Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.119
Filtrar
1.
Methods Mol Biol ; 2850: 365-375, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39363082

RESUMO

Vibrio natriegens is a gram-negative bacterium, which has received increasing attention due to its very fast growth with a doubling time of under 10 min under optimal conditions. To enable a wide range of projects spanning from basic research to biotechnological applications, we developed NT-CRISPR as a new method for genome engineering. This book chapter provides a step-by-step protocol for the use of this previously published tool. NT-CRISPR combines natural transformation with counterselection through CRISPR-Cas9. Thereby, genomic regions can be deleted, foreign sequences can be integrated, and point mutations can be introduced. Furthermore, up to three simultaneous modifications are possible.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Genoma Bacteriano , Vibrio , Vibrio/genética , Edição de Genes/métodos , Engenharia Genética/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética
2.
Methods Mol Biol ; 2854: 61-74, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192119

RESUMO

With the rapid development of CRISPR-Cas9 technology, gene editing has become a powerful tool for studying gene function. Specifically, in the study of the mechanisms by which natural immune responses combat viral infections, gene knockout mouse models have provided an indispensable platform. This article describes a detailed protocol for constructing gene knockout mice using the CRISPR-Cas9 system. This field focuses on the design of single-guide RNAs (sgRNAs) targeting the antiviral immune gene cGAS, embryo microinjection, and screening and verification of gene editing outcomes. Furthermore, this study provides methods for using cGAS gene knockout mice to analyze the role of specific genes in natural immune responses. Through this protocol, researchers can efficiently generate specific gene knockout mouse models, which not only helps in understanding the functions of the immune system but also offers a powerful experimental tool for exploring the mechanisms of antiviral innate immunity.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Imunidade Inata , Camundongos Knockout , RNA Guia de Sistemas CRISPR-Cas , Animais , Imunidade Inata/genética , Camundongos , RNA Guia de Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Técnicas de Inativação de Genes/métodos , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Viroses/imunologia , Viroses/genética
4.
Adv Sci (Weinh) ; : e2407826, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352314

RESUMO

The cotton bollworm causes severe mechanical damage to plants during feeding and leaves oral secretions (OSs) at the mechanical wounds. The role these OSs play in the invasion of plants is still largely unknown. Here, a novel H. armigera effector peptidyl prolyl trans-isomerase 5 (PPI5) was isolated and characterized. PPI5 induces the programmed cell death (PCD) due to the unfolded protein response (UPR) in tobacco leaf. We reveal that PPI5 is important for the growth and development of cotton bollworm on plants, as it renders plants more susceptible to feeding. The GhFKBP17-2, was identified as a host target for PPI5 with peptidyl-prolyl isomerase (PPIase) activity. CRISPR/Cas9 knock-out cotton mutant (CR-GhFKBP17-1/3), VIGS (TRV: GhFKBP17-2) and overexpression lines (OE-GhFKBP17-1/3) were created and the data indicate that GhFKBP17-2 positively regulates endoplasmic reticulum (ER) stress-mediated plant immunity in response to cotton bollworm infestation. We further confirm that PPI5 represses JA and SA levels by downregulating the expression of JA- and SA-associated genes, including JAZ3/9, MYC2/3, JAR4, PR4, LSD1, PAD4, ICS1 and PR1/5. Taken together, our results reveal that PPI5 reduces plant defense responses and makes plants more susceptible to cotton bollworm infection by targeting and suppressing GhFKBP17-2 -mediated plant immunity.

