RESUMO
Traditional Chinese medicine (TCM) contributes significantly to human health. Owing to the complexity of the ingredients in TCM, it is necessary to conduct basic research on effective substances and identify toxic substances to control the safety of medication. Cell membrane chromatography (CMC) is an important method for identifying target components in complex systems. The cell membrane stationary phase (CMSP) is the core component and key factor in determining the effectiveness of CMC. This review summarizes the development of CMSP with different membrane protein immobilization strategies and the application of CMC in the discovery of active and toxic substances in TCM, with the aim of providing an effective means for the discovery of active ingredients and quality control of TCM.
RESUMO
Antioxidant dipeptide Phe-Cys (FC) could dramatically improve yeast cells resistance to ethanol-oxidation cross-stress, but the regulatory mechanisms remain unclear. Therefore, transcriptomic and proteomic analyses were conducted to investigate the effects of FC treatment on yeast under ethanol-oxidation cross-stress. Following FC supplementation, 875 differential expressed genes (DEGs) and 1296 differential expressed proteins (DEPs) were identified. Integrated analysis revealed a substantial enrichment of DEGs and DEPs in the KEGG pathways of carbon metabolism, amino acid biosynthesis, cofactor biosynthesis, and glycolysis/gluconeogenesis. Furthermore, FC improved yeast cell membrane integrity by promoting fatty acids and steroids biosynthesis, and implemented a high-energy strategy by upregulating glycolysis and oxidative phosphorylation. Additionally, alterations in DEGs and DEPs levels associated with amino acids metabolism accelerated protein synthesis and enhanced cell viability. In conclusion, this study elucidated the response mechanisms of yeast to FC treatment under ethanol-oxidation cross-stress, providing a theoretical basis for the application of FC in high-gravity brewing.
RESUMO
Aim: To investigate the antifungal mechanism of clioquinol and indicate that clioquinol has potential as a novel therapeutic antifungal agent.Materials & methods: Analyze differentially expressed genes of Candida albicans treated with clioquinol using RNA-sequencing. The effects on cell wall and membrane features, virulence factors, apoptosis-induced cell death were also investigated.Results: The differentially expressed genes of C. albicans after treated with clioquinol focused on cell wall and membrane synthesis, antioxidant system and energy metabolism. Clioquinol did not change cell wall components levels while it decreased squalene epoxidase activity to influence the ergosterol biosynthesis in cell membrane. It also decreased cellular surface hydrophobicity and induced ß-glucan unmasking to attenuate virulence factors. Meanwhile, clioquinol influenced enzyme activities involved in antioxidant system, citrate cycle, oxidative phosphorylation and decreased the ATP levels. Clioquinol induced apoptosis in C. albicans to exert its fungicidal activity. It induced reactive oxygen species and calcium ion elevation, leading to loss of mitochondrial membrane potential, cytochrome C release, metacaspase activation, thereby triggering apoptosis.Conclusion: Clioquinol exerted anti-C. albicans activity through influencing cell membrane, attenuating virulence factors and inducing apoptosis.
[Box: see text].
RESUMO
Cell membrane nanoparticles have attracted increasing interest in nanomedicine because they allow to exploit the complexity of cell membrane interactions for drug delivery. Several methods are used to obtain plasma membrane to generate cell membrane nanoparticles. Here, an optimized method combining nitrogen cavitation in isotonic buffer and sucrose gradient fractionation is presented. The method allows to obtain cell membrane fractions of high purity from both suspension and adherent cells. Comparison with other common methods for membrane extraction, where mechanical lysis using cell homogenizers is performed in isotonic or hypotonic buffers, shows that the optimized procedure yields high purity membrane in a robust and reproducible way. Procedures to mix the purified membrane with synthetic lipids to obtain cell membrane liposomes (CMLs) are presented and indications on how to optimize these steps are provided. CMLs made using crude membrane isolates or the purified membrane fractions show different uptake by cells. The CMLs made with the optimized procedure and liposomes of the same composition but without cell membrane components are thoroughly characterized and compared for their size, zeta potential, bilayer and mechanical properties to confirm membrane protein inclusion in the CMLs. Cell uptake studies confirm that the inclusion of membrane components modifies liposome interactions with cells.
