Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.841
Filtrar
1.
Methods Mol Biol ; 2861: 89-96, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39395099

RESUMO

Calcium imaging is a method that was first developed in the mid-1970s yet kept developing until current days to allow accurate measurement of free calcium ions in tissues. This widely used method has provided significant advances to our understanding of cellular signal transduction, including the discovery of subcellular compartmentalization of neurons and astrocytes, the identification of multiple signaling pathways, and mapping the functional connectivity between astrocytes and neuronal networks. Here we describe a method for the loading and imaging of cell-permeable AM ester calcium-sensitive dyes for the in vitro measurement of free intracellular Ca2+ ions in acute brain slices.


Assuntos
Encéfalo , Cálcio , Animais , Cálcio/metabolismo , Cálcio/análise , Encéfalo/metabolismo , Encéfalo/citologia , Camundongos , Astrócitos/metabolismo , Astrócitos/citologia , Neurônios/metabolismo , Neurônios/citologia , Sinalização do Cálcio , Corantes Fluorescentes/química , Imagem Molecular/métodos
2.
Methods Mol Biol ; 2861: 195-212, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39395107

RESUMO

The mammary gland has a central role in optimal mammalian development and survival. Contractions of smooth muscle-like basal (or myoepithelial) cells in the functionally mature mammary gland in response to oxytocin are essential for milk ejection and are tightly regulated by intracellular calcium (Ca2+). Using mice expressing a genetically encoded Ca2+ indicator (GCaMP6f), we present in this chapter a method to visualize at high spatiotemporal resolution changes in intracellular Ca2+ in mammary epithelial cells, both in vitro (2D) and ex vivo (3D). The procedure to optimally prepare mammary tissue and primary cells is presented in detail.


Assuntos
Sinalização do Cálcio , Cálcio , Glândulas Mamárias Animais , Animais , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/citologia , Camundongos , Feminino , Cálcio/metabolismo , Células Epiteliais/metabolismo , Imageamento Tridimensional/métodos , Epitélio/metabolismo
3.
Methods Mol Biol ; 2861: 213-221, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39395108

RESUMO

Live-cell Ca2+ imaging is an important tool to detect activation of receptors by a putative ligand/drug and complements studies on transport processes, as intracellular Ca2+ changes provide direct evidence for substrate fluxes. Organoid-based systems offer numerous advantages over other in vitro systems such as cell lines, primary cells, or tissue explants, and in particular, intestinal organoid culture has revolutionized research on functional gastrointestinal processes. Calcium imaging using the fluorescent Ca2+ indicator Fura-2-AM can be applied to 3D intestinal organoids, which show an excellent dye-loading efficiency. Here we describe live-cell Ca2+ imaging in intestinal organoids, an important technique to improve research on malabsorption syndromes, secretory diarrhea, and metabolic disorders.


Assuntos
Cálcio , Organoides , Organoides/metabolismo , Organoides/citologia , Cálcio/metabolismo , Humanos , Animais , Intestinos/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citologia , Imageamento Tridimensional/métodos
4.
Methods Mol Biol ; 2861: 223-246, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39395109

RESUMO

Ca2+ ions play a central role in the stimulus-secretion coupling cascade of pancreatic beta cells. The use of confocal microscopy in conjunction with the acute pancreas tissue slice technique offers valuable insights into changes in the intracellular calcium concentration following stimulation by secretagogues. This allows the study of beta cells on a single cell level, as well as their behavior on a multicellular scale within an intact environment. With the use of advanced analytical tools, this approach offers insight into how single cells contribute to the functional unit of islets of Langerhans and processes underlying insulin secretion. Here we describe a comprehensive protocol for the preparation and utilization of acute pancreas tissue slices in mice, the use of high-resolution confocal microscopy for observation of glucose-stimulated calcium dynamics in beta cells, and the computational analysis for objective evaluation of calcium signals.