5.
Breast Cancer ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352623

RESUMO

BACKGROUND: Palbociclib is a cell-cycle targeted small molecule agent used as one of the standards of care in combination with endocrine therapy for patients with hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative advanced breast cancer. Although several gene alterations such as loss of Rb gene and amplification of p16 gene are known to be conventional resistance mechanisms to cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, the comprehensive landscape of resistance is not yet fully elucidated. The purpose of this study is to identify the novel resistant genes to the CDK4/6 inhibitors in HR-positive HER2-negative breast cancer. METHODS: The whole genome knockout screen using CRISPR/Cas9 genome editing was conducted in MCF7 to identify resistant genes to palbociclib. The candidate genes for resistance were selected by NGS analysis and GSEA analysis and validated by cell viability assay and mouse xenograft models. RESULTS: We identified eight genes including RET, TIRAP, GNRH1, SEMA3F, SEMA5A, GATA4, NOD1, SSTR1 as candidate genes from the whole genome knockout screen. Among those, knockdown of SEMA3F by siRNA significantly and consistently increased the cell viability in the presence of CDK4/6 inhibitors in vitro and in vivo. Furthermore, the level of p-Rb was maintained in the palbociclib treated SEMA3F-downregulated cells, indicating that the resistance is driven by increased activity of cyclin kinases. CONCLUSION: Our observation provided the first evidence of SEMA3F as a regulator of sensitivity to CDK4/6 inhibitors in breast cancer. The detailed mechanisms of resistance deserve further functional studies to develop the better strategy to overcome resistance in CDK4/6 inhibitors.

6.
Mol Biol (Mosk) ; 58(2): 305-313, 2024.
Artigo em Russo | MEDLINE | ID: mdl-39355887

RESUMO

An RNA interference-based method was proposed to achieve an inducible knockdown of genes essential for cell viability. In the method, a genetic cassette in which a copper ion-dependent inducible metallothionein promoter controls expression of a siRNA precursor is inserted into a genomic pre-integrated transgene by CRIPSR/Cas9 technology. The endogenous siRNA source allows the gene knockdown in cell cultures that are refractory to conventional transfection with exogenous siRNA. The efficiency of the method was demonstrated in Drosophila ovarian somatic cell culture (OSC) for two genes that are essential for oogenesis: Cul3, encoding a component of the multiprotein ubiquitin-ligase complex with versatile functions in proteostasis, and cut, encoding a transcription factor regulating differentiation of ovarian follicular cells.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Técnicas de Silenciamento de Genes , Animais , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Proteínas Culina/genética , Proteínas Culina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ovário/metabolismo , Ovário/citologia , Oogênese/genética , Interferência de RNA , Genes Essenciais , Sistemas CRISPR-Cas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
7.
Skelet Muscle ; 14(1): 21, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354597

RESUMO

BACKGROUND: Gene editing therapies in development for correcting out-of-frame DMD mutations in Duchenne muscular dystrophy aim to replicate benign spontaneous deletions. Deletion of 45-55 DMD exons (del45-55) was described in asymptomatic subjects, but recently serious skeletal and cardiac complications have been reported. Uncovering why a single mutation like del45-55 is able to induce diverse phenotypes and grades of severity may impact the strategies of emerging therapies. Cellular models are essential for this purpose, but their availability is compromised by scarce muscle biopsies. METHODS: We introduced, as a proof-of-concept, using CRISPR-Cas9 edition, a del45-55 mimicking the intronic breakpoints harboured by a subset of patients of this form of dystrophinopathy (designing specific gRNAs), into a Duchenne patient's cell line. The edited cell line was characterized evaluating the dystrophin expression and the myogenic status. RESULTS: Dystrophin expression was restored, and the myogenic defects were ameliorated in the edited myoblasts harbouring a specific del45-55. Besides confirming the potential of CRISPR-Cas9 to create tailored mutations (despite the low cleavage efficiency of our gRNAs) as a useful approach to generate in vitro models, we also generated an immortalized myoblast line derived from a patient with a specific del45-55. CONCLUSIONS: Overall, we provide helpful resources to deepen into unknown factors responsible for DMD-pathophysiology.


Assuntos
Sistemas CRISPR-Cas , Distrofina , Éxons , Edição de Genes , Terapia Genética , Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofina/genética , Edição de Genes/métodos , Terapia Genética/métodos , Linhagem Celular , Deleção de Sequência , Mioblastos/metabolismo
8.
Ann Med Surg (Lond) ; 86(10): 5938-5946, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39359808

RESUMO

Sickle cell disease (SCD) is a common hereditary blood disorder that profoundly impacts individuals' health, causing chronic pain, anemia, organ damage, increased susceptibility to infections, and social and psychological effects. Over the years, advances in treatment have improved the long-term outcomes of SCD patients. However, problems such as limited access to hematopoietic stem cell transplantation (HSCT) and potential complications associated with the available therapies underscore the importance of continued research and development. The recent FDA approval of Casgevy (Exagamglogene autotemcel), a genetic therapy based on CRISPR/Cas9 technology, demonstrates a comprehensive effort to address the complexity of SCD using new technologies. This review explores the potential of CRISPR/Cas9 for treating SCD and evaluates its efficacy, safety, and long-term outcomes compared to traditional treatment approaches. Long-term research is needed to comprehensively assess the safety, effectiveness, and inclusion of CRISPR/Cas9, ensuring its overall efficacy.

