Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 337: 139211, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37315853

RESUMO

In order to reduce the environmental hazards of red mud (RM) and realize its resource utilization, in this study, RM-based iron-carbon micro-electrolysis material (RM-MEM) were prepared by a carbothermal reduction process using RM as raw material. The influence of the preparation conditions on the phase transformation and structural characteristics of the RM-MEM were investigated during the reduction process. The ability of RM-MEM to remove organic pollutants from wastewater was evaluated. The results showed that RM-MEM prepared at a reduction temperature of 1100 °C, a reduction time of 50 min and a coal dosage of 50% had the best removal effect for the degradation of methylene blue (MB). When the initial MB concentration was 20 mg L-1, the amount of RM-MEM material was 4 g L-1, the initial pH was 7, and the degradation efficiency reached 99.75% after 60 min. When RM-MEM is split into carbon free and iron free parts for use, the degradation effect becomes worse. Compared to other materials, RM-MEM has lower cost and better degradation. X-ray diffraction (XRD) analysis showed that hematite was transformed to zero-valent iron with the increase in the roasting temperature. Scanning electron microscopy (SEM) and energy spectroscopy (EDS) analysis showed that micron-sized ZVI particles were formed in the RM-MEM, and increasing the carbon thermal reduction temperature was beneficial to the growth of zero-valent iron particles.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Águas Residuárias , Poluentes Ambientais/análise , Poluentes Químicos da Água/análise , Difração de Raios X , Temperatura
2.
Waste Manag ; 76: 687-696, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29550068

RESUMO

In this study, a novel process was developed for extracting lead from the hazardous waste cathode ray tube (CRT) funnel glass and simultaneously producing glass-ceramics. CRT funnel glass was mixed with coal fly ash and subjected to carbon thermal reduction with the addition of CaO. The homogeneous glass melt and reduced metallic lead were quenched in water. Glass-ceramics were produced from the parent glass through an appropriate heat treatment. The optimum carbon loading amount (calculated as the molar ratio of C/PbO), CaO/SiO2 ratio, smelting temperature and holding time for lead recovery were 1.0, 0.3-0.6, 1450 °C and 2 h, respectively. Under these conditions, more than 95% of lead can be extracted from the funnel glass and a low lead content of the resultant parent glass below 0.6 wt% was successfully achieved. CaO behaved as a network modifier to reduce the viscosity of the glass and also acted as a substitution to release lead oxide from the silicate network structure, resulting in a high lead separation efficiency. X-ray diffraction (XRD) analysis revealed that the main crystalline phase was gehlenite when 50-70 wt% funnel glass was added. Scanning electron microscopy (SEM) observation showed that well-crystallized crystals occurred in the specimens with 50-70 wt% funnel glass additions, whereas the specimens with 40 wt% and 80 wt% glass additions exhibited a relative low crystallization degree. Furthermore, property measurements, chemical resistance tests and leaching characteristics of heavy metals confirmed the possibility of engineering and construction applications of the superior glass-ceramic products. Overall results indicate that the process proposed in this paper is an effective and promising approach for reutilization of obsolete CRT funnel glass.


Assuntos
Tubo de Raio Catódico , Cerâmica , Cinza de Carvão , Chumbo/química , Carvão Mineral , Vidro , Microscopia Eletrônica de Varredura , Dióxido de Silício
3.
J Hazard Mater ; 322(Pt B): 479-487, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27745960

RESUMO

In this study, a novel process for the removal of toxic lead from the CRT funnel glass and synchronous preparation of high silica glass powder was developed by a carbon-thermal reduction enhanced glass phase separation process. CRT funnel glass was remelted with B2O3 in reducing atmosphere. In the thermal process, a part of PbO contained in the funnel glass was reduced into metallic Pb and detached from the glass phase. The rest of PbO and other metal oxides (including Na2O, K2O, Al2O3, BaO and CaO) were mainly concentrated in the boric oxide phase. The metallic Pb phase and boric oxide phase were completely leached out by 5mol/L HNO3. The lead removal rate was 99.80% and high silica glass powder (SiO2 purity >95wt%) was obtained by setting the temperature, B2O3 added amount and holding time at 1000°C, 20% and 30mins, respectively. The prepared high silicate glass powders can be used as catalyst carrier, semipermeable membranes, adsorbents or be remelted into high silicate glass as an ideal substitute for quartz glass. Thus this study proposed an eco-friendly and economical process for recycling Pb-rich electronic glass waste.

4.
J Hazard Mater ; 305: 51-58, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26642446

RESUMO

In this study, a novel process for detoxification and reutilization of waste cathode ray tube (CRT) funnel glass was developed by carbon thermal reduction enhanced acid leaching process. The key to this process is removal of lead from the CRT funnel glass and synchronous preparation of glass microspheres. Carbon powder was used as an isolation agent and a reducing agent. Under the isolation of the carbon powder, the funnel glass powder was sintered into glass microspheres. In thermal reduction, PbO in the funnel glass was first reduced to elemental Pb by carbon monoxide and then located on the surface of glass microspheres which can be removed easily by acid leaching. Experimental results showed that temperature, carbon adding amount and holding time were the major parameters that controlled lead removal rate. The maximum lead removal rate was 94.80% and glass microspheres that measured 0.73-14.74µm were obtained successfully by setting the temperature, carbon adding amount and holding time at 1200°C, 10% and 30min, respectively. The prepared glass microspheres may be used as fillers in polymer materials and abrasive materials, among others. Accordingly, this study proposed a practical and economical process for detoxification and recycling of waste lead-containing glass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...