RESUMO
Phospholipids exhibit an asymmetrical distribution on the cell membrane. P4-ATPases, type IV lipid flippases, are responsible for establishing and maintaining this phospholipid compositional asymmetry. The essential ß subunit CDC50 (also known as TMEM30) assists in the transport and proper functioning of P4-ATPases. Deletion of P4-ATPases and its ß subunit disrupts the membrane asymmetry, impacting the growth and development and leading to various diseases affecting the nervous, skeletal muscle, digestive, and hematopoietic systems. This review discusses the crucial roles of P4-ATPases and their ß subunit in Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans, and mammals, offering valuable insights for future research.
Assuntos
Adenosina Trifosfatases , Membrana Celular , Animais , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Membrana Celular/metabolismo , Humanos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimologiaRESUMO
Thrombosis-related cardiovascular diseases remain the leading global cause of mortality and morbidity. In this study, we present a pioneering approach in the field of nanobiotechnology, with a focus on clinical translation, aimed at advancing early diagnosis and enhancing treatment options for thrombotic disorders. We introduce the fabrication of Platelet Membrane-Derived Bubbles (PMBs), which exhibit distinctive characteristics compared to conventional nanoparticles. These PMBs possess an average diameter of 700 nm and a negative ζ-potential, mirroring the attributes of parent platelet membranes. Utilizing diagnostic ultrasound imaging, we demonstrated the ability to visualize PMBs as hyperechogenic entities in agarose phantoms in vitro and in live mice in vivo. Furthermore, through confocal laser microscopy, we verified the retention of crucial transmembrane proteins, such as CD41 (GPIIb) and CD42 (GPIb), pivotal in conferring platelet-specific targeting functions. Importantly, our platelet aggregation studies confirmed that PMBs do not induce platelet aggregation but instead adhere to preformed platelet-rich in vitro thrombi. Overall, our work showcases the safe and precise utilization of PMBs to directly target acute thrombosis induced by laser injury in murine mesenteric veins in vivo, as visualized through intravital microscopy. In conclusion, we have successfully developed a rapid method for generating PMBs with unique ultrasound-directed and thrombus-targeting properties. These exceptional attributes of PMBs hold significant promise for advancing the field of ultrasound diagnostic thrombus imaging and clot-targeted therapy in the clinical context.
RESUMO
Galectins constitute a family of soluble lectins with unique capacity to induce macroscale rearrangements upon interacting with cell membrane glycoconjugates. Galectin-8 (Gal-8) is acknowledged for its role in facilitating antigen uptake and processing upon engaging with cell surface glycoconjugates on antigen-presenting cells (APCs). Gal-8 consists of two covalently fused N- and C-terminal carbohydrate recognition domains (N- and C-CRD), each exhibiting distinct glycan specificity. In this study, we utilized single N- and C-CRD recombinant proteins to dissect the nature of Gal-8-glycan interactions during antigen internalization enhancement. Single C-CRD was able to replicate the effect of full-length Gal-8 (FLGal-8) on antigen internalization in BMDCs. Antigen uptake enhancement was diminished in the presence of lactose or when N-glycosylation-deficient macrophages served as APCs, underscoring the significance of glycan recognition. Measurement of the elastic modulus using Atomic Force Microscopy unveiled that FLGal-8- and C-CRD-stimulated macrophages exhibited heightened membrane stiffness compared to untreated cells, providing a plausible mechanism for their involvement in endocytosis. C-CRD proved to be as efficient as FLGal-8 in promoting antigen degradation, suggesting its implication in antigen-processing induction. Lastly, C-CRD was able to replicate FLGal-8-induced antigen presentation in the MHC-II context both in vitro and in vivo. Our findings support the notion that Gal-8 binds through its C-CRD to cell surface N-glycans, thereby altering membrane mechanical forces conducive to soluble antigen endocytosis, processing, and presentation to cognate CD4 T-cells. These findings contribute to a deeper comprehension of Gal-8 and its mechanisms of action, paving the way for the development of more efficacious immunotherapies.
