Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Cell Signal ; 121: 111295, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38996955

RESUMO

Calpain2 is a conventional member of the non-lysosomal calpain protease family that has been shown to affect the dynamics of focal and cell-cell adhesions by proteolyzing the components of adhesion complexes. Here, we inactivated calpain2 using CRISPR/Cas9 in epithelial MDCK cells. We show that depletion of calpain2 has multiple effects on cell morphology and function. Calpain2-depleted cells develop epithelial shape, however, they cover a smaller area, and cell clusters are more compact. Inactivation of calpain2 enhanced restoration of transepithelial electrical resistance after calcium switch, decreased cell migration, and delayed cell scattering induced by HGF/SF. In addition, calpain2 depletion prevented morphological changes induced by ERK2 overexpression. Interestingly, proteolysis of several calpain2 targets, including E-cadherin, ß-catenin, talin, FAK, and paxillin, was not discernibly affected by calpain2 depletion. Taken together, these data suggest that calpain2 regulates the stability of cell-cell and cell-substratum adhesions indirectly without affecting the proteolysis of these adhesion complexes.


Assuntos
Calpaína , Adesão Celular , Células Epiteliais , Calpaína/metabolismo , Animais , Cães , Células Madin Darby de Rim Canino , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Movimento Celular , Caderinas/metabolismo , Proteólise , Fator de Crescimento de Hepatócito/metabolismo , beta Catenina/metabolismo , Cálcio/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Sistemas CRISPR-Cas
2.
Exp Cell Res ; 434(2): 113863, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38097153

RESUMO

Rhabdomyosarcoma (RMS), a tumor that consists of poorly differentiated skeletal muscle cells, is the most common soft-tissue sarcoma in children. Despite considerable progress within the last decades, therapeutic options are still limited, warranting the need for novel approaches. Recent data suggest deregulation of the Smyd1 protein, a sumoylation target as well as H3K4me2/3 methyltransferase and transcriptional regulator in myogenesis, and its binding partner skNAC, in RMS cells. Here, we show that despite the fact that most RMS cells express at least low levels of Smyd1 and skNAC, failure to upregulate expression of these genes in reaction to differentiation-promoting signals can always be observed. While overexpression of the Smyd1 gene enhances many aspects of RMS cell differentiation and inhibits proliferation rate and metastatic potential of these cells, functional integrity of the putative Smyd1 sumoylation motif and its SET domain, the latter being crucial for HMT activity, appear to be prerequisites for most of these effects. Based on these findings, we explored the potential for novel RMS therapeutic strategies, employing small-molecule compounds to enhance Smyd1 activity. In particular, we tested manipulation of (a) Smyd1 sumoylation, (b) stability of H3K4me2/3 marks, and (c) calpain activity, with calpains being important targets of Smyd1 in myogenesis. We found that specifically the last strategy might represent a promising approach, given that suitable small-molecule compounds will be available for clinical use in the future.


Assuntos
Rabdomiossarcoma , Fatores de Transcrição , Criança , Humanos , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Rabdomiossarcoma/genética , Rabdomiossarcoma/terapia , Rabdomiossarcoma/patologia , Fibras Musculares Esqueléticas/metabolismo , Diferenciação Celular/genética , Linhagem Celular Tumoral
3.
J Mol Cell Cardiol ; 183: 54-66, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37689005

RESUMO

BACKGROUND: Mitochondrial dysfunction of macrophage-mediated inflammatory response plays a key pathophysiological process in myocardial infarction (MI). Calpains are a well-known family of calcium-dependent cysteine proteases that regulate a variety of processes, including cell adhesion, proliferation, and migration, as well as mitochondrial function and inflammation. CAPNS1, the common regulatory subunit of calpain-1 and 2, is essential for the stabilization and activity of the catalytic subunit. Emerging studies suggest that calpains may serve as key mediators in mitochondria and NLRP3 inflammasome. This study investigated the role of myeloid cell calpains in MI. METHODS: MI models were constructed using myeloid-specific Capns1 knockout mice. Cardiac function, cardiac fibrosis, and inflammatory infiltration were investigated. In vitro, bone marrow-derived macrophages (BMDMs) were isolated from mice. Mitochondrial function and NLRP3 activation were assessed in BMDMs under LPS stimulation. ATP5A1 knockdown and Capns1 knock-out mice were subjected to MI to investigate their roles in MI injury. RESULTS: Ablation of calpain activities by Capns1 deletion improved the cardiac function, reduced infarct size, and alleviated cardiac fibrosis in mice subjected to MI. Mechanistically, Capns1 knockout reduced the cleavage of ATP5A1 and restored the mitochondria function thus inhibiting the inflammasome activation. ATP5A1 knockdown antagonized the protective effect of Capns1 mKO and aggravated MI injury. CONCLUSION: This study demonstrated that Capns1 depletion in macrophages mitigates MI injury via maintaining mitochondrial homeostasis and inactivating the NLRP3 inflammasome signaling pathway. This study may offer novel insights into MI injury treatment.

