Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940421

RESUMO

Exosomes are nanoscale membrane bound vesicles secreted by almost all types of cells. Their unique attributes, such as minimal immunogenicity and compatibility with biological systems, make them novel carriers for drug delivery. These native exosomes harbor proteins, nucleic acids, small molecule compounds, and fluorogenic agents. Moreover, through a combination of chemical and bioengineering methodologies, exosomes are tailored to transport precise therapeutic payloads to designated cells or tissues. In this review, we summarize the strategies for exosome modification and drug loading modalities in engineered exosomes. In addition, we provide an overview of the advances in the use of engineered exosomes for targeted drug delivery. Lastly, we discuss the merits and limitations of chemically engineered versus bioengineered exosome-mediated target therapies. These insights offer additional options for refining engineered exosomes in pharmaceutical development and hold promise for expediting the successful translation of engineered exosomes from the bench to the bedside.

2.
ACS Appl Bio Mater ; 7(6): 3660-3674, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38835217

RESUMO

Protein compartments offer definitive structures with a large potential design space that are of particular interest for green chemistry and therapeutic applications. One family of protein compartments, encapsulins, are simple prokaryotic nanocompartments that self-assemble from a single monomer into selectively permeable cages of between 18 and 42 nm. Over the past decade, encapsulins have been developed for a diverse application portfolio utilizing their defined cargo loading mechanisms and repetitive surface display. Although it has been demonstrated that encapsulation of non-native cargo proteins provides protection from protease activity, the thermal effects arising from enclosing cargo within encapsulins remain poorly understood. This study aimed to establish a methodology for loading a reporter protein into thermostable encapsulins to determine the resulting stability change of the cargo. Building on previous in vitro reassembly studies, we first investigated the effectiveness of in vitro reassembly and cargo-loading of two size classes of encapsulins Thermotoga maritima T = 1 and Myxococcus xanthus T = 3, using superfolder Green Fluorescent Protein. We show that the empty T. maritima capsid reassembles with higher yield than the M. xanthus capsid and that in vitro loading promotes the formation of the M. xanthus T = 3 capsid form over the T = 1 form, while overloading with cargo results in malformed T. maritima T = 1 encapsulins. For the stability study, a Förster resonance energy transfer (FRET)-probed industrially relevant enzyme cargo, transketolase, was then loaded into the T. maritima encapsulin. Our results show that site-specific orthogonal FRET labels can reveal changes in thermal unfolding of encapsulated cargo, suggesting that in vitro loading of transketolase into the T. maritima T = 1 encapsulin shell increases the thermal stability of the enzyme. This work supports the move toward fully harnessing structural, spatial, and functional control of in vitro assembled encapsulins with applications in cargo stabilization.


Assuntos
Estabilidade Enzimática , Tamanho da Partícula , Thermotoga maritima , Transcetolase , Transcetolase/metabolismo , Transcetolase/química , Thermotoga maritima/enzimologia , Teste de Materiais , Materiais Biocompatíveis/química
3.
Biomater Adv ; 161: 213904, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805763

RESUMO

Engineered calcium carbonate (CaCO3) particles are extensively used as drug delivery systems due to their availability, biological compatibility, biodegradability, and cost-effective production. The synthesis procedure of CaCO3 particles, however, suffers from poor reproducibility. Furthermore, reducing the size of CaCO3 particles to <100 nm requires the use of additives in the reaction, which increases the total reaction time. Here we propose on-chip synthesis and loading of nanoscaled CaCO3 particles using microfluidics. After the development and fabrication of a microfluidic device, we optimized the synthesis of CaCO3 NPs by varying different parameters such as flow rates in the microfluidic channels, concentration of reagents, and the reaction time. To prove the versatility of the used synthesis route, we performed single and double loading of CaCO3 NPs with various compounds (Doxorubicin, Cy5 or FITC conjugated with BSA, and DNA) using the same microfluidic device. Further, the on-chip loaded CaCO3 NPs were used as carriers to transfer compounds to model cells. We have developed a microfluidic synthesis method that opens up a new pathway for easy on-chip fabrication of functional nanoparticles for clinical use.


