Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.933
Filtrar
1.
J Hazard Mater ; 477: 135413, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39106730

RESUMO

Developing recyclable adsorbents for co-capture of I2 and CH3I gas is a meaningful and challenging topic. Herein, Cu0-based mesoporous silica (C-S) materials were synthesized and applied for CH3I capture for the first time. Factors (Cu0 content, temperature, contact time and CH3I concentration) affecting the adsorption behavior were investigated. The results demonstrated that the CH3I adsorption capacity of the obtained C-S materials reached up to 1060 mg/g at 200 â„ƒ. Furthermore, the C-S material exhibited excellent reusability (91.3 %, 5 cycles). It was found that Cu0 could cleave the carbon iodine bonds, causing CH3I to dissociate into •CH3 and I-. Then the Cu+ converted from Cu0 reacted with I- to achieve the purpose of CH3I capture. The adsorption mechanism of CH3I on the C-S materials could be concluded that Cu0 reacted with CH3I form CuI (Cu + CH3I → CuI + •CH3). This work suggested that the obtained C-S materials could be promising adsorbents for CH3I capture.

2.
J Environ Manage ; 367: 122058, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39106799

RESUMO

This study explores the association between natural resources rent, industrial value addition, banking development, renewable energy consumption, total reserves and environmental quality in the dynamic context of BRICS nations from 1995 to 2019. BRICS economies are responsible for global greenhouse gas emissions and confront pressing environmental challenges, including biodiversity loss and pollution. For the dependent variable, the environmental quality, the study constructed a composite index using PCA for all environmental indicators where interdependencies among variables are prevalent. Besides this, the study incorporates two interaction terms to determine the indirect influence of natural resource rent and banking development on environmental quality through the mediating role of industrial value addition. By applying the CS-ARDL technique, the outcomes of the study reveal that natural resources rent, industrial value addition, and total reserves positively influence ENQ, indicating the adverse consequences of industrial sectors on environmental quality and continued environmental degradation due to resource-intensive industrial production, underscoring the urgency of sustainable resource management. In contrast, banking development and renewable energy consumption negatively influence ENQ, signifying the positive role of developed banking sectors in supporting eco-friendly projects and enhancing environmental quality. This study offers valuable insights for policy interventions to foster a more sustainable future.

3.
Front Psychol ; 15: 1320520, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108424

RESUMO

Background and aims: This study aimed to explore the complex phenomenon of emotional dysregulation, particularly in adolescence, which is associated with many mental health disorders and problems. Increasing the knowledge of clinicians and researchers in this area can be helpful in guiding future treatment plans. The aim of the study was to investigate, from an exploratory perspective, which structural aspects of adolescent functioning (assessed using the Rorschach test and administered and scored according to the Comprehensive System, CS, by Exner) were associated with different dimensions of emotional dysregulation (evaluated using the Difficulties in Emotion Dysregulation Scale, DERS). Method: Secondary data were used for the study, which included 100 adolescents, with 50 in the clinical group (patients with complex trauma histories residing in therapeutic and socio-rehabilitative communities) and 50 in the nonclinical group (recruited from a scout group and middle and high schools). The two groups were compared on terms of the mean scores obtained in the DERS scales (one-tailed t-test) and the proportions of cases that obtained pathological values for selected Rorschach CS indicators (z-test). Partial correlations were calculated between the DERS scales and the Rorschach CS variables to explore which structural dimensions of functioning were associated with different characteristics of emotional dysregulation. Results: The results indicated that the two groups differed in their outcomes on all DERS scales, except for Awareness and Goals, and on four Rorschach CS variables (EgoIndex, a:p, Wsum6, and MOR). Some significant positive and negative correlations between the Rorschach CS variables and the DERS scales also emerged. Conclusion: These results suggest that the dimensions of functioning associated with emotional dysregulation are related to self-representation, relational immaturity, and thought processes character and characterize membership in a therapeutic community. The correlations described in the article warrants further consideration. Finally, the study's limitations and future research prospects are presented.