Assuntos
Sinalização do Cálcio , Cálcio , Células Secretoras de Insulina , Microscopia Confocal , Animais , Camundongos , Células Secretoras de Insulina/metabolismo , Cálcio/metabolismo , Microscopia Confocal/métodos , Pâncreas/metabolismo , Pâncreas/citologia , Glucose/metabolismo
5.
Methods Mol Biol ; 2861: 257-271, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39395111

RESUMO

Ex vivo calcium imaging in Drosophila opens an expansive amount of research avenues for the study of live signal propagation through complex tissue. Here, we describe how to isolate Drosophila organs of interest, like the developing wing imaginal disc and larval brain, culture them for extended periods, up to 10 h, and how to image the calcium dynamics occurring within them using genetically encoded biosensors like GCaMP. This protocol enables the study of complex calcium signaling dynamics, which is conserved throughout biology in such processes as cell differentiation and proliferation, immune reactions, wound healing, and cell-to-cell and organ-to-organ communication, among others. These methods also allow pharmacological compounds to be tested to observe effects on calcium dynamics with the applications of target identification and therapeutic development.


Assuntos
Sinalização do Cálcio , Cálcio , Animais , Cálcio/metabolismo , Drosophila/metabolismo , Larva/metabolismo , Asas de Animais/metabolismo , Asas de Animais/crescimento & desenvolvimento , Encéfalo/metabolismo , Imagem Molecular/métodos , Discos Imaginais/metabolismo , Drosophila melanogaster/metabolismo , Técnicas Biossensoriais/métodos
6.
Biosens Bioelectron ; 267: 116814, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39362138

RESUMO

Disruption and dysregulation of cellular calcium channel function can lead to diseases such as ischemic stroke, heart failure, and arrhythmias. Corresponding calcium channel drugs typically require preliminary efficacy evaluations using in vitro models such as cells and simulated tissues before clinical testing. However, traditional detection and evaluation methods often encounter challenges in long-term continuous monitoring and lack calcium specificity. In this study, a dynamic monitoring system based on ion-sensitive membranes for light-addressable potentiometric sensor (LAPS) was developed to meet the demand for monitoring changes in extracellular calcium ion (Ca2+) concentration in live cells. The effects of Ca2+ channel agonists and blockers on 2D and 3D HL-1 cells were investigated, with changes in extracellular Ca2+ concentration reflecting cellular calcium metabolism, facilitating drug evaluation. Additionally, calcium imaging technology with optical addressing capability complemented the LAPS system's ability to perceive 3D cell morphology, enhancing its drug evaluation capabilities. This work provides a novel, label-free, specific, and stable technique for monitoring cellular calcium metabolism. It achieves both continuous monitoring at single points and custom sensing area calcium imaging, holding significant implications for drug screening and disease treatment related to human calcium homeostasis.

7.
Alzheimers Dement ; 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39368113

RESUMO

INTRODUCTION: It is unclear how early neuronal deficits occur in tauopathies, if these are associated with changes in neuronal network activity, and if they can be alleviated with therapies. METHODS: To address this, we performed in vivo two-photon Ca2+ imaging in tauopathy mice at 6 versus 12 months, compared to controls, and treated the younger animals with a tau antibody. RESULTS: Neuronal function was impaired at 6 months but did not deteriorate further at 12 months, presumably because cortical tau burden was comparable at these ages. At 6 months, neurons were mostly hypoactive, with enhanced neuronal synchrony, and had dysregulated responses to stimulus. Ex vivo, electrophysiology revealed altered synaptic transmission and enhanced excitability of motor cortical neurons, which likely explains the altered network activity. Acute tau antibody treatment reduced pathological tau and gliosis and partially restored neuronal function. DISCUSSION: Tauopathies are associated with early neuronal deficits that can be attenuated with tau antibody therapy. HIGHLIGHTS: Neuronal hypofunction in awake and behaving mice in early stages of tauopathy. Altered network activity disrupted local circuitry engagement in tauopathy mice. Enhanced neuronal excitability and altered synaptic transmission in tauopathy mice. Tau antibody acutely reduced soluble phospho-tau and improved neuronal function.

8.
bioRxiv ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39386559

RESUMO

Although animals can reliably locate and recognize odorants embedded in complex environments, the neural circuits for accomplishing these tasks remain incompletely understood. Adaptation is likely to be important as it could allow neurons in a brain area to adjust to the broader sensory environment. Adaptive processes must be flexible enough to allow the brain to make dynamic adjustments, while maintaining sufficient stability so that organisms do not forget important olfactory associations. Processing within the mouse olfactory bulb is likely involved in generating adaptation, although there are conflicting models of how it transforms the glomerular output of the mouse olfactory bulb. Here we performed 2-photon Ca2+ imaging from mitral/tufted glomeruli in awake mice to determine the time course of recovery from adaptation, and whether it acts broadly or selectively across the glomerular population. Individual glomerular responses, as well as the overall population odor representation was similar across imaging sessions. However, odor-concentration pairings presented with interstimulus intervals upwards of 30-s evoked heterogeneous adaptation that was concentration-dependent. We demonstrate that this form of adaptation is unrelated to variations in respiration, and olfactory receptor neuron glomerular measurements indicate that it is unlikely to be inherited from the periphery. Our results indicate that the olfactory bulb output can reliably transmit stable odor representations, but recent odor experiences can selectively shape neural responsiveness for upwards of 30 seconds. We propose that neural circuits that allow for non-uniform adaptation across mitral/tufted glomerular could be important for making dynamic adjustments in complex odor environments.