RESUMO
Background: In this study, we aimed to explore the mechanism by which resveratrol promotes cisplatin-induced death of HepG2 cells and to provide a potential strategy for resveratrol in the treatment of cancer. Methods: HepG2 cells were exposed to a range of drug concentrations for 24 h: resveratrol (2.5 µg/mL [10.95 µM], 5 µg/mL [21.91 µM], 10 µg/mL [43.81 µM], 20 µg/mL [87.62 µM], 40 µg/mL [175.25 µM], and 80 µg/mL [350.50 µM]), cisplatin (0.625 µg/mL [2.08 µM], 1.25 µg/mL [4.17 µM], 2.5 µg/mL [8.33 µM], 4.5 µg/mL [15.00 µM], and 10 µg/mL [33.33 µM]), 24 µg/mL (105.15 µM) resveratrol + 9 µg/mL (30.00 µM) cisplatin, and 12 µg/mL (52.57 µM) resveratrol + 4.5 µg/mL (15.00 µM) cisplatin. The interaction of two drugs was evaluated by coefficient of drug interaction (CDI), which was based on the Pharmacological Additivity model. The MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to detect the effect of different concentrations of drugs on cell viability, while transcriptome sequencing was used to identify pathways associated with higher gene enrichment. Synchrotron radiation FTIR microspectroscopy experiments and data analysis were conducted to obtain detailed spectral information. The second-derivative spectra were calculated using the Savitzky-Golay algorithm. Single-cell infrared spectral absorption matrices were constructed to analyze the spectral characteristics of individual cells. The Euclidean distance between cells was calculated to assess their spectral similarity. The cell-to-cell Euclidean distance was computed to evaluate the spatial relationships between cells. The target protein of resveratrol was verified by performing a Western blot analysis. Results: After 24 h of treatment with resveratrol, HepG2 cell growth was inhibited in a dose-dependent manner. Resveratrol promotes cisplatin-induced HepG2 cell death through membrane-related pathways. It also significantly changes the membrane components of HepG2 cells. Additionally, resveratrol changes the morphology of the HepG2 cell membrane by decreasing the expression of PLA2G2. Conclusion: Resveratrol changes the morphology of the HepG2 cell membrane by decreasing the expression of PLA2G2 and promotes cisplatin-induced HepG2 cell death. The combination of cisplatin and resveratrol can play a synergistic therapeutic effect on HepG2 cells.
RESUMO
Glioblastoma multiforme (GBM), the most aggressive intracranial neoplasm, remains incurable at present, primarily due to drug resistance, which significantly contributes to elevated recurrence rates and dismal prognosis. Signal transducer and activator of transcription 3 (STAT3) is a critical gene closely associated with GBM drug resistance and the progression of GBM stem cells (GSCs), making it a promising therapeutic target. In this study, we developed cancer cell membrane-cloaked biomimetic nanoparticles to deliver STAT3 siRNA to reverse drug resistance in homologous GBM. These biomimetic nanoparticles leverage homotypic targeting, rapid endosome escape, and fast siRNA release, leading to efficient in vitro STAT3 knockdown in both temozolomide-resistant U251-TR cells and X01 GSCs. Moreover, benefited from the membrane functionalization, significant prolonged blood circulation, improved blood brain barrier (BBB) penetration and GBM tumor accumulation are achieved by these siRNA biomimetic nanoparticles. Importantly, these nanoparticles effectively inhibit tumor proliferation, significantly extending median survival time in orthotopic U251-TR (43.5 d versus 20 d for PBS control) and X01 GSC-bearing mouse xenografts (52 d versus 19.5 d for PBS control). Altogether, this biomimetic siRNA platform offers a promising strategy for gene therapy targeting drug-resistant GBM.
RESUMO
Chili pepper anthracnose, caused by Colletotrichum spp., is a significant biotic stress affecting chili fruits globally. While fungicide application is commonly used for disease management due to its efficiency and costeffectiveness, excessive use poses risks to human health and the environment. Botanical fungicides offer advantages such as rapid degradation and low toxicity to mammals, making them increasingly popular for sustainable plant disease control. This study investigated the antifungal properties of Cestrum tomentosum L.f. crude extracts (CTCE) against Colletotrichum scovillei. The results demonstrated that CTCE effectively inhibited conidia germination and germ tube elongation at 40 µg/ml concentrations. Moreover, CTCE exhibited strong antifungal activity against C. scovillei mycelial growth, with an EC50 value of 18.81 µg/ml. In vivo experiments confirmed the protective and curative effects of CTCE on chili pepper fruits infected with C. scovillei. XTT analysis showed that the CTCE could significantly inhibit the cell viability of C. scovillei. Mechanistic studies revealed that CTCE disrupted the plasma membrane integrity of C. scovillei and induced the accumulation of reactive oxygen species in hyphal cells. These findings highlight CTCE as a promising eco-friendly botanical fungicide for managing C. scovillei infections in chili peppers.
