandem affinity purification and bimolecular fluorescence complementation revealed a direct physical interaction between the TF CRE1/CreA and the complex Tup1-Cyc8 in the nucleus of cellulolytic fungus Trichoderma reesei and Penicillium oxalicum. Both fungi have the ability to secrete a complex arsenal of enzymes to synergistically degrade lignocellulosic materials. In P. oxalicum, the protein PoCyc8, a subunit of complex Tup1-Cyc8, interacts directly with TF PoCreA and histone H3 lysine 36 (H3K36) methyltransferase PoSet2 in the nucleus. The di-methylation level of H3K36 in the promoter of prominent cellulolytic genes (cellobiohydrolase-encoding gene Pocbh1/cel7A and endoglucanase-encoding gene Poegl1/cel7B) is positively correlated with the expression levels of TF PoCreA. Since the methylation of H3K36 was also demonstrated to be a repression marker of cellulolytic gene expression, it appears feasible that the cellulolytic genes are repressed via PoCreA-Tup1-Cyc8-Set2-mediated transcriptional repression. CONCLUSION: This study verifies the long-standing conjecture that the TF CRE1/CreA represses gene expression by interacting with the corepressor complex Tup1-Cyc8 in filamentous fungi. A reasonable explanation is proposed that PoCreA represses gene expression by recruiting complex PoTup1-Cyc8. Histone methyltransferase Set2, which methylates H3K36, is also involved in the regulatory network by interacting with PoCyc8. The findings contribute to the understanding of CCR mechanism in filamentous fungi and could aid in biotechnologically relevant enzyme production.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32850722

RESUMO

In Trichoderma reesei, carbon catabolite repression (CCR) significantly downregulates the transcription of cellulolytic enzymes, which is usually mediated by the zinc finger protein Cre1. It was found that there is a conserved region at the C-terminus of Cre1/CreA in several cellulase-producing fungi that contains up to three continuous S/T phosphorylation sites. Here, S387, S388, T389, and T390 at the C-terminus of Cre1 in T. reesei were mutated to valine for mimicking an unphosphorylated state, thereby generating the transformants Tr_Cre1S387V, Tr_Cre1S388V, Tr_Cre1T389V, and Tr_Cre1T390V, respectively. Transcription of cel7a in Tr_ Cre1S388V was markedly higher than that of the parent strain when grown in glucose-containing media. Under these conditions, both filter paperase (FPase) and p-nitrophenyl-ß-D-cellobioside (pNPCase) activities, as well as soluble proteins from Tr_Cre1S388V were significantly increased by up to 2- to 3-fold compared with that of other transformants and the parent strain. The results suggested that S388 is critical site of phosphorylation for triggering CCR at the terminus of Cre1. To our knowledge, this is the first report demonstrating an improvement of cellulase production in T. reesei under CCR by mimicking dephosphorylation at the C-terminus of Cre1. Taken together, we developed a precision engineering strategy based on the modification of phosphorylation sites of Cre1 transcription factor to enhance the production of cellulase in T. reesei under CCR.

3.
Synth Syst Biotechnol ; 5(3): 230-235, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32695894

RESUMO

Carbon catabolite repression (CCR), which is mainly mediated by Cre1 and triggered by glucose, leads to a decrease in cellulase production in Trichoderma reesei. Many studies have focused on modifying Cre1 for alleviating CCR. Based on the homologous alignment of CreA from wild-type Penicillium oxalicum 114-2 (Po-0) and cellulase hyperproducer JUA10-1(Po-1), we constructed a C-terminus substitution strain-Po-2-with decreased transcriptional levels of cellulase and enhanced CCR. Results revealed that the C-terminal domain of CreAPo-1 plays an important role in alleviating CCR. Furthermore, we replaced the C-terminus of Cre1 with that of CreAPo-1 in T. reesei (Tr-0) and generated Tr-1. As a control, the C-terminus of Cre1 was truncated and Tr-2 was generated. The transcriptional profiles of these transformants revealed that the C-terminal chimera greatly improves cellulase transcription in the presence of glucose and thus upregulates cellulase in the presence of glucose and weakens CCR, consistent with truncating the C-terminus of Cre1 in Tr-0. Therefore, we propose constructing a C-terminal chimera as a new strategy to improve cellulase production and alleviate CCR in the presence of glucose.