9.
Brain Behav Immun ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39414176

RESUMO

Toll-like receptor 4 (TLR4) and the transient receptor potential vanilloid subtype 1 (TRPV1) are both upregulated and play key roles in the induction and expression of paclitaxel-related chemotherapy-induced peripheral neuropathy (CIPN). Using Apolipoprotein A-I binding protein, non-specific cholesterol depletion, TLR4 mis-sense rats and a TLR4 inhibitor, we demonstrate that co-localization of TRPV1 with TLR4 to cholesterol-rich lipid membrane rafts in nociceptors is essential for its normal activation as well as for its exaggerated activation that underlies the development and expression of CIPN. The findings suggest that TLR4-lipid rafts may have an essential role in numerous neuroinflammatory and neuropathic pain conditions. This mechanism is also generalized to female rats for the first time.

10.
Biol Sex Differ ; 15(1): 79, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39415234

RESUMO

In recent years, research has progressively increased the importance of considering sex differences in stress and fear memory studies. Many studies have traditionally focused on male subjects, potentially overlooking critical differences with females. Emerging evidence suggests that males and females can exhibit distinct behavioral and neurophysiological responses to stress and fear conditioning. These differences may be attributable to variations in hormone levels, brain structure, and neural circuitry, particularly in regions such as the prefrontal cortex (PFC). In the present study, we explored sex differences in prelimbic cortex (PL) calcium activity in animals submitted to immobilization stress (IMO), fear conditioning (FC), and fear extinction (FE). While no significant sex differences were found in behavioral responses, we did observe differences in several PL calcium activity parameters. To determine whether these results were related to behaviors beyond stress and fear memory, we conducted correlation studies between the movement of the animals and PL activity during IMO and freezing behavior during FC and FE. Our findings revealed a clear correlation between PL calcium activity with movement during stress exposure and freezing behavior, with no sex differences observed in these correlations. These results suggest a significant role for the PL in movement and locomotion, in addition to its involvement in fear-related processes. The inclusion of both female and male subjects is crucial for studies like this to fully understand the role of the PFC and other brain areas in stress and fear responses. Recognizing sex differences enhances our comprehension of brain function and can lead to more personalized and effective approaches in the study and treatment of stress and fear-related conditions.


In recent years, researchers have started paying more attention to the differences between males and females in how they handle stress and remember fearful events. Traditionally, many studies focused mainly on males, which might have missed important differences in females. New findings seem to suggest that males and females can respond differently to stress and fear due to differences in hormone levels, brain structure, and brain circuits, especially in the prefrontal cortex (PFC).In this study, we looked at how male and female animals' brains reacted to being restrained, experiencing a strong trauma, and then trying to learn a new fearful memory. While their behaviors didn't show significant differences between sexes, their brain activities did. We found that the prelimbic area of the brain shows calcium activity linked to the animals' movements during stress and their freezing behavior during fear-related tests.These results show that the PL is involved in both movement and fear responses. Including both male and female subjects in such studies is vital to fully understand how the prefrontal cortex and other brain areas work in stress and fear situations. Recognizing these differences helps improve our understanding of brain function and can lead to better, more personalized treatments for stress and fear-related conditions.