4.
Front Genet ; 15: 1399604, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109335

RESUMO

Background: Congenital scoliosis and congenital anomalies of the kidney and urinary tract are distinct genetic disorders with differing clinical manifestations. Clinically, their coexistence is not rare, but the etiologies of these complex diseases remain largely unknown, especially their shared genetic basis. Methods: We sequenced the genomes of 40 individuals diagnosed with both CS and CAKUT, alongside 2,764 controls from a Chinese Han population cohort. Our analyses encompassed gene-based and pathway-based weighted rare variant association tests, complemented by copy number variant association analyses, aiming to unravel the shared genomic etiology underlying these congenital conditions. Results: Gene-based analysis identified PTPN11 as a pivotal gene influencing both skeletal and urinary system development (P = 1.95E-21), participating in metabolic pathways, especially the MAPK/ERK pathway known to regulate skeletal and urinary system development. Pathway-based enrichment showed a significant signal in the MAPK/ERK pathway (P = 3E-04), reinforcing the potential role of PTPN11 and MAPK/ERK pathway in both conditions. Additionally, CNV analysis pinpointed IGFLR1 haploinsufficiency as a potential influential factor in the combined CS-CAKUT phenotypic spectrum. Conclusion: This study enriches our understanding of the intricate genomic interplay underlying congenital scoliosis and kidney and urinary tract anomalies, emphasizing the shared genetic foundations between these two disorders.

5.
Small ; : e2405276, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092684

RESUMO

Halide perovskites are of great interest due to their exceptional optical and optoelectronic properties. However, thermal conductivity of many halide perovskites remains unexplored. In this study, an ultralow lattice thermal conductivity κL (0.24 W m-1 K-1 at 300 K) is reported and its weak temperature dependence (≈T-0.27) in an all-inorganic vacancy-ordered halide perovskite, Cs3Bi2Br9. The intrinsically ultralow κL can be attributed to the soft low-lying phonon modes with strong anharmonicity, which have been revealed by combining experimental heat capacity and Raman spectroscopy measurements, and first-principles calculations. It is shown that the highly anharmonic phonons originate from the Bi 6s2 lone pair expression with antibonding states of Bi 6s and Br 4p orbitals driven by the dynamic BiBr6 octahedral distortion. Theoretical calculations reveal that these low-energy phonons are mostly contributed by large Br motions induced dynamic distortion of BiBr6 octahedra and large Cs rattling motions, verified by the synchrotron X-ray pair distribution function analysis. In addition, the weak temperature dependence of κL can be traced to the wave-like tunneling of phonons, induced by the low-lying phonon modes. This work reveals the strong anharmonicity and wave-like tunneling of low-energy phonons for designing efficient vacancy-ordered halide perovskites with intrinsically low κL.

6.
J Vet Res ; 68(2): 263-270, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38947154

RESUMO

Introduction: Radioactive caesium-137 occurring in the environment may be taken up by plants and animals and pose a trophic threat to humans. Game animals living in forest ecosystems are very good bioindicators of the level of environmental contamination by ionising radiation. The main species measurably exposed to caesium-137 are the wild boar (Sus scrofa), the roe deer (Capreolus capreolus), and the red deer (Cervus elaphus). The study determined the levels of Cs-137 in muscle samples of these game animals in 2015-2022. Material and Methods: Using gamma radiation spectrometry, 858 samples of game animal muscle tissue were examined: 508 wild boar, 145 roe deer and 205 red deer samples. Results: Concentrations of Cs-137 varied widely (from minimum detectable activity (MDA) values to over 4,000 Bq/kg). In 63.4% of cases, the obtained concentrations exceeded the MDA. The permissible limit (600 Bq/kg for food) was exceeded in nine wild boar muscle samples, whereas it was not even exceeded once in roe or red deer muscle. The average concentration in wild boar was three times higher than in roe and red deer and amounted to 42.84 Bq/kg. The highest concentration of Cs-137 in wild boar muscle was 4,195 ± 372.0 Bq/kg, in roe deer muscle it was 111.5 ± 12.50 Bq/kg, and in red deer muscle was 86.70 ± 3.470 Bq/kg. Conclusion: The seven years' data indicate that wild boar absorb the most caesium-137 among game animals. The concentrations of Cs-137 in the muscle of game animals in the years 2015-2022 were at a nearly constant level, a very slow diminution being noticeable over time in roe and red deer muscle.