4.
Behav Brain Res ; 454: 114635, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37598906

RESUMO

Calpain 15 (CAPN15) is an intracellular cysteine protease belonging to the non-classical small optic lobe (SOL) family of calpains, which has an important role in development. Loss of Capn15 in mice leads to developmental eye anomalies and volumetric changes in the brain. Human individuals with biallelic variants in CAPN15 have developmental delay, neurodevelopmental disorders, as well as congenital malformations. In Aplysia, a reductionist model to study learning and memory, SOL calpain is important for non-associative long-term facilitation, the cellular analog of sensitization behavior. However, how CAPN15 is involved in adult behavior or learning and memory in vertebrates is unknown. Here, using Capn15 conditional knockout mice, we show that loss of the CAPN15 protein in excitatory forebrain neurons reduces self-grooming and marble burying, decreases performance in the accelerated roto-rod and reduces pre-tone freezing after strong fear conditioning. Thus, CAPN15 plays a role in regulating behavior in the adult mouse.


Assuntos
Aplysia , Calpaína , Animais , Camundongos , Calpaína/genética , Camundongos Knockout , Prosencéfalo
5.
Exp Physiol ; 108(10): 1268-1281, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37589512

RESUMO

We recently reported that vastus lateralis (VL) cross-sectional area (CSA) increases after 7 weeks of resistance training (RT, 2 days/week), with declines occurring following 7 weeks of subsequent treadmill high-intensity interval training (HIIT) (3 days/week). Herein, we examined the effects of this training paradigm on skeletal muscle proteolytic markers. VL biopsies were obtained from 11 untrained college-aged males at baseline (PRE), after 7 weeks of RT (MID), and after 7 weeks of HIIT (POST). Tissues were analysed for proteolysis markers, and in vitro experiments were performed to provide additional insights. Atrogene mRNAs (TRIM63, FBXO32, FOXO3A) were upregulated at POST versus both PRE and MID (P < 0.05). 20S proteasome core protein abundance increased at POST versus PRE (P = 0.031) and MID (P = 0.049). 20S proteasome activity, and protein levels for calpain-2 and Beclin-1 increased at MID and POST versus PRE (P < 0.05). Ubiquitinated proteins showed model significance (P = 0.019) with non-significant increases at MID and POST (P > 0.05). in vitro experiments recapitulated the training phenotype when stimulated with a hypertrophic stimulus (insulin-like growth factor 1; IGF1) followed by a subsequent AMP-activated protein kinase activator (5-aminoimidazole-4-carboxamide ribonucleotide; AICAR), as demonstrated by larger myotube diameter in IGF1-treated cells versus IGF1 followed by AICAR treatments (I+A; P = 0.017). Muscle protein synthesis (MPS) levels were also greater in IGF1-treated versus I+A myotubes (P < 0.001). In summary, the loss in RT-induced VL CSA with HIIT coincided with increases in several proteolytic markers, and sustained proteolysis may have driven this response. Moreover, while not measured in humans, we interpret our in vitro data to suggest that (unlike RT) HIIT does not stimulate MPS. NEW FINDINGS: What is the central question of this study? Determining if HIIT-induced reductions in muscle hypertrophy following a period of resistance training coincided with increases in proteolytic markers. What is the main finding and its importance? Several proteolytic markers were elevated during the HIIT training period implying that increases in muscle proteolysis may have played a role in HIIT-induced reductions in muscle hypertrophy.