Assuntos
Cálcio , Medo , Córtex Pré-Frontal , Caracteres Sexuais , Estresse Psicológico , Medo/fisiologia , Animais , Masculino , Feminino , Córtex Pré-Frontal/metabolismo , Cálcio/metabolismo , Estresse Psicológico/metabolismo , Extinção Psicológica/fisiologia , Aprendizagem/fisiologia , Condicionamento Clássico , Ratos Wistar
11.
Plant Physiol Biochem ; 216: 109172, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39395224

RESUMO

Cold atmospheric pressure plasma generators capable of generating plasma under normal pressure and temperature conditions have recently been developed, and their biological applications have been extensively studied. Plasma irradiation has been reported to affect plant germination and growth; however, the molecular mechanism underlying these effects and initial cellular responses to plasma irradiation remains poorly understood. To unravel the molecular and cellular mechanisms underlying the effects of plasma irradiation on plants, we have been establishing novel experimental systems using a model liverwort Marchantia polymorpha. We here focused on the initial responses of plant cells to plasma irradiation. To investigate immediate cellular responses following plasma irradiation, we developed a new plasma device that allows irradiation under a microscope. Through integration with live fluorescence imaging, we established an experimental setup to track, the dynamics of intracellular concentration of H2O2 and Ca2+ as representative initial cellular responses. We revealed that plasma irradiation induced a rapid and transient increase in intracellular concentration of H2O2 and Ca2+ in Marchantia gemmalings. Pharmacological analyses suggested that the long-lived reactive species, H2O2, generated by the plasma generator was directly delivered into the plant cells. Competitive inhibitors of Ca2+ channels abolished the Ca2+ rise, suggesting that plasma irradiation immediately activate plasma membrane Ca2+ channel(s) to induce Ca2+ influx. Importantly, this study marks the inaugural demonstration of real-time monitoring of cytosolic H2O2 and Ca2+ dynamics in plants, triggered by plasma irradiation.

12.
J Neuroendocrinol ; : e13456, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39414384

RESUMO

Different populations of hypothalamic kisspeptin (KISS1) neurons located in the rostral periventricular area of the third ventricle (RP3V) and arcuate nucleus (ARC) are thought to generate the sex-specific patterns of gonadotropin secretion. These neuronal populations integrate gonadal sex steroid feedback with internal and external cues relayed via the actions of neurotransmitters and neuropeptides. The excitatory amino acid neurotransmitter glutamate, the main excitatory neurotransmitter in the brain, plays a role in regulating gonadotropin secretion, at least partially through engaging KISS1 signaling. The expression and function of individual glutamate receptor subtypes in KISS1 neurons, however, are not well characterized. Here, we used GCaMP-based calcium imaging and patch-clamp electrophysiology to assess the impact of activating individual ionotropic (iGluR) and group I metabotropic (mGluR) glutamate receptors on KISS1 neuron activity in the mouse RP3V and ARC. Our results indicate that activation of all iGluR subtypes and of group I mGluRs, likely mGluR1, consistently drives activity in the majority of KISS1 neurons within the RP3V and ARC of males and females. Our results also revealed, somewhat unexpectedly, sex- and region-specific differences. Indeed, activating (S)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type iGluRs evoked larger responses in female ARCKISS1 neurons than in their male counterparts whereas activating group I mGluRs induced larger responses in RP3VKISS1 neurons than in ARCKISS1 neurons in females. Together, our findings suggest that glutamatergic neurotransmission in KISS1 neurons, and its impact on the activity of these cells, might be sex- and region-dependent in mice.

13.
Neurophotonics ; 11(3): 034312, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39328299

RESUMO

Significance: Recently developed miniaturized neural recording devices that can monitor and perturb neural activity in freely behaving animals have significantly expanded our knowledge of neural underpinning of complex behaviors. Most miniaturized neural interfaces require a wired connection for external power and data acquisition systems. The wires are required to be commutated through a slip ring to accommodate for twisting of the wire or tether and alleviate torsional stresses. The increased trend toward long-term continuous neural recordings has spurred efforts to realize active commutators that can sense the torsional stress and actively rotate the slip ring to alleviate torsional stresses. Current solutions however require the addition of sensing modules. Aim: Here, we report on an active translating commutator that uses computer vision (CV) algorithms on behavioral imaging videos captured during the experiment to track the animal's position and heading direction in real time and uses this information to control the translation and rotation of a slip ring commutator to accommodate for accumulated mouse heading orientation changes and position. Approach: The CV-guided active commutator has been extensively tested in three separate behavioral contexts. Results: We show reliable cortex-wide imaging in a mouse in an open field with a miniaturized wide-field cortical imaging device. Active commutation resulted in no changes to measured neurophysiological signals. Conclusion: The active commutator is fully open source, can be assembled using readily available off-the-shelf components, and is compatible with a wide variety of miniaturized neurophotonic and neurophysiology devices.