7.
Int J Biol Macromol ; 275(Pt 1): 133599, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960263

RESUMO

Helicobacter pylori (H. pylori) is one of the major causes of gastrointestinal diseases, including gastric cancer. However, the acidic environment of the stomach and H. pylori resistance severely impair the antimicrobial efficacy of oral drugs. Here, a biocompatible chitosan-modified molybdenum selenide (MoSe2@CS) was designed for the simultaneous photothermal treatment of H. pylori infection and gastric cancer. MoSe2@CS showed a photothermal conversion efficiency was as high as 45.7 %. In the H. pylori-infected mice model, MoSe2@CS displayed a high bacteriostasis ratio of 99.9 % upon near-infrared irradiation. The antimicrobial functionality was also proved by transcriptomic sequencing study, which showed that MoSe2@CS combined with NIR laser irradiation modulated the gene expression of a variety of H. pylori bioprocesses, including cell proliferation and inflammation-related pathways. Further gut flora analysis results indicated that MoSe2@CS mediated PTT of H. pylori did not affect the homeostasis of gut flora, which highlights its advantages over traditional antibiotic therapy. In addition, MoSe2@CS exhibited a good photothermal ablation effect and significantly inhibited gastric tumor growth in vitro and in vivo. The comprehensive application of MoSe2@CS in the PTT of H. pylori infection and gastric cancer provides a new avenue for the clinical treatment of H. pylori infection and related diseases.

8.
Heliyon ; 10(11): e32228, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961950

RESUMO

In this research, an innovative protocol is introduced to address crucial deficiencies in the formulation of chitosan nanoparticles (Cs NPs). While NPs show potential in drug delivery systems (DDSs), their application in the clinic is hindered by various drawbacks, such as toxicity, high material costs, and time-consuming and challenging preparation procedures. Within polymer-based NPs, Cs is a plentiful natural substance derived from the deacetylation of chitin, which can be sourced from the shells of shrimp or crab. Cs NPs can be formulated using the ionic gelation technique, which involves the use of a negatively charged agent, such as tripolyphosphate (TPP), as a crosslinking agent. Even though Cs is a cost-effective and biocompatible material, the formulation of Cs NPs with the correct size and surface electrical charge (zeta potential) presents a persistent challenge. In this study, various techniques were employed to analyze the prepared Cs NPs. The size and surface charge of the NPs were evaluated using dynamic light scattering (DLS). Morphological analysis was conducted using field emission-scanning electron microscopy (FE-SEM). The chemical composition and formation of Cs NPs were investigated using Fourier transform infrared (FTIR). The stability analysis was confirmed through X-ray diffraction (XRD) analysis. Lastly, the biocompatibility of the NPs was assessed through cell cytotoxicity evaluation using the MTT assay. Moreover, here, 11 formulations with different parameters such as reaction pH, Cs:TPP ratio, type of Cs/TPP, and ultrasonication procedure were prepared. Formulation 11 was chosen as the optimized formulation based on its high stability of more than three months, biocompatibility, nanosize of 75.6 ± 18.24 nm, and zeta potential of +26.7 mV. To conclude, the method described here is easy and reproducible and can be used for facile preparation of Cs NPs with desirable physicochemical characteristics and engineering ideal platforms for drug delivery purposes.