Assuntos
Carbonato de Cálcio , Dispositivos Lab-On-A-Chip , Nanopartículas , Carbonato de Cálcio/química , Nanopartículas/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Humanos , Microfluídica/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Portadores de Fármacos/química , Tamanho da Partícula , DNA/química , DNA/administração & dosagem
4.
Discov Nano ; 19(1): 76, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38691254

RESUMO

Extracellular vesicles (EVs) have mostly been investigated as carriers of biological therapeutics such as proteins and RNA. Nevertheless, small-molecule drugs of natural or synthetic origin have also been loaded into EVs, resulting in an improvement of their therapeutic properties. A few methods have been employed for EV cargo loading, but poor yield and drastic modifications of vesicles remain unsolved challenges. We tested a different strategy based on temporary pH alteration through incubation of EVs with alkaline sodium carbonate, which resulted in conspicuous exogenous molecule incorporation. In-depth characterization showed that vesicle size, morphology, composition, and uptake were not affected. Our method was more efficient than gold-standard electroporation, particularly for a potential therapeutic toxin: the plant Ribosome Inactivating Protein saporin. The encapsulated saporin resulted protected from degradation, and was efficiently conveyed to receiving cancer cells and triggered cell death. EV-delivered saporin was more cytotoxic compared to the free toxin. This approach allows both the structural preservation of vesicle properties and the transfer of protected cargo in the context of drug delivery.

5.
Trends Pharmacol Sci ; 45(4): 350-365, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508958

RESUMO

The use of extracellular vesicles (EVs) for drug delivery is being widely explored by scientists from several research fields. To fully exploit their therapeutic potential, multiple methods for loading EVs have been developed. Although exogenous methods have been extensively utilized, in recent years the endogenous method has gained significant attention. This approach, based on parental cell genetic engineering, is suitable for loading large therapeutic biomolecules such as proteins and nucleic acids. We review the most commonly used EV loading methods and emphasize the inherent advantages of the endogenous method over the others. We also examine the most recent advances and applications of this innovative approach to inform on the diverse therapeutic opportunities that lie ahead in the field of EV-based therapies.


Assuntos
Sistemas de Liberação de Medicamentos , Vesículas Extracelulares , Humanos , Sistemas de Liberação de Medicamentos/métodos , Vesículas Extracelulares/metabolismo , Proteínas/metabolismo
6.
ACS Nano ; 18(10): 7473-7484, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38326220

RESUMO

Protein nanocages have emerged as promising candidates for enzyme immobilization and cargo delivery in biotechnology and nanotechnology. Carboxysomes are natural proteinaceous organelles in cyanobacteria and proteobacteria and have exhibited great potential in creating versatile nanocages for a wide range of applications given their intrinsic characteristics of self-assembly, cargo encapsulation, permeability, and modularity. However, how to program intact carboxysome shells with specific docking sites for tunable and efficient cargo loading is a key question in the rational design and engineering of carboxysome-based nanostructures. Here, we generate a range of synthetically engineered nanocages with site-directed cargo loading based on an α-carboxysome shell in conjunction with SpyTag/SpyCatcher and Coiled-coil protein coupling systems. The systematic analysis demonstrates that the cargo-docking sites and capacities of the carboxysome shell-based protein nanocages could be precisely modulated by selecting specific anchoring systems and shell protein domains. Our study provides insights into the encapsulation principles of the α-carboxysome and establishes a solid foundation for the bioengineering and manipulation of nanostructures capable of capturing cargos and molecules with exceptional efficiency and programmability, thereby enabling applications in catalysis, delivery, and medicine.


Assuntos
Proteínas de Bactérias , Biotecnologia , Proteínas de Bactérias/química , Bioengenharia , Domínios Proteicos , Organelas/metabolismo
7.
Biomed Pharmacother ; 169: 115904, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37984307

RESUMO

Plant-derived extracellular vesicles (PDEVs) have shown remarkable potential as sustainable, green, and efficient drug delivery nanocarriers. As natural nanoparticles containing lipids, protein, nucleic acids and secondary metabolites, they have received widespread attention as a replacement for mammalian exosomes in recent years. In this review, the advances in isolation, identification, composition, therapeutic effect, and clinical application prospect were comprehensively reviewed, respectively. In addition, the specific modification strategies have been listed focusing on the inherent drawbacks of the raw PDEVs like low targeting efficiency and poor homogeneity. With emphasis on their biology mechanism in terms of immune regulation, regulating oxidative stress and promoting regeneration in the anti-inflammatory field and application value demonstrated by citing some typical examples, this review about PDEVs would provide a broad and fundamental vision for the in-depth exploration and development of plant-derived extracellular vesicles in the in-vivo anti-inflammation and even other biomedical applications.