4.
Biotechnol Biofuels ; 12: 244, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636703

RESUMO

BACKGROUND: Trichoderma reesei is widely used for cellulase production and accepted as an example for cellulase research. Cre1-mediated carbon catabolite repression (CCR) can significantly inhibit the transcription of cellulase genes during cellulase fermentation in T. reesei. Early efforts have been undertaken to modify Cre1 for the release of CCR; however, this approach leads to arrested hyphal growth and decreased biomass accumulation, which negatively affects cellulase production. RESULTS: In this study, novel fusion transcription factors (fTFs) were designed to release or attenuate CCR inhibition in cellulase transcription, while Cre1 was left intact to maintain normal hyphal growth. Four designed fTFs were introduced into the T. reesei genome, which generated several transformants, named Kuace3, Kuclr2, Kuace2, and Kuxyr1. No obvious differences in growth were observed between the parent and transformant strains. However, the transcription levels of cel7a, a major cellulase gene, were significantly elevated in all the transformants, particularly in Kuace2 and Kuxyr1, when grown on lactose as a carbon source. This suggested that CCR inhibition was released or attenuated in the transformant strains. The growth of Kuace2 and Kuxyr1 was approximately equivalent to that of the parent strain in fed-batch fermentation process. However, we observed a 3.2- and 2.1-fold increase in the pNPCase titers of the Kuace2 and Kuxyr1 strains, respectively, compared with that of the parent strain. Moreover, we observed a 6.1- and 3.9-fold increase in the pNPCase titers of the Kuace2 and Kuxyr1 strains, respectively, compared with that of Δcre1 strain. CONCLUSIONS: A new strategy based on fTFs was successfully established in T. reesei to improve cellulase titers without impairing fungal growth. This study will be valuable for lignocellulosic biorefining and for guiding the development of engineering strategies for producing other important biochemical compounds in fungal species.

5.
Biotechnol Biofuels ; 12: 210, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31508149

RESUMO

BACKGROUND: Biofuels derived from lignocellulosic biomass are a viable alternative to fossil fuels required for transportation. Following plant biomass pretreatment, the furan derivative furfural is present at concentrations which are inhibitory to yeasts. Detoxification of furfural is thus important for efficient fermentation. Here, we searched for new genetic attributes in the fungus Neurospora crassa that may be linked to furfural tolerance. The fact that furfural is involved in the natural process of sexual spore germination of N. crassa and that this fungus is highly amenable to genetic manipulations makes it a rational candidate for this study. RESULTS: Both hypothesis-based and unbiased (random promotor mutagenesis) approaches were performed to identify N. crassa genes associated with the response to furfural. Changes in the transcriptional profile following exposure to furfural revealed that the affected processes were, overall, similar to those observed in Saccharomyces cerevisiae. N. crassa was more tolerant (by ~ 30%) to furfural when carboxymethyl cellulose was the main carbon source as opposed to sucrose, indicative of a link between carbohydrate metabolism and furfural tolerance. We also observed increased tolerance in a Δcre-1 mutant (CRE-1 is a key transcription factor that regulates the ability of fungi to utilize non-preferred carbon sources). In addition, analysis of aldehyde dehydrogenase mutants showed that ahd-2 (NCU00378) was involved in tolerance to furfural as well as the predicted membrane transporter NCU05580 (flr-1), a homolog of FLR1 in S. cerevisiae. Further to the rational screening, an unbiased approach revealed additional genes whose inactivation conferred increased tolerance to furfural: (i) NCU02488, which affected the abundance of the non-anchored cell wall protein NCW-1 (NCU05137), and (ii) the zinc finger protein NCU01407. CONCLUSIONS: We identified attributes in N. crassa associated with tolerance or degradation of furfural, using complementary research approaches. The manipulation of the genes involved in furan sensitivity can provide a means for improving the production of biofuel producing strains. Similar research approaches can be utilized in N. crassa and other filamentous fungi to identify additional attributes relevant to other furans or toxic chemicals.