RESUMO
Bacterial infections, especially those caused by multidrug-resistant pathogens, pose a significant threat to public health. Vaccines are a crucial tool in fighting these infections; however, no clinically available vaccine exists for the most common bacterial infections, such as those caused by Pseudomonas aeruginosa. Herein, a multiantigenic antibacterial nanovaccine (AuNP@HMV@SPs) is reported to combat P. aeruginosa infections. This nanovaccine utilizes the hybrid membrane vesicles (HMVs) created by fusing macrophage membrane vesicles (MMVs) with bacterial outer membrane vesicles (OMVs). The HMVs mitigate the toxic effects of both OMVs and bacterial secreted toxins (SP) adsorbed on the surface of MMVs, while preserving their stimulating properties. Gold nanoparticles (AuNPs) are utilized as adjuvant to enhance immune response without comprising safety. The nanovaccine AuNP@HMV@SPs induces robust humoral and cellular immune responses, leading to destruction of bacterial cells and neutralization of their secreted toxins. In murine models of septicemia and pneumonia caused by P. aeruginosa, AuNP@HMV@SPs exhibits superior prophylactic efficacy compared to control groups including OMVs, or MMVs@SPs and HMV@SPs, achieving 100% survival in septicemia and > 99.9% reduction in lung bacterial load in pneumonia. This study highlights AuNP@HMV@SPs as a safe and effective antibacterial nanovaccine, targeting both bacteria and their secreted toxins, and offers a promising platform for developing multiantigenic antibacterial vaccines against multidrug-resistant pathogens.
Assuntos
Ouro , Nanopartículas Metálicas , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/efeitos dos fármacos , Camundongos , Ouro/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Vesículas Extracelulares/imunologia , Vacinas Bacterianas/imunologia , Feminino , Membrana Externa Bacteriana/imunologia , Macrófagos/imunologia , NanovacinasRESUMO
A cell membrane-derived vesicle (MV) that has cell-mimicking features with characteristic functionalities holds vast appeal for biomimetic nanomedicine and drug delivery but suffers from a major limitation of innate fragility and poor stability. Herein, we report a lipid-anchoring strategy for stabilizing MV for enhanced drug delivery. An array of amphiphilic mono-acyl phosphatidylcholines (MPCs) with specific hydrophobic moieties are synthesized and readily engineered on MV based on their commendable aqueous solubility and efficient membrane insertability. Incorporation of MPCs containing rigid ring structures in the hydrophobic segment demonstrates the potency of stabilizing MV by the combined ordering and condensing effects. The optimized MPC-stabilized MV exhibits prolonged circulation in the bloodstream, elevated accumulation within a tumor, and enhanced therapeutic effects of chemotherapeutic and photothermal drugs. Moreover, doxorubicin-loaded MV, engineered with mono-all-trans retinoyl phosphatidylcholine as an MV stabilizer and a therapeutic prodrug, potently suppresses growth and metastasis of high-stemness tumors.