Assuntos
Exossomos , Vesículas Extracelulares , Animais , Anti-Inflamatórios/farmacologia , Sistemas de Liberação de Medicamentos , Portadores de Fármacos , Mamíferos
8.
AAPS J ; 25(6): 94, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783923

RESUMO

Nanoparticles can encapsulate a range of therapeutics, from small molecule drugs to sensitive biologics, to significantly improve their biodistribution and biostability. Whilst the regulatory approval of several of these nanoformulations has proven their translatability, there remain several hurdles to the translation of future nanoformulations, leading to a high rate of candidate nanoformulations failing during the drug development process. One barrier is that the difficulty in tightly controlling nanoscale particle synthesis leads to particle-to-particle heterogeneity, which hinders manufacturing and quality control, and regulatory quality checks. To understand and mitigate this heterogeneity requires advancements in nanoformulation characterisation beyond traditional bulk methods to more precise, single particle techniques. In this review, we compare commercially available single particle techniques, with a particular focus on single particle Raman spectroscopy, to provide a guide to adoption of these methods into development workflows, to ultimately reduce barriers to the translation of future nanoformulations.


Assuntos
Nanopartículas , Distribuição Tecidual , Nanopartículas/química , Preparações Farmacêuticas , Tamanho da Partícula
9.
Cells ; 12(10)2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37408250

RESUMO

Extracellular vesicles (EVs) such as ectosomes and exosomes have gained attention as promising natural carriers for drug delivery. Exosomes, which range from 30 to 100 nm in diameter, possess a lipid bilayer and are secreted by various cells. Due to their high biocompatibility, stability, and low immunogenicity, exosomes are favored as cargo carriers. The lipid bilayer membrane of exosomes also offers protection against cargo degradation, making them a desirable candidate for drug delivery. However, loading cargo into exosomes remains to be a challenge. Despite various strategies such as incubation, electroporation, sonication, extrusion, freeze-thaw cycling, and transfection that have been developed to facilitate cargo loading, inadequate efficiency still persists. This review offers an overview of current cargo delivery strategies using exosomes and summarizes recent approaches for loading small-molecule, nucleic acid, and protein drugs into exosomes. With insights from these studies, we provide ideas for more efficient and effective delivery of drug molecules by using exosomes.


Assuntos
Micropartículas Derivadas de Células , Exossomos , Vesículas Extracelulares , Exossomos/metabolismo , Bicamadas Lipídicas/metabolismo , Sistemas de Liberação de Medicamentos , Vesículas Extracelulares/metabolismo
10.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37373342

RESUMO

Exosomes are nanovesicles 40-120 nm in diameter secreted by almost all cell types and providing humoral intercellular interactions. Given the natural origin and high biocompatibility, the potential for loading various anticancer molecules and therapeutic nucleic acids inside, and the surface modification possibility for targeted delivery, exosomes are considered to be a promising means of delivery to cell cultures and experimental animal organisms. Milk is a unique natural source of exosomes available in semi-preparative and preparative quantities. Milk exosomes are highly resistant to the harsh conditions of the gastrointestinal tract. In vitro studies have demonstrated that milk exosomes have an affinity to epithelial cells, are digested by cells by endocytosis mechanism, and can be used for oral delivery. With milk exosome membranes containing hydrophilic and hydrophobic components, exosomes can be loaded with hydrophilic and lipophilic drugs. This review covers a number of scalable protocols for isolating and purifying exosomes from human, cow, and horse milk. Additionally, it considers passive and active methods for drug loading into exosomes, as well as methods for modifying and functionalizing the surface of milk exosomes with specific molecules for more efficient and specific delivery to target cells. In addition, the review considers various approaches to visualize exosomes and determine cellular localization and bio-distribution of loaded drug molecules in tissues. In conclusion, we outline new challenges for studying milk exosomes, a new generation of targeted delivery agents.