6.
Microb Cell Fact ; 18(1): 81, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31077201

RESUMO

BACKGROUND: Cellulolytic enzymes produced by the filamentous fungus Trichoderma reesei are commonly used in biomass conversion. The high cost of cellulase is still a significant challenge to commercial biofuel production. Improving cellulase production in T. reesei for application in the cellulosic biorefinery setting is an urgent priority. RESULTS: Trichoderma reesei hyper-cellulolytic mutant SS-II derived from the T. reesei NG14 strain exhibited faster growth rate and more efficient lignocellulosic biomass degradation than those of RUT-C30, another hyper-cellulolytic strain derived from NG14. To identify any genetic changes that occurred in SS-II, we sequenced its genome using Illumina MiSeq. In total, 184 single nucleotide polymorphisms and 40 insertions and deletions were identified. SS-II sequencing revealed 107 novel mutations and a full-length wild-type carbon catabolite repressor 1 gene (cre1). To combine the mutations of RUT-C30 and SS-II, the sequence of one confirmed beneficial mutation in RUT-C30, cre196, was introduced in SS-II to replace full-length cre1, forming the mutant SS-II-cre196. The total cellulase production of SS-II-cre196 was decreased owing to the limited growth of SS-II-cre196. In contrast, 57 genes mutated only in SS-II were selected and knocked out in RUT-C30. Of these, 31 were involved in T. reesei growth or cellulase production. Cellulase activity was significantly increased in five deletion strains compared with that in two starter strains, RUT-C30 and SS-II. Cellulase production of T. reesei Δ108642 and Δ56839 was significantly increased by 83.7% and 70.1%, respectively, compared with that of RUT-C30. The amount of glucose released from pretreated corn stover hydrolyzed by the crude enzyme from Δ108642 increased by 11.9%. CONCLUSIONS: The positive attribute confirmed in one cellulase hyper-producing strain does not always work efficiently in another cellulase hyper-producing strain, owing to the differences in genetic background. Genome re-sequencing revealed novel mutations that might affect cellulase production and other pathways indirectly related to cellulase formation. Our strategy of combining the mutations of two strains successfully identified a number of interesting phenotypes associated with cellulase production. These findings will contribute to the creation of a gene library that can be used to investigate the involvement of various genes in the regulation of cellulase production.


Assuntos
Celulase , Genômica/métodos , Trichoderma , Biomassa , Celulase/genética , Celulase/metabolismo , Glucose/metabolismo , Mutação , Trichoderma/genética , Trichoderma/crescimento & desenvolvimento , Trichoderma/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-30151221

RESUMO

BACKGROUND: The filamentous fungus Trichoderma reesei (T. reesei) is a natural producer of cellulolytic and xylanolytic enzymes and is therefore industrially used. Many industries require high amounts of enzymes, in particular cellulases. Strain improvement strategies by random mutagenesis yielded the industrial ancestor strain Rut-C30. A key property of Rut-C30 is the partial release from carbon catabolite repression caused by a truncation of the repressor Cre1 (Cre1-96). In the T. reesei wild-type strain a full cre1 deletion leads to pleiotropic effects and strong growth impairment, while the truncated cre1-96 enhances cellulolytic activity without the effect of growth deficiencies. However, it is still unclear which function Cre1-96 has in Rut-C30. RESULTS: In this study, we deleted and constitutively expressed cre1-96 in Rut-C30. We found that the presence of Cre1-96 in Rut-C30 is crucial for its cellulolytic and xylanolytic performance under inducing conditions. In the case of the constitutively expressed Cre1-96, the cellulase activity could further be improved approximately twofold. The deletion of cre1-96 led to growth deficiencies and morphological abnormalities. An in silico domain prediction revealed that Cre1-96 has all necessary properties that a classic transactivator needs. Consequently, we investigated the cellular localization of Cre1-96 by fluorescence microscopy using an eYFP-tag. Cre1-96 is localized in the fungal nuclei under both, inducing and repressing conditions. Furthermore, chromatin immunoprecipitation revealed an enrichment of Cre1-96 in the upstream regulatory region of the main transactivator of cellulases and xylanases, Xyr1. Interestingly, transcript levels of cre1-96 show the same patterns as the ones of xyr1 under inducing conditions. CONCLUSIONS: The findings suggest that the truncation turns Cre1 into an activating regulator, which primarily exerts its role by approaching the upstream regulatory region of xyr1. The conversion of repressor proteins to potential activators in other biotechnologically used filamentous fungi can be applied to increase their enzyme production capacities.