Assuntos
Treinamento Intervalado de Alta Intensidade , Treinamento Resistido , Humanos , Masculino , Adulto Jovem , Proteólise , Complexo de Endopeptidases do Proteassoma/metabolismo , Perna (Membro) , Músculo Esquelético/fisiologia , Hipertrofia/metabolismo
6.
J Dairy Sci ; 106(8): 5825-5834, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37349209

RESUMO

Heat stress (HS) markedly affects postabsorptive energetics and protein metabolism. Circulating urea nitrogen increases in multiple species during HS and it has been traditionally presumed to stem from increased skeletal muscle proteolysis; however, this has not been empirically established. We hypothesized HS would increase activation of the calpain and proteasome systems as well as increase degradation of autophagosomes in skeletal muscle. To test this hypothesis, lactating dairy cows (~139 d in milk; parity ~2.4) were exposed to thermal neutral (TN) or HS conditions for 7 d (8 cows/environment). To induce HS, cattle were fitted with electric blankets for the duration of the heating period and the semitendinosus was biopsied on d 7. Heat stress increased rectal temperature (1.3°C) and respiratory rate (38 breaths per minute) while it decreased dry matter intake (34%) and milk yield (32%). Plasma urea nitrogen (PUN) peaked following 3 d (46%) and milk urea nitrogen (MUN) peaked following 4 d of environmental treatment and while both decreased thereafter, PUN and MUN remained elevated compared with TN (PUN: 20%; MUN: 27%) on d 7 of HS. Contrary to expectations, calpain I and II abundance and activation and calpain activity were similar between groups. Likewise, relative protein abundance of E3 ligases, muscle atrophy F-box protein/atrogin-1 and muscle ring-finger protein-1, total ubiquitinated proteins, and proteasome activity were similar between environmental treatments. Finally, autophagosome degradation was also unaltered by HS. Counter to our hypothesis, these results suggest skeletal muscle proteolysis is not increased following 7 d of HS and call into question the presumed dogma that elevated skeletal muscle proteolysis, per se, drives increased AA mobilization.


Assuntos
Lactação , Complexo de Endopeptidases do Proteassoma , Gravidez , Feminino , Bovinos , Animais , Lactação/fisiologia , Proteólise , Complexo de Endopeptidases do Proteassoma/metabolismo , Calpaína/metabolismo , Calpaína/farmacologia , Leite/metabolismo , Resposta ao Choque Térmico , Músculo Esquelético/metabolismo , Ureia/metabolismo , Dieta/veterinária
7.
Molecules ; 28(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37175071

RESUMO

Cancer is a relevant health problem worldwide. In 2020, leukemias represented the 13th most commonly reported cancer cases worldwide but the 10th most likely to cause deaths. There has been a progressive increase in the efficacy of treatments for leukemias; however, these still generate important side effects, so it is imperative to search for new alternatives. Defensins are a group of antimicrobial peptides with activity against cancer cells. However, the cytotoxic mechanism of these peptides has been described mainly for animal defensins. This study shows that defensin γ-thionin (Capsicum chinense) is cytotoxic to the K562 leukemia cells with an IC50 = 290 µg/mL (50.26 µM) but not for human peripheral blood mononuclear cells. Results showed that γ-thionin did not affect the membrane potential; however, the peptide modified the mitochondrial membrane potential (ΔΨm) and the intracellular calcium release. In addition, γ-thionin induced apoptosis in K562 cells, but the activation of caspases 8 and 9 was not detected. Moreover, the activation of calpains was detected at one hour of treatment, suggesting that γ-thionin activates the caspase-independent apoptosis. Furthermore, the γ-thionin induced epigenetic modifications on histone 3 in K562 cells, increased global acetylation (~2-fold), and specific acetylation marks at lysine 9 (H3K9Ac) (~1.5-fold). In addition, γ-thionin increased the lysine 9 methylation (H3K9me) and dimethylation marks (H3K9me2) (~2-fold), as well as the trimethylation mark (H3K9me3) (~2-fold). To our knowledge, this is the first report of a defensin that triggers caspase-independent apoptosis in cancer cells via calpains and regulating chromatin remodelation, a novel property for a plant defensin.


Assuntos
Antineoplásicos , Capsicum , Leucemia Mielogênica Crônica BCR-ABL Positiva , Tioninas , Animais , Humanos , Tioninas/farmacologia , Células K562 , Capsicum/química , Peptídeos Antimicrobianos , Chile , Leucócitos Mononucleares/metabolismo , Lisina/farmacologia , Apoptose , Peptídeos/farmacologia , Antineoplásicos/farmacologia , Caspases/metabolismo , Defensinas/farmacologia , Epigênese Genética
8.
Mol Cell Proteomics ; 22(5): 100543, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37030595