Assuntos
Antineoplásicos , Exossomos , Animais , Bovinos , Feminino , Humanos , Exossomos/metabolismo , Leite/metabolismo , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/metabolismo
11.
Pharmaceutics ; 15(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36839687

RESUMO

The article is divided into several sections, focusing on extracellular vesicles' (EVs) nature, features, commonly employed methodologies and strategies for their isolation/preparation, and their characterization/visualization. This work aims to give an overview of advances in EVs' extensive nanomedical-drug delivery applications. Furthermore, considerations for EVs translation to clinical application are summarized here, before focusing the review on a special kind of extracellular vesicles, the ones derived from red blood cells (RBCEVs). Generally, employing EVs as drug carriers means managing entities with advantageous properties over synthetic vehicles or nanoparticles. Besides the fact that certain EVs also reveal intrinsic therapeutic characteristics, in regenerative medicine, EVs nanosize, lipidomic and proteomic profiles enable them to pass biologic barriers and display cell/tissue tropisms; indeed, EVs engineering can further optimize their organ targeting. In the second part of the review, we focus our attention on RBCEVs. First, we describe the biogenesis and composition of those naturally produced by red blood cells (RBCs) under physiological and pathological conditions. Afterwards, we discuss the current procedures to isolate and/or produce RBCEVs in the lab and to load a specific cargo for therapeutic exploitation. Finally, we disclose the most recent applications of RBCEVs at the in vitro and preclinical research level and their potential industrial exploitation. In conclusion, RBCEVs can be, in the near future, a very promising and versatile platform for several clinical applications and pharmaceutical exploitations.

12.
Drug Deliv Transl Res ; 13(2): 473-502, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35980542

RESUMO

Exosomes are nano-vesicles (30-150 nm) which may be useful as therapeutic delivery vehicles and as diagnostic biomarkers. Exosomes are produced naturally within the human body and therefore are not prone to immunogenicity effects which would otherwise destroy unelicited foreign bodies. Clinically, they have been regarded as ideal candidates for applications relating to biomarker developments for the early detection of different diseases. Furthermore, exosomes may be of interest as potential drug delivery vehicles, which may improve factors such as bioavailability of loaded molecular cargo, side effect profiles, off-target effects, and pharmacokinetics of drug molecules. In this review, the therapeutic potential of exosomes and their use as clinical biomarkers for early diagnostics will be explored, alongside exosomes as therapeutic delivery vehicles. This review will evaluate techniques for cargo loading, and the capacity of loaded exosomes to improve various reproductive disease states. It becomes important, therefore, to consider factors such as loading efficiency, loading methods, cell viability, exosomal sources, exosome isolation, and the potential therapeutic benefits of exosomes. Issues related to targeted drug delivery will also be discussed. Finally, the variety of therapeutic cargo and the application of appropriate loading methods is explored, in the context of establishing clinical utility. Exosomes have more recently been widely accpeted as potential tools for disease diagnostics and the targeted delivery of certain therapeutic molecules-and in due time exosomes will be utilised more commonly within the clinical setting. Specifically, exosomal biomarkers can be identified and related to various detrimental conditions which occur during pregnancy. Considering, this review will explore the potential future of exosomes as both diagnostic tools and therapeutic delivery vehicles to treat related conditions, including the challenges which exist towards incorporating exosomes within the clinical environment to benefit patients.


Assuntos
Exossomos , Humanos , Sistemas de Liberação de Medicamentos , Excipientes , Biomarcadores , Reprodução
13.
Theranostics ; 12(15): 6740-6761, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185609

RESUMO

Extracellular vesicles (EVs), of which exosomes are a representative subgroup, are naturally secreted nanoparticles with a variety of payloads. With the intrinsic merits of stability, biocompatibility, low immunogenicity, and large capacity, EVs are widely regarded as effective carriers of drug delivery. However, disadvantages, such as low yield, complicated isolation procedures, and low loading efficiency, hinder its clinical translation. In this review, we systematically summarize the advances in EV (especially exosomes) engineering for clinical application, focusing on strategies toward high yield, facile isolation, efficient cargo loading, improved delivery, and optimized manufacturing, which might unleash the infinite power of EVs in clinical translation.


Assuntos
Exossomos , Vesículas Extracelulares , Nanopartículas , Comunicação Celular , Sistemas de Liberação de Medicamentos/métodos
14.
Viruses ; 14(9)2022 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-36146711

RESUMO

Virus-like particles (VLPs) are nanostructures assemble from viral proteins. Besides widely used for vaccine development, VLPs have also been explored as nanocarriers for cargo delivery as they combine the key advantages of viral and non-viral vectors. While it protects cargo molecules from degradation, the VLP has good cell penetrating property to mediate cargo passing the cell membrane and released into cells, making the VLP an ideal tool for intracellular delivery of biomolecules and drugs. Great progresses have been achieved and multiple challenges are still on the way for broad applications of VLP as delivery vectors. Here we summarize current advances and applications in VLP as a delivery vector. Progresses on delivery of different types of biomolecules as well as drugs by VLPs are introduced, and the strategies for cargo packaging are highlighted which is one of the key steps for VLP mediated intracellular delivery. Production and applications of VLPs are also briefly reviewed, with a discussion on future challenges in this rapidly developing field.