8.
Biotechnol Biofuels ; 11: 212, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30065786

RESUMO

BACKGROUND: During the process of bioethanol production, cellulose is hydrolyzed into its monomeric soluble units. For efficient hydrolysis, a chemical and/or mechanical pretreatment step is required. Such pretreatment is designed to increase enzymatic digestibility of the cellulose chains inter alia by de-crystallization of the cellulose chains and by removing barriers, such as lignin from the plant cell wall. Biological pretreatment, in which lignin is decomposed or modified by white-rot fungi, has also been considered. One disadvantage in biological pretreatment, however, is the consumption of the cellulose by the fungus. Thus, fungal species that attack lignin with only minimal cellulose loss are advantageous. The secretomes of white-rot fungi contain carbohydrate-active enzymes (CAZymes) including lignin-modifying enzymes. Thus, modification of secretome composition can alter the ratio of lignin/cellulose degradation. RESULTS: Pleurotus ostreatus PC9 was genetically modified to either overexpress or eliminate (by gene replacement) the transcriptional regulator CRE1, known to act as a repressor in the process of carbon catabolite repression. The cre1-overexpressing transformant demonstrated lower secreted cellulolytic activity and slightly increased selectivity (based on the chemical composition of pretreated wheat straw), whereas the knockout transformant demonstrated increased cellulolytic activity and significantly reduced residual cellulose, thereby displaying lower selectivity. Pretreatment of wheat straw using the wild-type PC9 resulted in 2.8-fold higher yields of soluble sugar compared to untreated wheat straw. The overexpression transformant showed similar yields (2.6-fold), but the knockout transformant exhibited lower yields (1.2-fold) of soluble sugar. Based on proteomic secretome analysis, production of numerous CAZymes was affected by modification of the expression level of cre1. CONCLUSIONS: The gene cre1 functions as a regulator for expression of fungal CAZymes active against plant cell wall lignocelluloses, hence altering the substrate preference of the fungi tested. While the cre1 knockout resulted in a less efficient biological pretreatment, i.e., less saccharification of the treated biomass, the converse manipulation of cre1 (overexpression) failed to improve efficiency. Despite the inverse nature of the two genetic alterations, the expected "mirror image" (i.e., opposite regulatory response) was not observed, indicating that the secretion level of CAZymes, was not exclusively dependent on CRE1 activity.

9.
Biotechnol Biofuels ; 10: 272, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29167702

RESUMO

BACKGROUND: The enzymes for efficient hydrolysis of lignocellulosic biomass are a major factor in the development of an economically feasible cellulose bioconversion process. Up to now, low hydrolysis efficiency and high production cost of cellulases remain the significant hurdles in this process. The aim of the present study was to develop a versatile cellulase system with the enhanced hydrolytic efficiency and the ability to synthesize powerful inducers by genetically engineering Trichoderma reesei. RESULTS: In our study, we employed a systematic genetic strategy to construct the carbon catabolite-derepressed strain T. reesei SCB18 to produce the cellulase complex that exhibited a strong cellulolytic capacity for biomass saccharification and an extraordinary high ß-glucosidase (BGL) activity for cellulase-inducing disaccharides synthesis. We first identified the hypercellulolytic and uracil auxotrophic strain T. reesei SP4 as carbon catabolite repressed, and then deleted the carbon catabolite repressor gene cre1 in the genome. We found that the deletion of cre1 with the selectable marker pyrG led to a 72.6% increase in total cellulase activity, but a slight reduction in saccharification efficiency. To facilitate the following genetic modification, the marker pyrG was successfully removed by homologous recombination based on resistance to 5-FOA. Furthermore, the Aspergillus niger BGLA-encoding gene bglA was overexpressed, and the generated strain T. reesei SCB18 exhibited a 29.8% increase in total cellulase activity and a 51.3-fold enhancement in BGL activity (up to 103.9 IU/mL). We observed that the cellulase system of SCB18 showed significantly higher saccharification efficiency toward differently pretreated corncob residues than the control strains SDC11 and SP4. Moreover, the crude enzyme preparation from SCB18 with high BGL activity possessed strong transglycosylation ability to synthesize ß-disaccharides from glucose. The transglycosylation product was finally utilized as the inducer for cellulase production, which provided a 63.0% increase in total cellulase activity compared to the frequently used soluble inducer, lactose. CONCLUSIONS: In summary, we constructed a versatile cellulase system in T. reesei for efficient biomass saccharification and powerful cellulase inducer synthesis by combinational genetic manipulation of three distinct types of genes to achieve the customized cellulase production, thus providing a viable strategy for further strain improvement to reduce the cost of biomass-based biofuel production.