RESUMO

Excitotoxicity, a neuronal death process in neurological disorders such as stroke, is initiated by the overstimulation of ionotropic glutamate receptors. Although dysregulation of proteolytic signaling networks is critical for excitotoxicity, the identity of affected proteins and mechanisms by which they induce neuronal cell death remain unclear. To address this, we used quantitative N-terminomics to identify proteins modified by proteolysis in neurons undergoing excitotoxic cell death. We found that most proteolytically processed proteins in excitotoxic neurons are likely substrates of calpains, including key synaptic regulatory proteins such as CRMP2, doublecortin-like kinase I, Src tyrosine kinase and calmodulin-dependent protein kinase IIß (CaMKIIß). Critically, calpain-catalyzed proteolytic processing of these proteins generates stable truncated fragments with altered activities that potentially contribute to neuronal death by perturbing synaptic organization and function. Blocking calpain-mediated proteolysis of one of these proteins, Src, protected against neuronal loss in a rat model of neurotoxicity. Extrapolation of our N-terminomic results led to the discovery that CaMKIIα, an isoform of CaMKIIß, undergoes differential processing in mouse brains under physiological conditions and during ischemic stroke. In summary, by identifying the neuronal proteins undergoing proteolysis during excitotoxicity, our findings offer new insights into excitotoxic neuronal death mechanisms and reveal potential neuroprotective targets for neurological disorders.


Assuntos
Morte Celular , Neurônios , Sinapses , Animais , Masculino , Camundongos , Ratos , Calpaína/metabolismo , Células Cultivadas , Inibidores de Cisteína Proteinase/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Neurônios/fisiologia , Neuroproteção , Proteoma/análise , Ratos Wistar , Acidente Vascular Cerebral/patologia , Sinapses/patologia , Sinapses/fisiologia
9.
Virus Res ; 328: 199084, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36878382

RESUMO

INTRODUCTION: Bladder tumors of cattle are very uncommon accounting from 0.1% to 0.01% of all bovine malignancies. Bladder tumors are common in cattle grazing on bracken fern-infested pasturelands. Bovine papillomaviruses have a crucial role in tumors of bovine urinary bladder. AIM OF THE STUDY: To investigate the potential association of ovine papillomavirus (OaPV) infection with bladder carcinogenesis of cattle. METHODS: Droplet digital PCR was used to detect and quantify the nucleic acids of OaPVs in bladder tumors of cattle that were collected at public and private slaughterhouses. RESULTS: OaPV DNA and RNA were detected and quantified in 10 bladder tumors of cattle that were tested negative for bovine papillomaviruses. The most prevalent genotypes were OaPV1 and OaPV2. OaPV4 was rarely observed. Furthermore, we detected a significant overexpression and hyperphosphorylation of pRb and a significant overexpression and activation of the calpain-1 as well as a significant overexpression of E2F3 and of phosphorylated (activated) PDGFßR in neoplastic bladders in comparison with healthy bladders, which suggests that E2F3 and PDGFßR may play an important role in OaPV-mediated molecular pathways that lead to bladder carcinogenesis. CONCLUSION: In all tumors, OaPV RNA could explain the causality of the disease of the urinary bladder. Therefore, persistent infections by OaPVs could be involved in bladder carcinogenesis. Our data showed that there is a possible etiologic association of OaPVs with bladder tumors of cattle.


Assuntos
Papillomavirus Bovino 1 , Doenças dos Bovinos , Infecções por Papillomavirus , Neoplasias da Bexiga Urinária , Animais , Bovinos , Ovinos , Papillomavirus Bovino 1/genética , Neoplasias da Bexiga Urinária/veterinária , Neoplasias da Bexiga Urinária/etiologia , Neoplasias da Bexiga Urinária/metabolismo , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Reação em Cadeia da Polimerase , Carcinogênese , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/veterinária
10.
Front Plant Sci ; 14: 1289785, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173928

RESUMO

Calpains are modulatory proteases that modify diverse cellular substrates and play essential roles in eukaryots. The best studied are animal cytosolic calpains. Here, we focus on enigmatic membrane-anchored calpains, their structural and functional features as well as phylogenetic distribution. Based on domain composition, we identified four types of membrane-anchored calpains. Type 1 and 2 show broad phylogenetic distribution among unicellular protists and streptophytes suggesting their ancient evolutionary origin. Type 3 and 4 diversified early and are present in brown algae and oomycetes. The plant DEK1 protein is the only representative of membrane-anchored calpains that has been functionally studied. Here, we present up to date knowledge about its structural features, putative regulation, posttranslational modifications, and biological role. Finally, we discuss potential model organisms and available tools for functional studies of membrane-anchored calpains with yet unknown biological role. Mechanistic understanding of membrane-anchored calpains may provide important insights into fundamental principles of cell polarization, cell fate control, and morphogenesis beyond plants.