9.
Br J Pharmacol ; 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39394867

RESUMO

Inflammation has a pivotal role in the initiation and progression of various cancers, contributing to crucial processes such as metastasis, angiogenesis, cell proliferation and invasion. Moreover, the release of cytokines mediated by inflammation within the tumour microenvironment (TME) has a crucial role in orchestrating these events. The activation of inflammatory caspases, facilitated by the recruitment of caspase-1, is initiated by the activation of pattern recognition receptors on the immune cell membrane. This activation results in the production of proinflammatory cytokines, including IL-1ß and IL-18, and participates in diverse biological processes with significant implications. The NOD-Like Receptor Protein 3 (NLRP3) inflammasome holds a central role in innate immunity and regulates inflammation through releasing IL-1ß and IL-18. Moreover, it interacts with various cellular compartments. Recently, the mechanisms underlying NLRP3 inflammasome activation have garnered considerable attention. Disruption in NLRP3 inflammasome activation has been associated with a spectrum of inflammatory diseases, encompassing diabetes, enteritis, neurodegenerative diseases, obesity and tumours. The NLRP3 impact on tumorigenesis varies across different cancer types, with contrasting roles observed. For example, colorectal cancer associated with colitis can be suppressed by NLRP3, whereas gastric and skin cancers may be promoted by its activity. This review provides comprehensive insights into the structure, biological characteristics and mechanisms of the NLRP3 inflammasome, with a specific focus on the relationship between NLRP3 and tumour-related immune responses, and TME. Furthermore, the review explores potential strategies for targeting cancers via NLRP3 inflammasome modulation. This encompasses innovative approaches, including NLRP3-based nanoparticles, gene-targeted therapy and immune checkpoint inhibitors.

10.
Front Genome Ed ; 6: 1464531, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39386178

RESUMO

The designer nuclease, CRISPR-Cas9 system has advanced the field of genome engineering owing to its programmability and ease of use. The application of these molecular scissors for genome engineering earned the developing researchers the Nobel prize in Chemistry in the year 2020. At present, the potential of this technology to improve global challenges continues to grow exponentially. CRISPR-Cas9 shows promise in the recent advances made in the Global North such as the FDA-approved gene therapy for the treatment of sickle cell anaemia and ß-thalassemia and the gene editing of porcine kidney for xenotransplantation into humans affected by end-stage kidney failure. Limited resources, low government investment with an allocation of 1% of gross domestic production to research and development including a shortage of skilled professionals and lack of knowledge may preclude the use of this revolutionary technology in the Global South where the countries involved have reduced science and technology budgets. Focusing on the practical application of genome engineering, successful genetic manipulation is not easily accomplishable and is influenced by the chromatin landscape of the target locus, guide RNA selection, the experimental design including the profiling of the gene edited cells, which impacts the overall outcome achieved. Our assessment primarily delves into economical approaches of performing efficient genome engineering to support the first-time user restricted by limited resources with the aim of democratizing the use of the technology across low- and middle-income countries. Here we provide a comprehensive overview on existing experimental techniques, the significance for target locus analysis and current pitfalls such as the underrepresentation of global genetic diversity. Several perspectives of genome engineering approaches are outlined, which can be adopted in a resource limited setting to enable a higher success rate of genome editing-based innovations in low- and middle-income countries.