10.
Front Plant Sci ; 8: 947, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28642766

RESUMO

The CRE1/AHK4 cytokinin receptor is an important component of plants' hormone signaling systems, and compounds that can alter its activity have potential utility for studying the receptor's functions and/or developing new plant growth regulators. A high throughput method was developed for screening compounds with agonist or antagonist properties toward the CRE1/AHK4 cytokinin receptor in a single experiment using the Nanodrop II liquid handling system and 384-well plates. Potential ligands are screened directly, using a reporter system in which receptor signaling activity triggers expression of ß-galactosidase in Escherichia coli. This enzyme generates a fluorescent product from a non-fluorescent substrate, allowing the agonistic/antagonistic behavior of tested compounds to be assayed in relation to that of an internal standard (here the natural ligand, trans-zeatin). The method includes a robust control procedure to determine false positive or false negative effects of the tested compounds arising from their fluorescent or fluorescent-quenching properties. The presented method enables robust, automated screening of large libraries of compounds for ability to activate or inhibit the Arabidopsis thaliana cytokinin receptor CRE1/AHK4.

11.
Phytochemistry ; 135: 115-127, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27986278

RESUMO

Naturally occurring cytokinins are adenine-based plant hormones. Although, the effect of various substituents at positions N1, C2, N3, N6, N7, or N9 on the biological activity of cytokinins has been studied, the C8-substituted compounds have received little attention. Here, we report the synthesis and in vitro biological testing of thirty-one cytokinin derivatives substituted at the C8 position of the adenine skeleton and twenty-seven compounds which served as their N9-tetrahydropyranyl protected precursors. The cytokinin activity of all the compounds was determined in classical cytokinin biotests (wheat leaf senescence, Amaranthus and tobacco callus assays). With some exceptions, the compounds with a N9-tetrahydropyranyl group were generally less active than their de-protected analogs. The latter were further tested for their ability to activate the Arabidopsis cytokinin receptors AHK3 and CRE1/AHK4 in bacterial receptor activation assays. Using this approach, we identified derivatives bearing short aliphatic chains and retaining high cytokinin activity. Such compounds are suitable candidates for fluorescence labeling or as protein-affinity ligands. We further found that some C8-substituted cytokinins exhibited no or lower cytotoxicity toward tobacco cells when compared to their parent compound. Therefore, we also present and discuss the cytotoxicity of all the compounds against three normal human cell lines.


Assuntos
Arabidopsis/química , Citocininas , Adenina/análogos & derivados , Adenina/química , Citocininas/síntese química , Citocininas/química , Citocininas/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Quinases/metabolismo , Relação Estrutura-Atividade
12.
Bioresour Technol ; 223: 317-322, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27818160

RESUMO

The high cost of cellulase production presents biggest challenge in biomass deconstruction. Cellulase production by Trichoderma reesei using low cost carbon source is of great interest. In this study, an artificial transcription activator containing the Cre1 binding domain linked to the Xyr1 effector and binding domains was designed and constitutively overexpressed in T. reesei RUT C30. The recombinant strain T. reesei zxy-2 displayed constitutive cellulase production using glucose as a sole carbon source, and the production titer was 12.75-fold of that observed with T. reesei RUT C30 in shake flask culture. Moreover, FPase and xylanase titers of 2.63 and 108.72IU/mL, respectively, were achieved using glucose as sole carbon source within 48h in a 7-L fermenter by batch fermentation using T. reesei zxy-2. The crude enzyme obtained was used to hydrolyze alkali pretreated corn stover, and a high glucose yield of 99.18% was achieved.