9.
J Environ Radioact ; 278: 107492, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38964006

RESUMO

Caesium-137 (137Cs) is a major anthropogenic radionuclide released into the environment as a result of the TEPCO Fukushima Daiichi Nuclear Reactor Station accident (occurring on March 11, 2011). Rice, being a staple food in Asian countries, including Japan, and is predominantly cultivated in paddy fields. Consequently, 137Cs present in rice is absorbed from both soil and irrigation water, making it the most important crop for estimating internal radiation doses. In this study, over the 2018-2022 cultivation periods, flood water and pore water samples were collected biweekly from paddy fields. These samples were analyzed to measure the 137Cs activity concentration, as well as the potassium (K+) and ammonium (NH4+) concentrations. Under anaerobic conditions, the 137Cs + activity concentration in pore water increased markedly to reach a value 20-fold higher than that in flood water, correlating with NH4+ concentration. However, despite the release of 137Cs + caused by increased NH4+ concentrations in pore water due to reduction processes, the 137Cs+/K+ ratio did not increase, which was attributed to the simultaneous release of K+. The competition between 137Cs+ and K+ uptake by plants indicates that rice uptake of 137Cs is not necessarily enhanced during the waterlogging period.

10.
Arh Hig Rada Toksikol ; 75(2): 155-158, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38963139

RESUMO

The invasion of Ukraine and military operations around Ukrainian nuclear power plants and other nuclear facilities have prompted us to search for radiocaesium in mosses from the Kopacki Rit Nature Park in Croatia, since mosses are known bioindicators of airborne radioactive pollution, and Kopacki Rit is a known low radiocaesium background area. Sampling was finished in August 2023, and our analysis found no elevated radiocaesium levels. Kopacki Rit therefore remains a suitable place for future detection of anthropogenic radioactive pollutants.


Assuntos
Radioisótopos de Césio , Monitoramento de Radiação , Croácia , Ucrânia , Radioisótopos de Césio/análise , Monitoramento de Radiação/métodos , Centrais Nucleares , Poluentes Radioativos do Ar/análise , Humanos
11.
Heliyon ; 10(13): e33923, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071714

RESUMO

This study evaluated the potential of an immobilization technique to inhibit the migration and dispersion of Cs-137 contaminated electric arc furnace dust (EAFD) into the environment, by investigating its compressive strength and leaching characteristics. The EAFD was employed to replace ordinary Portland cement (OPC) in varied ratios, ranging from 0 % to 50 % by weight. The replacement was done using various water-binder ratios of 0.35, 0.40, 0.45, and 0.50. Furthermore, the use of activated carbon (AC) has been shown to minimize radionuclide and heavy metal discharge related to its high porosity. AC was added at weight concentrations of 0.5 %, 1.0 %, 1.5 %, and 2.0 %. Compressive strength and leaching tests are used to assess the long-term stability of waste forms and the effectiveness of immobilizing radioactive wastes, which is beneficial for storing and disposing of radioactive waste. The compressive strength is affected by the amount of EAFD, water-to-binder ratios, the addition of AC, and the duration of curing. Measurements of specific surface area, pore size, pore volume, and porosity were also carried out under various conditions. The research results indicate that the addition of AC improves the compressive strength and decreases the release of Cs-137 and heavy metals from the specimen. The mixture of 45 % EAFD and 1.5 % AC is appropriate for efficiently immobilizing Cs-137 contaminated EAFD.