11.
Front Med (Lausanne) ; 11: 1418786, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39386741

RESUMO

Liver fibrosis is a group of diseases that seriously affect the health of the world's population. Despite significant progress in understanding the mechanisms of liver fibrogenesis, the technologies and drugs used to treat liver fibrosis have limited efficacy. As a revolutionary genetic tool, gene editing technology brings new hope for treating liver fibrosis. Combining nano-delivery systems with gene editing tools to achieve precise delivery and efficient expression of gene editing tools that can be used to treat liver fibrosis has become a rapidly developing field. This review provides a comprehensive overview of the principles and methods of gene editing technology and commonly used gene editing targets for liver fibrosis. We also discuss recent advances in common gene editing delivery vehicles and nano-delivery formulations in liver fibrosis research. Although gene editing technology has potential advantages in liver fibrosis, it still faces some challenges regarding delivery efficiency, specificity, and safety. Future studies need to address these issues further to explore the potential and application of liver fibrosis technologies in treating liver fibrosis.

12.
BMC Plant Biol ; 24(1): 946, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39390400

RESUMO

BACKGROUND: Heterosis is a common phenomenon in plants and has been extensively applied in crop breeding. However, the superior traits in the hybrids can only be maintained in the first generation but segregate in the following generations. Maintaining heterosis in generations has been challenging but highly desirable in crop breeding. Recent study showed that maternally produced diploid seeds could be achieved in rice by knocking out three meiosis related genes, namely REC8, PAIR1, OSD1 to create MiMe in combination with egg cell specific expression of BBM transcription factor, a technology called clonal seeds. Interestingly, there has been very limited reports indicating the feasibility of this approach in other crops. RESULTS: In this study, we aimed to test whether clonal seeds could be created in cotton. We identified the homologs of the three meiosis related genes in cotton and used the multiplex CRISPR/Cas9 gene editing system to simultaneously knock out these three genes in both A and D sub-genomes. More than 50 transgenic cotton plants were generated, and fragment analysis indicated that multiple gene knockouts occurred in the transgenic plants. However, all the transgenic plants were sterile apparently due to the lack of pollen. Pollination of the flowers of the transgenic plants using the wild type pollens could not generate seeds, an indication of defects in the formation of female sexual cells in the transgenic plants. In addition, we generated transgenic cotton plants expressing the cotton BBM gene driven by the Arabidopsis egg cell specific promoter pDD45. Two transgenic plants were obtained, and both showed severely reduced fertility. CONCLUSIONS: Overall, our results indicate that knockout of the clonal seeds related genes in cotton causes sterility and how to manipulate genes to create clonal seeds in cotton requires further research.


Assuntos
Gossypium , Infertilidade das Plantas , Plantas Geneticamente Modificadas , Sementes , Gossypium/genética , Gossypium/fisiologia , Sementes/genética , Plantas Geneticamente Modificadas/genética , Infertilidade das Plantas/genética , Genes de Plantas , Sistemas CRISPR-Cas , Edição de Genes/métodos , Melhoramento Vegetal , Meiose/genética
13.
Nature ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358637
14.
Artigo em Inglês | MEDLINE | ID: mdl-39377274

RESUMO

CRISPR-Cas9 technology is an established, powerful tool for genome editing through the ability to target specific DNA sequences of interest for introduction of desired genetic modifications. CRISPR-Cas9 is utilized for a variety of purposes, ranging from a research molecular biology tool to treatment for human diseases. Due to its prominence across a variety of applications, it is critical that undergraduates in the life sciences are educated on CRISPR-Cas9 technology. To this end, we created an intensive eight-week long course-based undergraduate research experience (CURE) designed for students to understand CRISPR-Cas9 genome editing and perform it in Saccharomyces cerevisiae. Students enrolled in the CURE participate in 2, 3-h sessions a week and are engaged in the entire process of CRISPR-Cas9 genome editing, from preparation of genome editing reagents to characterization of mutant yeast strains. During the process, students master fundamental techniques in the life sciences, including sterile technique, Polymerase Chain Reaction (PCR), primer design, sequencing requirements, and data analysis. The course is developed with flexibility in the schedule for repetition of techniques in the event of a failed experiment, providing an authentic research experience for the students. Additionally, we have developed the course to be easily modified for the editing of any yeast gene, offering the potential to expand the course in research-driven classroom or laboratory settings.