11.
Front Cardiovasc Med ; 9: 1000761, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465445

RESUMO

Objective: The aim of this study was to test the hypothesis whether serum level of calpains could become a meaningful biomarker for diagnosis of acute lung injury (ALI) in clinical after cardiac surgery using cardiopulmonary bypass (CPB) technology. Methods and results: Seventy consecutive adults underwent cardiac surgery with CPB were included in this prospective study. Based on the American-European Consensus Criteria (AECC), these patients were divided into ALI (n = 20, 28.57%) and non-ALI (n = 50, 71.43%) groups. Serum level of calpains in terms of calpains' activity which was expressed as relative fluorescence unit (RFU) per microliter and measured at beginning of CPB (baseline), 1 h during CPB, end of CPB as well as 1, 12, and 24 h after CPB. Difference of serum level of calpains between two groups first appeared at the end of CPB and remained different at subsequent test points. Univariate and multivariate logistic regression analysis indicated that serum level of calpains 1 h after CPB was an independent predictor for postoperative ALI (OR 1.011, 95% CI 1.001, 1.021, p = 0.033) and correlated with a lower PaO2/FiO2 ratio in the first 2 days (The first day: r = -0.389, p < 0.001 and the second day: r = -0.320, p = 0.007) as well as longer mechanical ventilation time (r = 0.440, p < 0.001), intensive care unit (ICU) length of stay (LOS) (r = 0.419, p < 0.001) and hospital LOS (r = 0.297, p = 0.013). Conclusion: Elevated serum level of calpains correlate with impaired lung function and poor clinical outcomes, indicating serum level of calpains could act as a potential biomarker for postoperative ALI following CPB in adults. Clinical trial registration: [https://clinicaltrials.gov/show/NCT05610475], identifier [NCT05610475].

12.
J Transl Med ; 20(1): 521, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348405

RESUMO

BACKGROUND: We reported that PARP-1 regulates genes whose products are crucial for asthma, in part, by controlling STAT6 integrity speculatively through a calpain-dependent mechanism. We wished to decipher the PARP-1/STAT6 relationship in the context of intracellular trafficking and promoter occupancy of the transcription factor on target genes, its integrity in the presence of calpains, and its connection to autophagy. METHODS: This study was conducted using primary splenocytes or fibroblasts derived from wild-type or PARP-1-/- mice and Jurkat T cells to mimic Th2 inflammation. RESULTS: We show that the role for PARP-1 in expression of IL-4-induced genes (e.g. gata-3) in splenocytes did not involve effects on STAT6 phosphorylation or its subcellular trafficking, rather, it influenced its occupancy of gata-3 proximal and distal promoters in the early stages of IL-4 stimulation. At later stages, PARP-1 was crucial for STAT6 integrity as its inhibition, pharmacologically or by gene knockout, compromised the fate of the transcription factor. Calpain-1 appeared to preferentially degrade JAK-phosphorylated-STAT6, which was blocked by calpastatin-mediated inhibition or by genetic knockout in mouse fibroblasts. The STAT6/PARP-1 relationship entailed physical interaction and modification by poly(ADP-ribosyl)ation independently of double-strand-DNA breaks. Poly(ADP-ribosyl)ation protected phosphorylated-STAT6 against calpain-1-mediated degradation. Additionally, our results show that STAT6 is a bonafide substrate for chaperone-mediated autophagy in a selective and calpain-dependent manner in the human Jurkat cell-line. The effects were partially blocked by IL-4 treatment and PARP-1 inhibition. CONCLUSIONS: The results demonstrate that poly(ADP-ribosyl)ation plays a critical role in protecting activated STAT6 during Th2 inflammation, which may be synthetically targeted for degradation by inhibiting PARP-1.


Assuntos
Poli ADP Ribosilação , Poli(ADP-Ribose) Polimerases , Humanos , Camundongos , Animais , Poli(ADP-Ribose) Polimerases/metabolismo , Calpaína/genética , Calpaína/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , Interleucina-4/farmacologia , Interleucina-4/metabolismo , Autofagia , Inflamação , Fator de Transcrição STAT6/metabolismo
13.
Front Mol Neurosci ; 15: 1020104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36385755

RESUMO

Among posttranslational modifications, directed proteolytic processes have the strongest impact on protein integrity. They are executed by a variety of cellular machineries and lead to a wide range of molecular consequences. Compared to other forms of proteolytic enzymes, the class of calcium-activated calpains is considered as modulator proteases due to their limited proteolytic activity, which changes the structure and function of their target substrates. In the context of neurodegeneration and - in particular - polyglutamine disorders, proteolytic events have been linked to modulatory effects on the molecular pathogenesis by generating harmful breakdown products of disease proteins. These findings led to the formulation of the toxic fragment hypothesis, and calpains appeared to be one of the key players and auspicious therapeutic targets in Huntington disease and Machado Joseph disease. This review provides a current survey of the role of calpains in proteolytic processes found in polyglutamine disorders. Together with insights into general concepts behind toxic fragments and findings in polyglutamine disorders, this work aims to inspire researchers to broaden and deepen the knowledge in this field, which will help to evaluate calpain-mediated proteolysis as a unifying and therapeutically targetable posttranslational mechanism in neurodegeneration.