12.
Molecules ; 29(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39064828

RESUMO

Efficient, low-cost photocatalysts with mild synthesis conditions and stable photocatalytic behavior have always been the focus in the field of photocatalysis. This study proves that non-quantum-dot Cs2PbI2Cl2-based materials, created by a simple method, can be successfully employed as new high-efficient photocatalysts. The results demonstrate that two-dimensional Cs2PbI2Cl2 perovskite can achieve over three times higher photocatalytic performance compared to three-dimensional CsPbBr3 perovskite. Moreover, the photocatalytic performance of Cs2PbI2Cl2 can be further improved by constructing a heterojunction structure, such as Cs2PbI2Cl2/CsPbBr3. Cs2PbI2Cl2 can connect well with CsPbBr3 through a simple method, resulting in tight bonding at the interface and efficient carrier transfer. Cs2PbI2Cl2/CsPbBr3 exhibits notable 5-fold and 10-fold improvements in photocatalytic performance and rate compared to CsPbBr3. Additionally, Cs2PbI2Cl2/CsPbBr3 demonstrates superb stable catalytic performance, with nearly no decrease in photocatalytic performance after 7 months (RH = 20% ± 10, T = 25 °C ± 5). This study also reveals that the photocatalytic process based on Cs2PbI2Cl2/CsPbBr3 can directly oxidize organic matter using holes, without relying on the generation of intermediate reactive oxygen species from water or oxygen (such as ·OH or ·O2-), showcasing further potential for achieving high photocatalytic efficiency and selectivity in anhydrous/anaerobic catalytic reactions and treating recalcitrant pollutants.

13.
J Chromatogr A ; 1730: 465130, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38955130

RESUMO

This study describes the preparation of a cylindrical polymer foam column termed Chitosan/ß-Cyclodextrin/MIL-68(Al) (CS/ß-CD/MIL-68(Al)). An ice template-freeze drying technique was employed to prepare the CS/ß-CD/MIL-68(Al) foam column by embedding MIL-68(Al) in a polymer matrix comprising cross-linked chitosan (CS) and ß-cyclodextrin (ß-CD). The cylindrical CS/ß-CD/MIL-68(Al) foam was subsequently inserted into a syringe to develop a solid phase extraction (SPE) device. Without the requirement for an external force, the sample solution passed easily through the SPE column thanks to the porous structure of the CS/ß-CD/MIL-68(Al) foam column. Moreover, the CS/ß-CD/MIL-68(Al) foam column was thought to be a superior absorbent for SPE since it included the adsorptive benefits of CS, ß-CD, and MIL-68(Al). The SPE was utilized in conjunction with high-performance liquid chromatography to analyze six sulfonamides found in milk, urine, and water. With matrix effects ranging from 80.49 % to 104.9 % with RSD values of 0.4-14.0 %, the method showed high recoveries ranging from 80.6 to 107.4 % for water samples, 93.4-105.2 % for urine, and 87.4-100.9 % for milk. It also demonstrated good linearity in the range of 10-258 ng·mL-1 with the limits of detection ranging from 1.88 to 2.58 ng·mL-1. The cylindrical CS/ß-CD/MIL-68(Al) foam column prepared in this work offered several advantages, including its simple fabrication, excellent water stability, absence of pollutants, biodegradability, and reusability. It is particularly well-suited for SPE. Furthermore, the developed SPE method, employing CS/ß-CD/MIL-68(Al) foam column, is straightforward and precise, and its benefits, including affordability, ease of preparation, lack of specialized equipment, and solvent economy, underline its broad applicability for the pretreatment of aqueous samples.


Assuntos
Quitosana , Limite de Detecção , Estruturas Metalorgânicas , Leite , Extração em Fase Sólida , Sulfonamidas , beta-Ciclodextrinas , Extração em Fase Sólida/métodos , Quitosana/química , beta-Ciclodextrinas/química , Leite/química , Estruturas Metalorgânicas/química , Sulfonamidas/urina , Sulfonamidas/isolamento & purificação , Sulfonamidas/química , Animais , Cromatografia Líquida de Alta Pressão/métodos , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Humanos , Reprodutibilidade dos Testes
14.
Sci Rep ; 14(1): 15519, 2024 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969693