14.
Neurophotonics ; 11(3): 035009, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39345733

RESUMO

Significance: Two-photon optogenetics and simultaneous calcium imaging can be used to visualize the response of surrounding neurons with respect to the activity of an optically stimulated target neuron, providing a direct method to assess neuronal connectivity. Aim: We aim to develop a two-photon optogenetics-based method for evaluating neuronal connectivity, compare it to the existing indirect resting-state synchrony method, and investigate the application of the method to brain pathophysiology. Approach: C1V1-mScarlet was introduced into GCaMP6s-expressing transgenic mice with an adeno-associated virus. Optical stimulation of a single target neuron and simultaneous calcium imaging of the target and surrounding cells were performed. Neuronal connectivity was evaluated from the correlation between the fluorescence intensity of the target and surrounding cells. Results: The neuronal connectivity in the living brain was evaluated using two-photon optogenetics. However, resting-state synchrony was not always consistent with two-photon optogenetics-based connectivity. Comparison with neuronal synchrony measured during sensory stimulation suggested that the disagreement was due to external sensory input. Two-photon optogenetics-based connectivity significantly decreased in the common carotid artery occlusion model, whereas there was no significant change in the control group. Conclusions: We successfully developed a direct method to evaluate neuronal connectivity in the living brain using two-photon optogenetics. The technique was successful in detecting connectivity impairment in hypoperfusion model mice.

15.
bioRxiv ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39314375

RESUMO

Inhibition stabilization enables cortical circuits to encode sensory signals across diverse contexts. Somatostatin-expressing (SST) interneurons are well-suited for this role through their strong recurrent connectivity with excitatory pyramidal cells. We developed a cortical circuit model predicting that SST cells become increasingly important for stabilization as sensory input strengthens. We tested this prediction in mouse primary visual cortex by manipulating excitatory input to SST cells, a key parameter for inhibition stabilization, with a novel cell-type specific pharmacological method to selectively block glutamatergic receptors on SST cells. Consistent with our model predictions, we find antagonizing glutamatergic receptors drives a paradoxical facilitation of SST cells with increasing stimulus contrast. In addition, we find even stronger engagement of SST-dependent stabilization when the mice are aroused. Thus, we reveal that the role of SST cells in cortical processing gradually switches as a function of both input strength and behavioral state.

16.
Mol Cell Endocrinol ; 594: 112378, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39332467

RESUMO

AIMS: Follicle-stimulating hormone (FSH) plays a fundamental role in reproduction stimulating ovarian folliculogenesis, Sertoli cells function and spermatogenesis. However, the recent identification of FSH receptor (FSHR) also in extra-gonadal tissues has suggested that FSH activity may not be limited only to fertility regulation, with conflicting results on the possible role of FSH in endothelial cells. The aim of this study was to investigate FSH role on endothelial function in Human Umbilical Vein Endothelial Cells (HUVECs). RESULTS: Endothelial Nitric oxide synthase (eNOS) expression, eNOS phosphorylation and Nitric Oxide (NO) production resulted increased after the stimulation of HUVEC with recombinant human FSH (rhFSH) at 3.6x103 ng/ml, with increasing Calcium release from intracellular stores. Furthermore, IP3 production increased after rhFSH stimulation despite PTX treatment and NFAT1 was observed prevalently in nucleus. We observed a statistical difference between untreated cells and cells stimulated with 0.36x103 ng/ml and between cells stimulated with 0.36x103 ng/ml and cells stimulated with 1.8x103 ng/ml at 4 and 8 h by Wound healing assay, respectively. Furthermore, a higher cellular permeability was observed in stimulated cells, with atypical VE-cadherin distribution, as well as filamentous actin. CONCLUSIONS: Our findings suggest that FSH at high concentrations elicits a signalling that could compromise the endothelial membrane. Indeed, VE-cadherin anomalies may severely affect the endothelial barrier, resulting in an increased membrane permeability. Although NO is an important vasodilatation factor, probably an excessive production could impact on endothelial functionality, partially explaining the increased risk of cardiovascular diseases in menopausal women and men with hypogonadism.