Assuntos
Vacinas de Partículas Semelhantes a Vírus , Proteínas Virais
15.
Adv Biol (Weinh) ; 6(10): e2200087, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35778828

RESUMO

Cardiovascular diseases (CVD) remain one of the leading causes of mortality worldwide. Despite recent advances in diagnosis and interventions, there is still a crucial need for new multifaceted therapeutics that can address the complicated pathophysiological mechanisms driving CVD. Extracellular vesicles (EVs) are nanovesicles that are secreted by all types of cells to transport molecular cargo and regulate intracellular communication. EVs represent a growing field of nanotheranostics that can be leveraged as diagnostic biomarkers for the early detection of CVD and as targeted drug delivery vesicles to promote cardiovascular repair and recovery. Though a promising tool for CVD therapy, the clinical application of EVs is limited by the inherent challenges in EV isolation, standardization, and delivery. Hence, this review will present the therapeutic potential of EVs and introduce bioengineering strategies that augment their natural functions in CVD.


Assuntos
Doenças Cardiovasculares , Vesículas Extracelulares , Humanos , Doenças Cardiovasculares/diagnóstico , Bioengenharia , Sistemas de Liberação de Medicamentos , Biomarcadores
16.
Mol Pharm ; 19(7): 2495-2505, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35594496

RESUMO

Cytoplasmic delivery of functional proteins into target cells remains challenging for many biological agents to exert their therapeutic effects. Extracellular vesicles (EVs) are expected to be a promising platform for protein delivery; however, efficient loading of proteins of interest (POIs) into EVs remains elusive. In this study, we utilized small compound-induced heterodimerization between FK506 binding protein (FKBP) and FKBP12-rapamycin-binding (FRB) domain to sort bioactive proteins into EVs using the FRB-FKBP system. When CD81, a typical EV marker protein, and POI were fused with FKBP and FRB, respectively, rapamycin induced the binding of these proteins through the FKBP-FRB interaction and recruited the POIs into EVs. The released EVs, displaying the virus-derived membrane fusion protein, delivered the POI cargo into recipient cells and their functionality in the recipient cells was confirmed. Furthermore, we demonstrated that CD81 could be replaced with other EV-enriched proteins, such as CD63 or HIV Gag. Thus, the FRB-FKBP system enables the delivery of functional proteins and paves the way for EV-based protein delivery platforms.


Assuntos
Vesículas Extracelulares , Comunicação Celular , Vesículas Extracelulares/metabolismo , Sirolimo/farmacologia , Proteína 1A de Ligação a Tacrolimo , Proteínas de Ligação a Tacrolimo/análise , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/metabolismo
17.
Membranes (Basel) ; 12(1)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35054611

RESUMO

Among extracellular vesicles, exosomes have gained great attention for their role as therapeutic vehicles for delivering various active pharmaceutical ingredients (APIs). Exosomes "armed" with anti-cancer therapeutics possess great potential for an efficient intracellular delivery of anti-cancer APIs and enhanced targetability to tumor cells. Various technologies are being developed to efficiently incorporate anti-cancer APIs such as genetic materials (miRNA, siRNA, mRNA), chemotherapeutics, and proteins into exosomes and to induce targeted delivery to tumor burden by exosomal surface modification. Exosomes can incorporate the desired therapeutic molecules via direct exogenous methods (e.g., electroporation and sonication) or indirect methods by modifying cells to produce "armed" exosomes. The targeted delivery of "armed" exosomes to tumor burden could be accomplished either by "passive" targeting using the natural tropism of exosomes or by "active" targeting via the surface engineering of exosomal membranes. Although anti-cancer exosome therapeutics demonstrated promising results in preclinical studies, success in clinical trials requires thorough validation in terms of chemistry, manufacturing, and control techniques. While exosomes possess multiple advantages over synthetic nanoparticles, challenges remain in increasing the loading efficiency of anti-cancer agents into exosomes, as well as establishing quantitative and qualitative analytical methods for monitoring the delivery of in vivo administered exosomes and exosome-incorporated anti-cancer agents to the tumor parenchyma.