Assuntos
Membrana Celular , Doxorrubicina , Sistemas de Liberação de Medicamentos , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Humanos , Membrana Celular/metabolismo , Membrana Celular/química , Camundongos , Animais , Fosfatidilcolinas/química , Interações Hidrofóbicas e Hidrofílicas , Portadores de Fármacos/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Linhagem Celular TumoralRESUMO
This study explores the in vitro antifungal effects of nerol, a linear acyclic monoterpene alcohol of plant origin, on Fusarium oxysporum, Pestalotiopsis neglecta, and Valsa mali. To further investigate the antifungal mechanism of nerol against F. oxysporum, we examined changes in mycelial morphology and cell membrane integrity-related indices, as well as the activities of antioxidant and pathogenicity-related enzymes. The results demonstrated that nerol exhibited significant concentration-dependent inhibition of mycelial growth in all three fungi, with EC50 values of 0.46 µL/mL for F. oxysporum, 1.81 µL/mL for P. neglecta, and 1.26 µL/mL for V. mali, with the strongest antifungal activity observed against F. oxysporum. Scanning electron microscopy revealed that nerol severely disrupted the mycelial structure of F. oxysporum, causing deformation, swelling, and even rupture. Treatment with 0.04 µL/mL nerol led to significant leakage of soluble proteins and intracellular ions in F. oxysporum, and the Na+/K+-ATPase activity was reduced to 28.02% of the control, indicating enhanced membrane permeability. The elevated levels of hydrogen peroxide and malondialdehyde, along with propidium iodide staining of treated microconidia, further confirmed cell membrane disruption caused by nerol. Additionally, after 12 h of exposure to 0.04 µL/mL nerol, the activity of superoxide dismutase in F. oxysporum decreased to 55.81% of the control, and the activities of catalase and peroxidase were also significantly inhibited. Nerol markedly reduced the activities of pathogenicity-related enzymes, such as endo-1,4-ß-D-glucanase, polygalacturonase, and pectin lyase, affecting fungal growth and virulence. In conclusion, nerol disrupts the cell membrane integrity and permeability of F. oxysporum, reduces its virulence, and ultimately inhibits fungal growth, highlighting its potential as an alternative to chemical fungicides for controlling F. oxysporum.
RESUMO
Heavy metal contamination increases plant susceptibility to both biotic and abiotic stresses. However, the comprehensive impact of heavy metal pollution on plant hydraulics, which is crucial for plant productivity, and the interaction between heavy metal stress and environmental factors on plant health are not yet fully understood. In this study, we investigated the effects of cadmium exposure on plant-water relations and hydraulics of Solanum lycopersicum L., cultivar Piccadilly. Particular attention was given to leaf hydraulic conductance (KL) in response to cadmium pollution and dehydration. Cadmium exposure exhibited negligible impacts on tomato productivity but resulted in significant differences in pressure-volume derived traits. Leaves and roots of Cd-treated plants showed reduced wall stiffness compared to control samples. However, Cd-treated leaves had a less negative turgor loss point (Ψtlp), whereas Cd-treated roots exhibited more negative Ψtlp values due to lower osmotic potential at full turgor compared to control samples. Leaves and root cells of Cd-treated plants showed higher values of saturated water content compared to control plants, along with a distinct mineral profile between the two experimental groups. Despite similar leaf water potential thresholds for 50% and 80% loss of KL in control and cadmium-treated leaves, plants grown in cadmium-polluted soil showed higher leaf cell damages even under well watered conditions. This, in turn, affected the plant ability to recover from drought upon rehydration by compromising cell rehydration ability. Overall, the present findings suggest that under conditions of low water availability, cadmium pollution increases the risk of leaf hydraulic failure.
RESUMO
Curcumin (CUR) is a hydrophobic polyphenol with considerable antitumor efficiency, but its clinical application is limited because of its poor solubility and low stability in aqueous solution and lack of targeting in vivo. Herein, we fabricated a tumor-targeting drug delivery system by loading CUR and cloaking homologous cancer cell membrane (CM) onto mesoporous silica NPs (MSN-CUR@CM). Characterization analysis showed that MSN-CUR@CM with a size of approximately 70 nm showed high water solubility and biocompatibility. Besides, MSN-CUR@CM exhibited tumor-targeting and excellent anti-gastric cancer efficiency both in vitro and in vivo owing to the cellular self-recognition of CM. In the established xenograft tumor nude mouse model, it was still significantly drug accumulated at the tumor site 72 h post administration. In addition, the mean tumor volume and weight of the MSN-CUR@CM group were was 3.97 and 7.47 times smaller than those of the CUR group. Ferroptosis, a type of non-apoptotic regulated cell death accompanied by iron-dependent lipid peroxidation, was triggered by MSN-CUR@CM. Further analysis demonstrated that MSN-CUR@CUR upregulated heme oxygenase (HO-1) levels whereas it downregulated the expression of glutathione peroxidase 4 (GPX4) in SGC7901 cells in vitro, indicating that the canonical and noncanonical ferroptosis pathways were regulated by MSN-CUR@CM. In conclusion, our study demonstrated that MSN-CUR@CM with high water solubility, biocompatibility, and tumor-targeting properties inhibited gastric cancer both in vitro and in vivo by triggering ferroptosis and provided an admirable cancer therapy efficacy.