17.
Artigo em Inglês | MEDLINE | ID: mdl-39263983

RESUMO

False clownfish (Amphiprion ocellaris) employ a hatching strategy regulated by environmental cues, wherein parents provide water flow to encourage embryos to hatch after sunset on the hatching day. Despite previous studies demonstrating the necessity of complete darkness and water agitation for hatching, the regulatory mechanisms underlying these environmental cues remain elusive. This study aimed to investigate how darkness and water agitation affect the secretion of hatching enzymes and the hatching movements of embryos in false clownfish. Assessment of chorion digestion and live imaging of Ca2+ in hatching glands using GCaMP6s, a Ca2+ indicator, revealed that darkness stimulation triggers the secretion of hatching enzymes by increasing Ca2+ levels in hatching gland cells. On the other hand, water agitation primarily stimulated hatching movements in embryos, which led to the rupture of their egg envelopes. These results suggest that changes in light environments following sunset induce embryos to secrete hatching enzymes and that water agitation provided by parents stimulates hatching movements. These responses to environmental cues, light and water agitation, contribute to the rapid and synchronous hatching in false clownfish.

18.
Cell ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39276776

RESUMO

A comprehensive understanding of physio-pathological processes necessitates non-invasive intravital three-dimensional (3D) imaging over varying spatial and temporal scales. However, huge data throughput, optical heterogeneity, surface irregularity, and phototoxicity pose great challenges, leading to an inevitable trade-off between volume size, resolution, speed, sample health, and system complexity. Here, we introduce a compact real-time, ultra-large-scale, high-resolution 3D mesoscope (RUSH3D), achieving uniform resolutions of 2.6 × 2.6 × 6 µm3 across a volume of 8,000 × 6,000 × 400 µm3 at 20 Hz with low phototoxicity. Through the integration of multiple computational imaging techniques, RUSH3D facilitates a 13-fold improvement in data throughput and an orders-of-magnitude reduction in system size and cost. With these advantages, we observed premovement neural activity and cross-day visual representational drift across the mouse cortex, the formation and progression of multiple germinal centers in mouse inguinal lymph nodes, and heterogeneous immune responses following traumatic brain injury-all at single-cell resolution, opening up a horizon for intravital mesoscale study of large-scale intercellular interactions at the organ level.

19.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273317

RESUMO

Although olfaction is well known to guide animal behavior, the neural circuits underlying the motor responses elicited by olfactory inputs are poorly understood. In the sea lamprey, anatomical evidence shows that olfactory inputs project to the posterior tuberculum (PT), a structure containing dopaminergic (DA) neurons homologous to the mammalian ventral tegmental area and the substantia nigra pars compacta. Olfactory inputs travel directly from the medial olfactory bulb (medOB) or indirectly through the main olfactory bulb and the lateral pallium (LPal). Here, we characterized the transmission of olfactory inputs to the PT in the sea lamprey, Petromyzon marinus. Abundant projections from the medOB were observed close to DA neurons of the PT. Moreover, electrophysiological experiments revealed that PT neurons are activated by both the medOB and LPal, and calcium imaging indicated that the olfactory signal is then relayed to the mesencephalic locomotor region to initiate locomotion. In semi-intact preparations, stimulation of the medOB and LPal induced locomotion that was tightly associated with neural activity in the PT. Moreover, PT neurons were active throughout spontaneously occurring locomotor bouts. Altogether, our observations suggest that the medOB and LPal convey olfactory inputs to DA neurons of the PT, which in turn activate the brainstem motor command system to elicit locomotion.


Assuntos
Neurônios Dopaminérgicos , Locomoção , Bulbo Olfatório , Animais , Bulbo Olfatório/fisiologia , Locomoção/fisiologia , Neurônios Dopaminérgicos/fisiologia , Neurônios Dopaminérgicos/metabolismo , Olfato/fisiologia , Petromyzon/fisiologia , Condutos Olfatórios/fisiologia
20.
Pharmacol Rep ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235662

RESUMO

In recent years, fluorescent sensors are enjoying a surge of popularity in the field of neuroscience. Through the development of novel genetically encoded sensors as well as improved methods of detection and analysis, fluorescent sensing has risen as a new major technique in neuroscience alongside molecular, electrophysiological, and imaging methods, opening up new avenues for research. Combined with multiphoton microscopy and fiber photometry, these sensors offer unique advantages in terms of cellular specificity, access to multiple targets - from calcium dynamics to neurotransmitter release to intracellular processes - as well as high capability for in vivo interrogation of neurobiological mechanisms underpinning behavior. Here, we provide a brief overview of the method, present examples of its integration with other tools in recent studies ranging from cellular to systems neuroscience, and discuss some of its principles and limitations, with the aim of introducing new potential users to this rapidly developing and potent technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...