15.
Mol Ther Methods Clin Dev ; 32(4): 101334, 2024 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-39381161

RESUMO

Recombinant adeno-associated viruses (rAAV) are promising for applications in many genome editing techniques through their effectiveness as carriers of DNA homologous donors into primary hematopoietic stem and progenitor cells (HSPCs), but they have many outstanding concerns. Specifically, their biomanufacturing and the variety of factors that influence the quality and consistency of rAAV preps are in question. During the process of rAAV packaging, a cell line is transfected with several DNA plasmids that collectively encode all the necessary information to allow for viral packaging. Ideally, this process results in the packaging of complete viral particles only containing rAAV genomes; however, this is not the case. Through this study, we were able to leverage single-stranded virus (SSV) sequencing, a next-generation sequencing-based method to quantify all DNA species present within rAAV preps. From this, it was determined that much of the DNA within some rAAV preps is not vector-genome derived, and there is wide variability in the contamination by DNA across various preps. Furthermore, we demonstrate that transducing CD34+ HSPCs with preps with higher contaminating DNA resulted in decreased clonogenic potential, altered transcriptomic profiles, and decreased genomic editing. Collectively, this study characterized the effects of DNA contamination within rAAV preps on CD34+ HSPC cellular potential.

16.
Lung Cancer ; 197: 107986, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39383772

RESUMO

Pleural mesothelioma (PM) is an aggressive cancer with limited treatment options. In particular, the frequent loss of tumor suppressors, a key oncogenic driver of the disease that is therapeutically intractable, has hampered the development of targeted cancer therapies. Here, we interrogate the PM genome using CRISPR-mediated gene editing to systematically uncover PM cell susceptibilities and provide an evidence-based rationale for targeted cancer drug discovery. This analysis has allowed us to identify with high confidence numerous known and novel gene dependencies that are surprisingly highly enriched for non-oncogenic pathways involved in response to various stress stimuli, in particular DNA damage and transcriptional dysregulation. By integrating genomic analysis with a series of in vitro and in vivo functional studies, we validate and prioritize several non-oncogene addictions conferred by CDK7, CHK1, HDAC3, RAD51, TPX2, and UBA1 as targetable vulnerabilities, revealing previously unappreciated aspects of PM biology. Our findings support the growing consensus that stress-responsive non-oncogenic signaling plays a key role in the initiation and progression of PM and provide a functional blueprint for the development of unprecedented targeted therapies to combat this formidable disease.

17.
J Am Heart Assoc ; : e034690, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39377211

RESUMO

BACKGROUND: Long-QT syndrome is a primary cardiac ion channelopathy predisposing a patient to ventricular arrhythmia through delayed repolarization on the resting ECG. We aimed to establish a patient-specific, human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes model of long-QT syndrome type 3 (LQT3) using clustered regularly interspaced palindromic repeats (CRISPR/Cas9), for disease modeling and drug challenge. METHODS AND RESULTS: HiPSCs were generated from a patient with LQT3 harboring an SCN5A pathogenic variant (c.1231G>A; p.Val411Met), and an unrelated healthy control. The same SCN5A pathogenic variant was engineered into the background healthy control hiPSCs via CRISPR/Cas9 gene editing to generate a second disease model of LQT3 for comparison with an isogenic control. All 3 hiPSC lines were differentiated into cardiomyocytes. Both the patient-derived LQT3 (SCN5A+/-) and genetically engineered LQT3 (SCN5A+/-) hiPSC-derived cardiomyocytes showed significantly prolonged cardiomyocyte repolarization compared with the healthy control. Mexiletine, a cardiac voltage-gated sodium channel (NaV1.5) blocker, shortened repolarization in both patient-derived LQT3 and genetically engineered LQT3 hiPSC-derived cardiomyocytes, but had no effect in the control. Notably, calcium channel blockers nifedipine and verapamil showed a dose-dependent shortening of repolarization, rescuing the phenotype. Additionally, therapeutic drugs known to prolong the corrected QT in humans (ondansetron, clarithromycin, and sotalol) demonstrated this effect in vitro, but the LQT3 clones were not more disproportionately affected compared with the control. CONCLUSIONS: We demonstrated that patient-derived and genetically engineered LQT3 hiPSC-derived cardiomyocytes faithfully recapitulate pathologic characteristics of LQT3. The clinical significance of such an in vitro model is in the exploration of novel therapeutic strategies, stratifying drug adverse reaction risk and potentially facilitating a more targeted, patient-specific approach in high-risk patients with LQT3.