14.
Pflugers Arch ; 474(11): 1171-1183, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35931829

RESUMO

In mammals, prolonged mechanical unloading results in a significant decrease in passive stiffness of postural muscles. The nature of this phenomenon remains unclear. The aim of the present study was to investigate possible causes for a reduction in rat soleus passive stiffness after 7 and 14 days of unloading (hindlimb suspension, HS). We hypothesized that HS-induced decrease in passive stiffness would be associated with calpain-dependent degradation of cytoskeletal proteins or a decrease in actomyosin interaction. Wistar rats were subjected to HS for 7 and 14 days with or without PD150606 (calpain inhibitor) treatment. Soleus muscles were subjected to biochemical analysis and ex vivo measurements of passive tension with or without blebbistatin treatment (an inhibitor of actomyosin interactions). Passive tension of isolated soleus muscle was significantly reduced after 7- and 14-day HS compared to the control values. PD150606 treatment during 7- and 14-day HS induced an increase in alpha-actinin-2 and -3, desmin contents compared to control, partly prevented a decrease in intact titin (T1) content, and prevented a decrease in soleus passive tension. Incubation of soleus muscle with blebbistatin did not affect HS-induced reductions in specific passive tension in soleus muscle. Our study suggests that calpain-dependent breakdown of cytoskeletal proteins, but not a change in actomyosin interaction, significantly contributes to unloading-induced reductions in intrinsic passive stiffness of rat soleus muscle.


Assuntos
Actomiosina , Calpaína , Acrilatos , Actinina/metabolismo , Actomiosina/metabolismo , Animais , Calpaína/metabolismo , Conectina/metabolismo , Desmina/metabolismo , Elevação dos Membros Posteriores , Mamíferos/metabolismo , Músculo Esquelético/metabolismo , Ratos , Ratos Wistar
15.
Cell Mol Life Sci ; 79(8): 442, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35864342

RESUMO

Clostridioides difficile infection (CDI) causes nosocomial/antibiotic-associated gastrointestinal diseases with dramatically increasing global incidence and mortality rates. The main C. difficile virulence factors, toxins A and B (TcdA/TcdB), cause cytopathic/cytotoxic effects and inflammation. We demonstrated that TcdB induces caspase-dependent, mitochondria-independent enteric glial cell (EGC) apoptosis that is enhanced by the pro-inflammatory cytokines TNF-α and IFN-γ (CKs) by increasing caspase-3/7/9 and PARP activation. Because this cytotoxic synergism is important for CDI pathogenesis, we investigated the apoptotic pathways involved in TcdB- and TcdB + CK-induced apoptosis indepth. EGCs were pre-treated with the inhibitors BAF or Q-VD-OPh (pan-caspase), Z-DEVD-fmk (caspase-3/7), Z-IETD-fmk (caspase-8), PD150606 (calpains), and CA-074Me (cathepsin B) 1 h before TcdB exposure, while CKs were given 1.5 h after TcdB exposure, and assays were performed at 24 h. TcdB and TcdB + CKs induced apoptosis through three signalling pathways activated by calpains, caspases and cathepsins, which all are involved both in induction and execution apoptotic signalling under both conditions but to different degrees in TcdB and TcdB + CKs especially as regards to signal transduction mediated by these proteases towards downstream effects (apoptosis). Calpain activation by Ca2+ influx is the first pro-apoptotic event in TcdB- and TcdB + CK-induced EGC apoptosis and causes caspase-3, caspase-7 and PARP activation. PARP is also directly activated by calpains which are responsible of about 75% of apoptosis in TcdB and 62% in TcdB + CK which is both effector caspase-dependent and -independent. Initiator caspase-8 activation mediated by TcdB contributes to caspase-3/caspase-7 and PARP activation and is responsible of about 28% of apoptosis in both conditions. Caspase-3/caspase-7 activation is weakly responsible of apoptosis, indeed we found that it mediates 27% of apoptosis only in TcdB. Cathepsin B contributes to triggering pro-apoptotic signal and is responsible in both conditions of about 35% of apoptosis by a caspase-independent manner, and seems to regulate the caspase-3 and caspase-7 cleaved fragment levels, highlighting the complex interaction between these cysteine protease families activated during TcdB-induced apoptosis. Further a relevant difference between TcdB- and TcdB + CK-induced apoptosis is that TcdB-induced apoptosis increased slowly reaching at 72 h the value of 18.7%, while TcdB + CK-induced apoptosis increased strongly reaching at 72 h the value of 60.6%. Apoptotic signalling activation by TcdB + CKs is enriched by TNF-α-induced NF-κB signalling, inhibition of JNK activation and activation of AKT. In conclusion, the ability of C. difficile to activate three apoptotic pathways represents an important strategy to overcome resistance against its cytotoxic activity.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Apoptose/fisiologia , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidade , Calpaína/metabolismo , Caspase 3/metabolismo , Caspase 7/metabolismo , Caspase 7/farmacologia , Caspases/metabolismo , Catepsina B/metabolismo , Citocinas/metabolismo , Humanos , Neuroglia/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
16.
Front Med (Lausanne) ; 9: 783592, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707527