Assuntos
Celulase/genética , Celulase/metabolismo , Glucose/metabolismo , Fatores de Transcrição/genética , Transgenes , Trichoderma/genética , Reatores Biológicos/microbiologia , Carbono/metabolismo , Fermentação/genética , Proteínas Fúngicas/metabolismo , Hidrólise , Organismos Geneticamente Modificados , Ativação Transcricional/genética , Trichoderma/enzimologia , Trichoderma/metabolismo , Zea mays/metabolismo
13.
Plant Cell Environ ; 39(10): 2198-209, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27341695

RESUMO

Legume plants adapt to low nitrogen by developing an endosymbiosis with nitrogen-fixing soil bacteria to form a new specific organ: the nitrogen-fixing nodule. In the Medicago truncatula model legume, the MtCRE1 cytokinin receptor is essential for this symbiotic interaction. As three other putative CHASE-domain containing histidine kinase (CHK) cytokinin receptors exist in M. truncatula, we determined their potential contribution to this symbiotic interaction. The four CHKs have extensive redundant expression patterns at early nodulation stages but diverge in differentiated nodules, even though MtCHK1/MtCRE1 has the strongest expression at all stages. Mutant and knock-down analyses revealed that other CHKs than MtCHK1/CRE1 are positively involved in nodule initiation, which explains the delayed nodulation phenotype of the chk1/cre1 mutant. In addition, cre1 nodules exhibit an increased growth, whereas other chk mutants have no detectable phenotype, and the maintained nitrogen fixation capacity in cre1 requires other CHK genes. Interestingly, an AHK4/CRE1 genomic locus from the aposymbiotic Arabidopsis plant rescues nodule initiation but not the nitrogen fixation capacity. This indicates that different CHK cytokinin signalling pathways regulate not only nodule initiation but also later developmental stages, and that legume-specific determinants encoded by the MtCRE1 gene are required for later nodulation stages than initiation.


Assuntos
Medicago truncatula/microbiologia , Receptores de Superfície Celular/fisiologia , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Arabidopsis/genética , Citocininas/metabolismo , Genoma de Planta , Medicago truncatula/metabolismo , Fixação de Nitrogênio , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Plantas Geneticamente Modificadas/microbiologia , Receptores de Superfície Celular/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Transdução de Sinais , Sinorhizobium/fisiologia , Simbiose
14.
Curr Genomics ; 17(2): 119-31, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27226768

RESUMO

Carbon catabolite repression (CCR) mediated by CRE1 in Trichoderma reesei emerged as a mechanism by which the fungus could adapt to new environments. In the presence of readily available carbon sources such as glucose, the fungus activates this mechanism and inhibits the production of cellulolytic complex enzymes to avoid unnecessary energy expenditure. CCR has been well described for the growth of T. reesei in cellulose and glucose, however, little is known about this process when the carbon source is sophorose, one of the most potent inducers of cellulase production. Thus, we performed high-throughput RNA sequencing to better understand CCR during cellulase formation in the presence of sophorose, by comparing the mutant ∆cre1 with its parental strain, QM9414. Of the 9129 genes present in the genome of T. reesei, 184 were upregulated and 344 downregulated in the mutant strain ∆cre1 compared to QM9414. Genes belonging to the CAZy database, and those encoding transcription factors and transporters are among the gene classes that were repressed by CRE1 in the presence of sophorose; most were possible indirectly regulated by CRE1. We also observed that CRE1 activity is carbon-dependent. A recent study from our group showed that in cellulose, CRE1 repress different groups of genes when compared to sophorose. CCR differences between these carbon sources may be due to the release of cellodextrins in the cellulose polymer, resulting in different targets of CRE1 in both carbon sources. These results contribute to a better understanding of CRE1-mediated CCR in T. reesei when glucose comes from a potent inducer of cellulase production such as sophorose, which could prove useful in improving cellulase production by the biotechnology sector.

15.
Biosci Biotechnol Biochem ; 80(3): 486-92, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26540299

RESUMO

We obtained a novel glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis. A plasmid containing DNA polymerase δ lacking proofreading activity, and AMAI, an autonomously replicating sequence was introduced into T. reesei ATCC66589. The rate of mutation evaluated with 5-fluoroorotic acid resistance was approximately 30-fold higher than that obtained by UV irradiation. The transformants harboring incompetent DNA polymerase δ were then selected on 2-deoxyglucose agar plates with hygromycin B. The pNP-lactoside hydrolyzing activities of mutants were 2 to 5-fold higher than the parent in liquid medium containing glucose. Notably, the amino acid sequence of cre1, a key gene involved in glucose repression, was identical in the mutant and parent strains, and further, the cre1 expression levels was not abolished in the mutant. Taken together, these results demonstrate that the strains of T. reesei generated by disparity mutagenesis are glucose de-repressed variants that contain mutations in yet-unidentified factors other than cre1.