18.
Front Bioeng Biotechnol ; 12: 1426107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351062

RESUMO

Synthetic genetic circuits have revolutionised our capacity to control cell viability by conferring microorganisms with programmable functionalities to limit survival to specific environmental conditions. Here, we present the GenoMine safeguard, a CRISPR-Cas9-based kill switch for the biotechnological workhorse Pseudomonas putida that employs repetitive genomic elements as cleavage targets to unleash a highly genotoxic response. To regulate the system's activation, we tested various circuit-based mechanisms including the digitalised version of an inducible expression system that operates at the transcriptional level and different options of post-transcriptional riboregulators. All of them were applied not only to directly control Cas9 and its lethal effects, but also to modulate the expression of two of its inhibitors: the AcrIIA4 anti-CRISPR protein and the transcriptional repressor TetR. Either upon direct induction of the endonuclease or under non-induced conditions of its inhibitors, the presence of Cas9 suppressed cell survival which could be exploited beyond biocontainment in situations where further CRISPR genome editing is undesirable.

19.
Mol Breed ; 44(10): 72, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39399692

RESUMO

Deterioration of rice (Oryza sativa L.) affects grain quality and seed viability during storage. Lipoxygenase (LOX), a key enzyme in lipid metabolism, directly affects the rate of ageing. Here, we found that knock-out of lipoxygenase gene OsLOX1 by CRISPR/Cas9 delayed loss of seed viability and quality. Transcriptome analysis showed that during storage, OsLOX1 affected transcription of multiple genes, including genes related to lipid metabolism and antioxidant pathways such as phosphatase and acetaldehyde dehydrogenase, which may regulate the seed storability. The genes significantly down- and up-regulated only in Ningjing 4 after NA for 13 months and 3 days of AA suggesting that OsLOX1 likely promoted seed viability in rice by balancing ageing and storage related genes, and regulated the seed storability through the amino acid synthesis and metabolic pathways. Moreover, knock-out of OsLOX1 without CRISPR/Cas9 not only improved the seed viability, but also had little impact on agronomic traits. More importantly, the OsLOX1 knock-out lines were approved in 2019 (Agricultural Foundation of China Report No. 770). Collectively, our study showed that knock-out of OsLOX1 is beneficial for prolongation of seed viability and can be directly applied to agricultural production. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01506-4.

20.
Int J Biol Macromol ; 281(Pt 3): 136354, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39378920

RESUMO

Chromoplasts are specialized plastids in plants involved in carotenoid synthesis, accumulation, and stress resistance. In tomatoes (Solanum lycopersicum), the Chromoplast-associated carotenoid binding protein (CHRC) regulates chromoplast development and carotenoid accumulation, although its precise mechanisms are not yet fully understood. To investigate the role of SlCHRC in carotenoid biosynthesis, we generated transgenic tomatoes using overexpression (oe-SlCHRC) and CRISPR/Cas9-mediated gene editing (cr-SlCHRC) techniques. The results demonstrated inhibited fruit ripening and delayed onset of color break in both transgenic lines. The oe-SlCHRC lines exhibited increased carotenoid accumulation, particularly (E/Z)-phytoene, lycopene, and γ-carotene, with abundant plastoglobules and carotenoid crystals observed via TEM. In contrast, cr-SlCHRC mutants showed a greener phenotype, reduced carotenoid content, and fewer plastoglobules at the BK + 10 stage. Transcriptome analysis indicated that SlCHRC influences key genes in carotenoid biosynthesis, such as SlNCED2, as well as genes related to chloroplast development, photosynthesis, and plastoglobule formation. Additionally, SlCHRC enhances heat stress tolerance in tomato fruits by upregulating heat shock proteins (HSPs), antioxidants, and proline accumulation. These findings indicate that SlCHRC plays a crucial role in improving tomato fruit quality under heat stress conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...