RESUMO

The selection of implants for fixing unstable femoral neck fractures (FNF) remains contentious. This study employs finite element analysis to examine the biomechanics of treating Pauwels type III femoral neck fractures using cannulated compression screws (3CS), biplane double-supported screw fixation (BDSF), and the femoral neck system (FNS). A three-dimensional model of the proximal femur was developed using computed tomography scans. Fracture models of the femoral neck were created with 3CS, BDSF, and FNS fixations. Von Mises stress on the proximal femur, fracture ends, internal fixators, and model displacements were assessed and compared across the three fixation methods (3CS, BDSF, and FNS) during the heel strike of normal walking. The maximum Von Mises stress in the proximal fragment was significantly higher with 3CS fixation compared to BDSF and FNS fixations (120.45 MPa vs. 82.44 MPa and 84.54 MPa, respectively). Regarding Von Mises stress distribution at the fracture ends, the highest stress in the 3CS group was 57.32 MPa, while BDSF and FNS groups showed 51.39 MPa and 49.23 MPa, respectively. Concerning implant stress, the FNS model exhibited greater Von Mises stress compared to the 3CS and BDSF models (236.67 MPa vs. 134.86 MPa and 140.69 MPa, respectively). Moreover, BDSF displayed slightly lower total displacement than 3CS fixation (7.19 mm vs. 7.66 mm), but slightly higher displacement than FNS (7.19 mm vs. 7.03 mm). This study concludes that BDSF outperforms 3CS fixation in terms of biomechanical efficacy and demonstrates similar performance to the FNS approach. As a result, BDSF stands as a dependable alternative for treating Pauwels type III femoral neck fractures.


Assuntos
Parafusos Ósseos , Fraturas do Colo Femoral , Análise de Elementos Finitos , Fixação Interna de Fraturas , Fraturas do Colo Femoral/cirurgia , Fraturas do Colo Femoral/fisiopatologia , Fixação Interna de Fraturas/métodos , Humanos , Fenômenos Biomecânicos , Estresse Mecânico , Tomografia Computadorizada por Raios X
15.
J Biol Chem ; : 107552, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002678

RESUMO

Mutations in the endosomal Na+/H+ exchanger (NHE6) cause Christianson Syndrome (CS), an X-linked neurological disorder. NHE6 functions in regulation of endosome acidification and maturation in neurons. Using yeast two-hybrid screening with the NHE6 carboxyl-terminus as bait, we identify Golgi-associated, Gamma adaptin ear containing, ARF binding protein 1 (GGA1) as an interacting partner for NHE6. We corroborated the NHE6-GGA1 interaction using: co-immunoprecipitation (co-IP); over-expressed constructs in mammalian cells; and co-IP of endogenously-expressed GGA1 and NHE6 from neuroblastoma cells, as well as from mouse brain. We demonstrate that GGA1 interacts with organellar NHEs (NHE6, NHE7 and NHE9), and that there is significantly less interaction with cell-surface localized NHEs (NHE1 and NHE5). By constructing hybrid NHE1/NHE6 exchangers, we demonstrate that the cytoplasmic tail of NHE6 interacts most strongly with GGA1. We demonstrate the co-localization of NHE6 and GGA1 in cultured, primary hippocampal neurons, using super-resolution microscopy. We test the hypothesis that the interaction of NHE6 and GGA1 functions in the localization of NHE6 to the endosome compartment. Using subcellular fractionation experiments, we show that NHE6 is mis-localized in GGA1 knockout cells, wherein we find less NHE6 in endosomes, but more NHE6 transport to lysosomes, and more Golgi retention of NHE6, with increased exocytosis to the surface plasma membrane. Consistent with NHE6 mis-localization, and Golgi retention, we find the intra-luminal pH in Golgi to be alkalinized in GGA1-null cells. Our study demonstrates a new interaction between NHE6 and GGA1 which functions in the localization of this intra-cellular NHE to the endosome compartment.