RESUMO

Calpains2 (CAPN2) is a calcium-dependent, non-lysosomal cysteine protease that plays critical roles in normal cellular functions and pathological processes, including tumorigenesis, cancer progression, and metastasis. However, the role and underlying regulatory mechanisms of CAPN2 in pancreatic cancer (PC) are still unknown. We found that CAPN2 is highly expressed in PC tissues and associated with poor PC prognosis by using The Cancer Genome Atlas (TCGA) datasets, Gene Expression Omnibus (GEO) datasets, and PC tissue arrays. CAPN2 downregulation significantly inhibited cell proliferation, migration, and invasion and regulated Wnt/ß-catenin signaling pathway-mediated epithelial-mesenchymal transition (EMT) in PC cells. Our findings highlight the significance of CAPN2 in tumor regression and, thus, indicate that CAPN2 could be a promising target for PC treatment.

17.
Arthritis Res Ther ; 24(1): 148, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729674

RESUMO

BACKGROUND: Calpains are a family of calcium-dependent thiol proteases that participate in a wide variety of biological activities. In our recent study, calpain is increased in the sera of scleroderma or systemic sclerosis (SSc). However, the role of calpain in interstitial lung disease (ILD) has not been reported. ILD is a severe complication of SSc, which is the leading cause of death in SSc. The pathogenesis of SSc-related ILD remains incompletely understood. This study investigated the role of myeloid cell calpain in SSc-related ILD. METHODS: A novel line of mice with myeloid cell-specific deletion of Capns1 (Capns1-ko) was created. SSc-related ILD was induced in Capns1-ko mice and their wild-type littermates by injection 0.l mL of bleomycin (0.4 mg/mL) for 4 weeks. In a separate experiment, a pharmacological inhibitor of calpain PD150606 (Biomol, USA, 3 mg/kg/day, i.p.) daily for 30 days was given to mice after bleomycin injection on daily basis. At the end of the experiment, the animals were killed, skin and lung tissues were collected for the following analysis. Inflammation, fibrosis and calpain activity and cytokines were assessed by histological examinations and ELISA, and immunohistochemical analyses, western blot analysis and Flow cytometry analysis. RESULTS: Calpain activities increased in SSc-mouse lungs. Both deletion of Capns1 and administration of PD150606 attenuated dermal sclerosis as evidenced by a reduction of skin thickness and reduced interstitial fibrosis and inflammation in bleomycin model of SSc mice. These effects of reduced calpain expression or activity were associated with prevention of macrophage polarization toward M1 phenotype and consequent reduced production of pro-inflammatory cytokines including TNF-α, IL-12 and IL-23 in lung tissues of Capns1-ko mice with bleomycin model of SSc. Furthermore, inhibition of calpain correlated with an increase in the protein levels of PI3K and phosphorylated AKT1 in lung tissues of the bleomycin model of SSc mice. CONCLUSIONS: This study for the first time demonstrates that the role of myeloid cell calpain may be promotion of macrophage M1 polarization and pro-inflammatory responses related PI3K/AKT1 signaling. Thus, myeloid cell calpain may be a potential therapeutic target for bleomycin model of SSc-related ILD.