Assuntos
Curcumina , Ferroptose , Camundongos Nus , Nanopartículas , Neoplasias Gástricas , Ensaios Antitumorais Modelo de Xenoenxerto , Curcumina/farmacologia , Curcumina/administração & dosagem , Curcumina/química , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Animais , Ferroptose/efeitos dos fármacos , Humanos , Nanopartículas/química , Camundongos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Solubilidade , Camundongos Endogâmicos BALB C , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Dióxido de Silício/química , Portadores de Fármacos/química , Peroxidação de Lipídeos/efeitos dos fármacos , MasculinoRESUMO
Cell membrane-derived liposomes, termed Memposomes, serve as promising carriers for drug delivery due to their ability to closely mimic cells and efficiently target specific cells. Liposomes derived from cancer cell membranes, in particular, exhibit homologous targeting capabilities, making them potential candidates for cancer-specific drug delivery. However, the underlying mechanisms and specific proteins responsible for this homologous targeting phenomenon remain debated. This study focuses on the role of E-cadherin, a cell adhesion molecule implicated in homophilic adhesion, in influencing the homologous targeting ability of Memposomes derived from cancer cell membranes. E-cadherin expression patterns were assessed in various cell lines, categorizing them into E-cadherin-positive and -negative groups. Memposomes were produced for each group, and their targeting tendencies were evaluated. This study confirmed that E-cadherin expression significantly influenced the homologous targeting ability of the Memposomes. The cell lines with higher E-cadherin expression levels exhibited a more pronounced homologous targeting effect. This research demonstrates that cell adhesion molecules, particularly E-cadherin involved in homophilic adhesion, play a pivotal role in influencing the cell targeting ability of Memposomes. This study further validates the stability, safety, and purity of Memposomes, emphasizing their potential as effective drug delivery vehicles for the development of cell-specific therapies.
Assuntos
Caderinas , Lipossomos , Caderinas/metabolismo , Humanos , Lipossomos/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Membrana Celular/metabolismo , Adesão Celular/efeitos dos fármacos , Antígenos CD/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Moléculas de Adesão Celular/metabolismoRESUMO
OBJECTIVES: Polymyxins are the last-line therapy for top-priority multidrug-resistant (MDR) gram-negative bacteria. However, polymyxin nephrotoxicity impedes its clinical application. This study aimed to design, synthesize, and identify a novel and promising polymyxin derivative with high efficacy and low toxicity. METHODS: To design polymyxin derivatives, we reduced the hydrophobicity of the two hydrophobic domains (fatty acyl chain and D-Phe6-L-Leu7) and modified the positive charged L-2,4-diaminobutyric acid (Dab) residues. Twenty-five derivatives were synthesized, and their antibacterial activities in vitro and renal cytotoxicities were determined. The nephrotoxicity and pharmacokinetic parameters of compound 12 were examined in rats. Antibacterial efficacy in vivo was evaluated using a mouse systemic infection model. Surface plasmon resonance analysis, compound 12-rifampicin combination therapy, and scanning electron microscopy were used to study the mechanism of action of compound 12. RESULTS: This research found a new compound, identified as compound 12, which showed similar or increased antibacterial activity against all tested sensitive and carbapenem-resistant gram-negative bacteria. It exhibited reduced renal cytotoxicity and nephrotoxicity, a favorable pharmacokinetic profile, and maintained or improved antibacterial efficacy in vivo. Importantly, its anti-Pseudomonas aeruginosa activity significantly improved. Compound 12, when combined with rifampicin, enhanced the activity of rifampin against gram-negative bacteria. Compound 12 also showed a high affinity for lipopolysaccharide and disrupted cell membrane integrity. CONCLUSION: Reducing the hydrophobicity of the two domains reduced renal cytotoxicity and nephrotoxicity. Shortening the side chain of Dab3 by one carbon maintained or increased its antibacterial activity both in vitro and in vivo. Furthermore, only the length of the side chain of Dab9 could be shortened by one carbon among the Dab1,5 and Dab8,9 residues. The bactericidal effects of compound 12 were related to the disruption of cell membrane integrity. Compound 12 may be a promising candidate for combating sensitive and carbapenem-resistant gram-negative bacterial infections, especially Pseudomonas aeruginosa.