18.
J Extracell Vesicles ; 10(13): e12163, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34719860

RESUMO

Extracellular vesicles (EVs) have demonstrated unique advantages in serving as nanocarriers for drug delivery, yet the cargo encapsulation efficiency is far from expectation, especially for hydrophilic chemotherapeutic drugs. Besides, the intrinsic heterogeneity of EVs renders it difficult to evaluate drug encapsulation behaviour. Inspired by the active drug loading strategy of liposomal nanomedicines, here we report the development of a method, named "Sonication and Extrusion-assisted Active Loading" (SEAL), for effective and stable drug encapsulation of EVs. Using doxorubicin-loaded milk-derived EVs (Dox-mEVs) as the model system, sonication was applied to temporarily permeabilize the membrane, facilitating the influx of ammonium sulfate solution into the lumen to establish the transmembrane ion gradient essential for active loading. Along with extrusion to downsize large mEVs, homogenize particle size and reshape the nonspherical or multilamellar vesicles, SEAL showed around 10-fold enhancement of drug encapsulation efficiency compared with passive loading. Single-particle analysis by nano-flow cytometry was further employed to reveal the heterogeneous encapsulation behaviour of Dox-mEVs which would otherwise be overlooked by bulk-based approaches. Correlation analysis between doxorubicin auto-fluorescence and the fluorescence of a lipophilic dye DiD suggested that only the lipid-enclosed particles were actively loadable. Meanwhile, immunofluorescence analysis revealed that more than 85% of the casein positive particles was doxorubicin free. These findings further inspired the development of the lipid-probe- and immuno-mediated magnetic isolation techniques to selectively remove the contaminants of non-lipid enclosed particles and casein assemblies, respectively. Finally, the intracellular assessments confirmed the superior performance of SEAL-prepared mEV formulations, and demonstrated the impact of encapsulation heterogeneity on therapeutic outcome. The as-developed cargo-loading approach and nano-flow cytometry-based characterization method will provide an instructive insight in the development of EV-based delivery systems.


Assuntos
Doxorrubicina/administração & dosagem , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Vesículas Extracelulares/química , Animais , Biotina/análogos & derivados , Biotina/química , Cápsulas , Caseínas/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos , Leite/citologia , Tamanho da Partícula , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Sonicação/métodos
19.
Nano Lett ; 21(14): 5952-5957, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34251204

RESUMO

A minimal synthetic cell should contain a substrate for information storage and have the capability to divide. Notable efforts were made to assemble functional synthetic cells from the bottom up, however often lacking the capability to reproduce. Here, we develop a mechanism to fully control reversible cargo loading and division of DNA-containing giant unilamellar vesicles (GUVs) with light. We make use of the photosensitizer Chlorin e6 (Ce6) which self-assembles into lipid bilayers and leads to local lipid peroxidation upon illumination. On the time scale of minutes, illumination induces the formation of transient pores, which we exploit for cargo encapsulation or controlled release. In combination with osmosis, complete division of two daughter GUVs can be triggered within seconds of illumination due to a spontaneous curvature increase. We ultimately demonstrate the division of a selected DNA-containing GUV with full spatiotemporal control-proving the relevance of the division mechanism for bottom-up synthetic biology.


Assuntos
Células Artificiais , Lipossomas Unilamelares , DNA , Bicamadas Lipídicas , Biologia Sintética
20.
Subcell Biochem ; 97: 375-392, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33779924

RESUMO

Extracellular vesicles (EVs) are lipid bilayer containing nanovesicles that have a predominant role in intercellular communication and cargo delivery. EVs have recently been used as a means for drug delivery and have been depicted to elicit no or minimal immune response in vivo. The stability, biocompatibility and manipulatable tumour homing capabilities of these biological vessels make them an attractive target for the packaging and delivery of drugs and molecules to treat various diseases including cancer. The following chapter will summarise current EV engineering techniques for the purpose of delivering putative drugs and therapeutic molecules for the treatment of cancer. The relevance of EV source will be discussed, as well as the specific modifications required to manufacture them into suitable vehicles for molecular drug delivery. Furthermore, methods of EV cargo encapsulation will be evaluated with emphasis on intercellular coordination to allow for the effective emptying of therapeutic contents into target cells. While EVs possess properties making them naturally suitable nanocarriers for drugs and molecules, many challenges with clinical translation of EV-based platforms remain. These issues need to be addressed in order to harness the true potential of the EV-based therapeutic avenue.


Assuntos
Vesículas Extracelulares , Neoplasias , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...