Assuntos
Doenças Pulmonares Intersticiais , Escleroderma Sistêmico , Animais , Bleomicina/toxicidade , Calpaína , Citocinas/metabolismo , Modelos Animais de Doenças , Fibrose , Inflamação/patologia , Pulmão/patologia , Doenças Pulmonares Intersticiais/etiologia , Macrófagos/metabolismo , Camundongos , Células Mieloides/metabolismo , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Escleroderma Sistêmico/patologia
18.
Cell Mol Life Sci ; 79(5): 262, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35482253

RESUMO

Spinocerebellar ataxia type 17 (SCA17) is a neurodegenerative disease caused by a polyglutamine-encoding trinucleotide repeat expansion in the gene of transcription factor TATA box-binding protein (TBP). While its underlying pathomechanism is elusive, polyglutamine-expanded TBP fragments of unknown origin mediate the mutant protein's toxicity. Calcium-dependent calpain proteases are protagonists in neurodegenerative disorders. Here, we demonstrate that calpains cleave TBP, and emerging C-terminal fragments mislocalize to the cytoplasm. SCA17 cell and rat models exhibited calpain overactivation, leading to excessive fragmentation and depletion of neuronal proteins in vivo. Transcriptome analysis of SCA17 cells revealed synaptogenesis and calcium signaling perturbations, indicating the potential cause of elevated calpain activity. Pharmacological or genetic calpain inhibition reduced TBP cleavage and aggregation, consequently improving cell viability. Our work underlines the general significance of calpains and their activating pathways in neurodegenerative disorders and presents these proteases as novel players in the molecular pathogenesis of SCA17.


Assuntos
Calpaína , Ataxias Espinocerebelares , Animais , Calpaína/genética , Calpaína/metabolismo , Neurônios/metabolismo , Ratos , Ataxias Espinocerebelares/metabolismo , Expansão das Repetições de Trinucleotídeos
19.
Neuropathol Appl Neurobiol ; 48(1): e12748, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34273111

RESUMO

AIMS: Machado-Joseph disease (MJD) is the most frequent dominantly inherited cerebellar ataxia worldwide. Expansion of a CAG trinucleotide in the MJD1 gene translates into a polyglutamine tract within ataxin-3, which upon proteolysis may lead to MJD. The aim of this work was to understand the in vivo contribution of calpain proteases to the pathogenesis of MJD. Therefore, we investigated (a) the calpain cleavage sites in ataxin-3 protein, (b) the most toxic ataxin-3 fragment generated by calpain cleavage and (c) whether targeting calpain cleavage sites of mutant ataxin-3 could be a therapeutic strategy for MJD. METHODS: We generated truncated and calpain-resistant constructs at the predicted cleavage sites of ataxin-3 using inverse PCR mutagenesis. Lentiviral vectors encoding these constructs were transduced in the adult mouse brain prior to western blot and immunohistochemical analysis 5 and 8 weeks later. RESULTS: We identified the putative calpain cleavage sites for both wild-type and mutant ataxin-3 proteins. The mutation of these sites eliminated the formation of the toxic fragments, namely, the 26-kDa fragment, the major contributor for striatal degeneration. Nonetheless, reducing the formation of both the 26- and 34-kDa fragments was required to preclude the intranuclear localisation of ataxin-3. A neuroprotective effect was observed upon mutagenesis of calpain cleavage sites within mutant ataxin-3 protein. CONCLUSIONS: These findings suggest that the calpain system should be considered a target for MJD therapy. The identified calpain cleavage sites will contribute to the design of targeted drugs and genome editing systems for those specific locations.


Assuntos
Doença de Machado-Joseph , Animais , Ataxina-3/genética , Ataxina-3/metabolismo , Calpaína/genética , Calpaína/metabolismo , Corpo Estriado/metabolismo , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/terapia , Camundongos , Mutação
20.
Mem. Inst. Oswaldo Cruz ; 117: e220017, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1365156

RESUMO

The treatment for tropical neglected diseases, such as Chagas disease (CD) and leishmaniasis, is extremely limited to a handful of drugs that suffer from unacceptable toxicity, tough administration routes, like parenteral, and increasing treatment failures due to the parasite resistance. Consequently, there is urgency for the development of new therapeutic options to treat such diseases. Since peptidases from these parasites are responsible for crucial functions in their biology, these molecules have been explored as alternative targets. In this context, a myriad of proteolytic inhibitors has been developed against calcium-dependent cysteine-type peptidases, collectively called calpains, which are implicated in several human pathophysiological diseases. These molecules are highly expanded in the genome of trypanosomatids and they have been reported participating in several parasite biological processes. In the present perspective, we discuss our almost two decades of experience employing the calpain inhibitors as an interesting shortcut to a possible repurpose strategy to treat CD and leishmaniasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...