Assuntos
Desoxiglucose/metabolismo , Mutagênese , Trichoderma/genética , DNA Polimerase III/genética , Microscopia Eletrônica de Varredura , Trichoderma/metabolismo , Trichoderma/ultraestrutura
16.
Front Behav Neurosci ; 9: 286, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26582980

RESUMO

The locus coeruleus (LC) is the sole source of noradrenergic projections to the cortex and essential for attention-dependent cognitive processes. In this study we used unilateral optogenetic silencing of the LC in an attentional set-shifting task (ASST) to evaluate the influence of the LC on prefrontal cortex-dependent functions in mice. We expressed the halorhodopsin eNpHR 3.0 to reversibly silence LC activity during task performance, and found that silencing selectively impaired learning of those parts of the ASST that most strongly rely on cognitive flexibility. In particular, extra-dimensional set-shifting (EDS) and reversal learning was impaired, suggesting an involvement of the medial prefrontal cortex (mPFC) and the orbitofrontal cortex. In contrast, those parts of the task that are less dependent on cognitive flexibility, i.e., compound discrimination (CD) and the intra-dimensional shifts (IDS) were not affected. Furthermore, attentional set formation was unaffected by LC silencing. Our results therefore suggest a modulatory influence of the LC on cognitive flexibility, mediated by different frontal networks.

17.
J Microbiol Biotechnol ; 25(7): 1101-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25824435

RESUMO

The role of CRE1 in a thermophilic fungus, Myceliophthora thermophila ATCC42464, was studied using RNA interference. In the cre1-silenced strain C88, the filter paper hydrolyzing activity and ß-1,4-endoglucanase activity were 3.76-, and 1.31-fold higher, respectively, than those in the parental strain when the strains were cultured in inducing medium for 6 days. The activities of ß-1,4-exoglucanase and cellobiase were 2.64-, and 5.59-fold higher, respectively, than those in the parental strain when the strains were cultured for 5 days. Quantitative reverse-transcription polymerase chain reaction showed that the gene expression of egl3, cbh1, and cbh2 was significantly increased in transformant C88 compared with the wild-type strain. Therefore, our findings suggest the feasibility of improving cellulase production by modifying the regulator expression, and an attractive approach to increasing the total cellulase productivity in thermophilic fungi.


Assuntos
Celulase/biossíntese , Proteínas Fúngicas/metabolismo , Interferência de RNA , Sordariales/metabolismo , Celulase/genética , Meios de Cultura/química , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Reação em Cadeia da Polimerase em Tempo Real , Sordariales/genética
18.
Fungal Genet Biol ; 77: 82-94, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25889113

RESUMO

The transcription factor CreA/Mig1/CRE-1 is a repressor protein that regulates the use of alternative carbon sources via a mechanism known as Carbon Catabolite Repression (CCR). In Saccharomyces cerevisiae, Mig1 recruits the complex Ssn6-Tup1, the Neurospora crassa RCM-1 and RCO-1 orthologous proteins, respectively, to bind to promoters of glucose-repressible genes. We have been studying the regulation of glycogen metabolism in N. crassa and the identification of the RCO-1 corepressor as a regulator led us to investigate the regulatory role of CRE-1 in this process. Glycogen content is misregulated in the rco-1(KO), rcm-1(RIP) and cre-1(KO) strains, and the glycogen synthase phosphorylation is decreased in all strains, showing that CRE-1, RCO-1 and RCM-1 proteins are involved in glycogen accumulation and in the regulation of GSN activity by phosphorylation. We also confirmed the regulatory role of CRE-1 in CCR and its nuclear localization under repressing condition in N. crassa. The expression of all glycogenic genes is misregulated in the cre-1(KO) strain, suggesting that CRE-1 also controls glycogen metabolism by regulating gene expression. The existence of a high number of the Aspergillus nidulans CreA motif (5'-SYGGRG-3') in the glycogenic gene promoters led us to analyze the binding of CRE-1 to some DNA motifs both in vitro by DNA gel shift and in vivo by ChIP-qPCR analysis. CRE-1 bound in vivo to all motifs analyzed demonstrating that it down-regulates glycogen metabolism by controlling gene expression and GSN phosphorylation.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Proteínas Fúngicas/metabolismo , Glicogênio/metabolismo , Neurospora crassa/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Carbono/metabolismo , Glicogênio/biossíntese , Glicogênio/genética , Glicogênio Sintase/metabolismo , Mutação , Neurospora crassa/genética , Fosforilação , Regiões Promotoras Genéticas
19.
Mol Plant ; 8(8): 1213-26, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25804975