RESUMO
Currently, traditional monotherapy for cancer often results in indiscriminate attacks on the body, leading to the emergence of new health problems. To confront these challenges, multimodal combination therapy has become necessary. However, how to develop new smart nanomaterials through green synthesis methods, delivering drugs while simultaneously synergizing multimodal combination therapies for tumor treatment, remains a topic of great significance. In this study, a biomimetic composite nanomaterial (RM-Cu/P) composed of mesoporous polydopamine (MPDA) as the core and red blood cell membranes (RBCMs) as the shell was synthesized as a drug carrier to deliver doxorubicin (DOX) while achieving synergistic chemotherapy, photothermal and chemodynamic therapy (CT/PTT/CDT). Herein, the nanoparticles were extensively characterized to examine their morphological characteristics, elemental composition, and drug-carrying capacity. Notably, the coating of RBCM reduced the toxicity of the RM-Cu/P@DOX nanoparticles, improved their targeting ability and prolonged their circulation time in vivo. The Cu-doped nanoparticles were capable of initiating a Fenton-like reaction to generate reactive oxygen species (ROS) for CDT, while the photothermal conversion efficiency (η) reached 45.20â¯% under NIR laser irradiation. Subsequently, the particles were examined by in vivo and in vitro experimental studies in cytotoxicity, cellular uptake, ROS levels, lysosomal escape, and mouse tumor model to evaluate their potential application in antitumor. Compared with monotherapy, the RM-Cu/P@DOX nanoparticles had multiple-stimulation response properties under redox, pH, and NIR, which exhibited the advantage of combined trimodal therapy, resulting in remarkable synergistic antitumor efficacy. In conclusion, this innovative platform exhibited promising applications in smart drug delivery and synergistic treatment of cancer.
RESUMO
Biomembrane coating technologies have been developed to equip synthetic nanomaterials with natural biointerfaces. We report a one-step method for nondestructively coating the biomembranes of "living" cells onto nanoparticle surfaces. By using simple centrifugation, nanoparticles pass through a concentrated layer of living cells. This process mimics exosome release via endocytosis and exocytosis, preserving the membrane integrity of the source cells. The resulting silica nanoparticles were efficiently coated with membrane components from Raw264.7 cells. Nanoflow-liquid chromatography-tandem mass spectrometry confirmed that the proteins composing the membrane originated from the source cells. Additionally, the biomembrane coating suppressed the phagocytosis of silica nanoparticles by Raw264.7 cells while enhancing their uptake by HeLa cells. Our simple and efficient method for living biomembrane coating holds promise for the development of nanoparticles for medical and pharmaceutical applications.
RESUMO
Over the past decade, a marked escalation in the prevalence of hepatic pathologies has been observed, adversely impacting the quality of life for many. The predominant therapeutic strategy for liver diseases has been pharmacological intervention; however, its efficacy is often constrained. Currently, liposomes are tiny structures that can deliver drugs directly to targeted areas, enhancing their effectiveness. Specifically, cell membrane-associated liposomes have gained significant attention. Despite this, there is still much to learn about the binding mechanism of this type of liposome. Thus, this review comprehensively summarizes relevant information on cell membrane-associated liposomes, including their clinical applications and future development directions. First, we will briefly introduce the composition and types of cell membrane-associated liposomes. We will provide an overview of their structure and discuss the various types of liposomes associated with cell membranes. Second, we will thoroughly discuss various strategies of drug delivery using these liposomes. Lastly, we will discuss the application and clinical challenges associated with using cell membrane-associated liposomes in treating liver diseases. We will explore their potential benefits while also addressing the obstacles that need to be overcome. Furthermore, we will provide prospects for future development in this field. In summary, this review underscores the promise of cell membrane-associated liposomes in enhancing liver disease treatment and highlights the need for further research to optimize their utilization. In summary, this review underscores the promise of cell membrane-associated liposomes in enhancing liver disease treatment and highlights the need for further research to optimize their utilization.