16.
Br Ir Orthopt J ; 20(1): 165-170, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035029

RESUMO

Background: Dynamic visual acuity (DVA) is a complex visual function that requires the observer to detect a moving target, to visually acquire it by eye movements, and to resolve critical details contained in it, in a relatively brief time exposure. Dynamic contrast sensitivity (DCS) functions are determined over a range of angular velocities to complement the traditional contrast sensitivity (CS) functions (obtained with stationary targets). Methodology: A new chart is constructed to assess DCS by chosen 5×5 grid and Sloan letters (D, H, N, U, V, R, Z, S, K, O, C). Letters are constructed at a constant visual acuity of six lines having the contrast varied at each interval of the line. Each line has six letters and each line subtends different contrast (0.20 logCS-1.70 logCS). The chart has a motor of 45 revolutions per minute (rpm) and 30 rpm and measured among the normal population of the age group of 17 to 30. Results: Results shows that CS declines once the target stimulus is in motion. There was a statistically significant difference (p < 0.05) between the stimulus speeds of 30 rpm and 45 rpm. Dynamic contrast sensitivity values increased for lower target velocity indicating that as speed of the target stimulus increases, CS decreases. Conclusion: This study concludes that the DCS decreases as the velocity increases. Consequently, incorporating the DCS chart into comprehensive eye examinations provides a holistic understanding of an individual's visual function.

17.
ACS Appl Mater Interfaces ; 16(28): 36547-36556, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38949621

RESUMO

Novel and covert fluorescence is quite desirable for fluorescent anticounterfeiting application. Here, Cs2InCl5·H2O/Sb and Cs2NaInCl6/Sb with high photoluminescence quantum yields (PLQYs) of 99.61 and 99.9%, respectively, were achieved. Considering the excellent optical performances together with the high similarity of the two crystal structures, we tried to realize the crystal structure transition from Cs2InCl5·H2O/Sb to Cs2NaInCl6/Sb by an ion-exchange method. It was well done by just adding the NaCl precursor with different concentrations in the Cs2InCl5·H2O/Sb product. Interestingly, a gradual color change from yellow to orange, warm white, white, cool white, and blue was achieved in the process of crystal structure transition. The energy-transfer dynamic models of Cs2InCl5·H2O/Sb, the white product, and Cs2NaInCl6/Sb were identified. The chemical reaction and UV fluorescence properties made it possible for application in chemical and fluorescent double-modal anticounterfeiting and highly decreased the possibility of being cracked and copied. Especially, when salt for daily cooking was used to replace NaCl, a similar phenomenon happened as that of the 99.9% NaCl precursor, which made it easy to be applicated. The combination of chemical and optical verifications provides two levels of security and unbreakable encryption. The results demonstrate that the transition from Cs2InCl5·H2O/Sb to Cs2NaInCl6/Sb is highly promising in fluorescent anticounterfeiting application.

18.
ACS Appl Mater Interfaces ; 16(28): 35964-35984, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38968558

RESUMO

Developing a neurovascular bone repair scaffold with an appropriate mechanical strength remains a challenge. Calcium phosphate (CaP) is similar to human bone, but its scaffolds are inherently brittle and inactive, which require recombination with active ions and polymers for bioactivity and suitable strength. This work discussed the synthesis of amorphous magnesium-calcium pyrophosphate (AMCP) and the subsequent development of a humidity-responsive AMCP/cassava starch (CS) scaffold. The scaffold demonstrated enhanced mechanical properties by strengthening the intermolecular hydrogen bonds and ionic bonds between AMCP and CS during the gelatinization and freeze-thawing processes. The release of active ions was rapid initially and stabilized into a long-term stable release after 3 days, which is well-matched with new bone growth. The release of pyrophosphate ions endowed the scaffold with antibacterial properties. At the cellular level, the released active ions simultaneously promoted the proliferation and mineralization of osteoblasts, the proliferation and migration of endothelial cells, and the proliferation of Schwann cells. At the animal level, the scaffold was demonstrated to promote vascular growth and peripheral nerve regeneration in a rat skull defect experiment, ultimately resulting in the significant and rapid repair of bone defects. The construction of the AMCP/CS scaffold offers practical suggestions and references for neurovascular bone repair.