RESUMO

Legume rhizobium symbiosis is initiated upon perception of bacterial secreted lipo-chitooligosaccharides (LCOs). Perception of these signals by the plant initiates a signaling cascade that leads to nodule formation. Several studies have implicated a function for cytokinin in this process. However, whether cytokinin accumulation and subsequent signaling are an integral part of rhizobium LCO signaling remains elusive. Here, we show that cytokinin signaling is required for the majority of transcriptional changes induced by rhizobium LCOs. In addition, we demonstrate that several cytokinins accumulate in the root susceptible zone 3 h after rhizobium LCO application, including the biologically most active cytokinins, trans-zeatin and isopentenyl adenine. These responses are dependent on calcium- and calmodulin-dependent protein kinase (CCaMK), a key protein in rhizobial LCO-induced signaling. Analysis of the ethylene-insensitive Mtein2/Mtsickle mutant showed that LCO-induced cytokinin accumulation is negatively regulated by ethylene. Together with transcriptional induction of ethylene biosynthesis genes, it suggests a feedback loop negatively regulating LCO signaling and subsequent cytokinin accumulation. We argue that cytokinin accumulation is a key step in the pathway leading to nodule organogenesis and that this is tightly controlled by feedback loops.


Assuntos
Quitina/análogos & derivados , Citocininas/metabolismo , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Rhizobium/química , Transdução de Sinais/efeitos dos fármacos , Quitina/farmacologia , Quitosana , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Genes Reporter , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/genética , Modelos Biológicos , Oligossacarídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Transdução de Sinais/genética , Simbiose/efeitos dos fármacos , Simbiose/genética , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos
20.
Fungal Genet Biol ; 73: 93-103, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25459535

RESUMO

The ascomycete Trichoderma reesei is one of the most well-studied cellulolytic fungi and is widely used by the biotechnology industry in the production of second generation bioethanol. The carbon catabolite repression (CCR) mechanism adopted by T. reesei is mediated by the transcription factor CRE1. CCR represses genes related to cellulase production when a carbon source is readily available in the medium. Using RNA sequencing, we investigated CCR during the synthesis of cellulases, comparing the T. reesei Δcre1 mutant strain with its parental strain, QM9414. Of 9129 genes in the T. reesei genome, 268 genes were upregulated and 85 were downregulated in the presence of cellulose (Avicel). In addition, 251 genes were upregulated and 230 were downregulated in the presence of a high concentration of glucose. Genes encoding cellulolytic enzymes and transcription factors and genes related to the transport of nutrients and oxidative metabolism were also targets of CCR, mediated by CRE1 in a carbon source-dependent manner. Our results also suggested that CRE1 regulates the expression of genes related to the use of copper and iron as final electron acceptors or as cofactors of enzymes that participate in biomass degradation. As a result, the final effect of CRE1-mediated transcriptional regulation is to modulate the access of cellulolytic enzymes to cellulose polymers or blocks the entry of cellulase inducers into the cell, depending on the glucose content in the medium. These results will contribute to a better understanding of the mechanism of carbon catabolite repression in T. reesei, thereby enhancing its application in several biotechnology fields.


Assuntos
Carbono/metabolismo , Proteínas Fúngicas/genética , Genoma Fúngico , Transcriptoma/fisiologia , Trichoderma/genética , Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Deleção de Genes , Glucose/metabolismo , Regiões Promotoras Genéticas , Análise de Sequência de RNA , Trichoderma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...