Assuntos
Regeneração Óssea , Amido , Alicerces Teciduais , Animais , Regeneração Óssea/efeitos dos fármacos , Alicerces Teciduais/química , Ratos , Amido/química , Umidade , Humanos , Proliferação de Células/efeitos dos fármacos , Ratos Sprague-Dawley , Difosfatos/química , Difosfatos/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Pirofosfato de Cálcio/química , Pirofosfato de Cálcio/farmacologia , Células de Schwann/efeitos dos fármacos , Células de Schwann/citologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Crânio/efeitos dos fármacos
19.
Trop Med Int Health ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39081142

RESUMO

BACKGROUND: Anopheles stephensi, a malaria-transmitting mosquito species, has developed resistance to various insecticides such as DDT, Dieldrin, Malathion, and synthetic pyrethroids. To combat this issue, the World Health Organization (WHO) suggests using Actellic®300CS and Icon®10CS for Indoor Residual Spraying to tackle pyrethroid-resistant mosquitoes. The aim of this research project was to evaluate the susceptibility of An. stephensi to certain insecticides at the diagnostic concentration + intensity 5x diagnostic concentration (5XDC) assays in Iran and to study the lasting effectiveness of Actellic®300CS and Icon®10CS against this particular malaria vector. METHODS: This study assessed the susceptibility of An. stephensi populations in southern Iran to various insecticides, including deltamethrin 0.05%, DDT 4%, malathion 5%, bendiocarb 0.1%, a synergist assay with PBO 4% combined with deltamethrin 0.05%, and an intensity assay using 5x the diagnostic concentration of deltamethrin (0.25%) and bendiocarb 0.5%. Laboratory cone bioassay tests were conducted to determine the residual effectiveness of Actellic®300 and Icon®10CS insecticides on different surfaces commonly found in households, such as cement, mud, plaster, and wood. The tests were carried out following the WHO test kits and standard testing protocols. RESULTS: The An. stephensi populations in Bandar Abbas were found to be susceptible to malathion 5% and deltamethrin 0.25% (5XDC), but exhibited resistance to DDT, standard concentration of deltamethrin, and both standard and intensity concentrations of bendiocarb. In laboratory cone bioassay tests, An. stephensi mortality rates when exposed to Actellic®300CS and Icon®10CS on different surfaces remained consistently more than 80%. Actellic®300CS achieved more than 80% mortality on all substrates for the entire 300-day post-spraying period. Conversely, Icon®10CS maintained mortality rates more than 80% on plaster and wood surfaces for 165 days and on mud and cement surfaces for 270 days post-spraying. Both Actellic®300CS and Icon®10CS demonstrated 100% mortality within 72 h of each test on all surfaces throughout the entire 300-day post-spraying period. CONCLUSION: The study shows the varying levels of resistance of An. stephensi Bandar Abbas population to different insecticides and demonstrates the consistent performance of Actellic®300CS in controlling these mosquitoes on various surfaces. The findings suggest that long-lasting CS formulations may be more effective for malaria vector control compared to the current options. Further research is needed to validate these findings in field settings and assess the impact of these insecticides on malaria transmission.

20.
ACS Appl Mater Interfaces ; 16(30): 40123-40130, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39031054

RESUMO

Tow-dimensional (2D) perovskites have invoked extensive interest because of their good stability and intriguing optoelectronic properties. However, in practical applications, the hampered carrier transportation imposed by the vertical array of large dielectric organic cations and the generally seen Fermi level pinning (FLP) effect in conventional metal-2D semiconductors need to be solved urgently. Sb3+/Bi3+-based inorganic lead-free 2D Cs3(M3+)2X9 perovskites (M = Sb3+, Bi3+; X = Cl-, Br-, I-) are promising candidates to replace the toxic 2D hLHP. The contact properties of Cs3Sb2Cl9 with 2D metals are studied in this work to achieve tunable Schottky barrier heights (SBH). Density functional theory calculations reveal a weak FLP factor of 0.91 in the studied junctions, which is beneficial for improving the carrier injection efficiency through electrode design. Calculations of tunneling properties indicate that a Cd3C2 electrode tends to achieve low SBH and high tunneling probability, while a VS2 (H) electrode tends to realize high SBH and low tunneling probability, suggesting that diverse applications of Cs3Sb2Cl9 can be achieved through electrode engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...