Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.829
Filtrar
1.
J Biotechnol ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39260703

RESUMO

Lignin can affect the enzymatic hydrolysis efficiency of lignocellulose. In this study, the lignin isolated from sugarcane bagasse (SCB) pretreated with p-toluenesulfonic acid (PL) was firstly aminated, and then the effects of PL and aminated PL (APL) on the bagasse enzymatic hydrolysis efficiency (EHE) were investigated. The results showed that the addition of PL and APL promoted the EHE, and EHE with APL (73.82%) was higher than PL (51.39%). To explore the reason, the data were further analyzed including cellulase adsorption capacity, enzyme activity, cellulase-lignin interaction, and molecular docking. It was found that APL adsorbed more cellulase (27.83mg protein/g lignin) than PL (4.96mg protein/g lignin), resulting from the greater interaction force and lower binding free energy between APL and cellulase. The addition of APL more remarkably enhanced the cellobiohydrolase and endoglucanase activities than PL due to more effectively inducing cellulase conformation optimization.

2.
J Agric Food Chem ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261294

RESUMO

Zn(II)2Cys6 proteins constitute the largest group of fungal-specific transcription factors. However, little is known about their functions in the crop killer Botrytis cinerea. In this work, a T-DNA insertion strain M13448 was identified which was inserted into the Zn(II)2Cys6 TF-encoding gene BcTBS1. Knockout of BcTBS1 did not affect mycelia growth, appressorium formation, and sclerotium germination, but impaired fungal conidiation, conidial morphogenesis, conidial germination, infection cushion development, and sclerotial formation. Accordingly, ΔBctbs1 mutants showed reduced virulence in its host plants. Further study proved that BcTBS1, BCIN_15g03870, and BCIN_12g06630 were induced by cellulose. Subsequent cellulase activity assays revealed that the loss of BcTBS1 significantly decreased cellulase activity. In addition, we verified that the BCIN_15g03870 and BCIN_12g06630 genes were positive regulated by BcTBS1 by quantitative real-time reverse-transcription-polymerase chain reaction (qRT-PCR). Taken together, these results suggested that BcTBS1 can promote pathogenicity by modulating cellulase-encoding genes that participate in host cellulose degradation.

3.
Bioresour Technol ; 412: 131402, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39218367

RESUMO

Sophorose is the most effective inducer for cellulase production by Trichoderma reesei. Currently, the biosynthesis of sophorose is very inefficient, resulting in that unavailable for cellulase production in industry. In this study, CoGH1A, a multifunctional thermophilic glycoside hydrolase, was employed for sophorose production. Under the optimized conditions, the sophorose yield was 37.86 g/L with a productivity of 9.47 g/L/h which is by far the highest productivity. Meanwhile, the Fe3O4-CS-THP-CoGH1A nanoparticles were constructed to realize the recycling of CoGH1A. After 5 cycles of catalysis, Fe3O4-CS-THP-CoGH1A retained about 83.90 % enzyme activity. Finally, the mixtures of glucose and disaccharides (MGDC) obtained after being catalyzed by CoGH1A was used for cellulase production. As a result, the cellulase productivity achieved 188.38 FPU/L/h in 120 h. These results indicated that sophorose could be efficiently produced from glucose via transglycosylation by CoGH1A, making it possible to be industrially used as the inducer to improving the cellulase productivity.

4.
Int J Biol Macromol ; : 135474, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39251003

RESUMO

The cost of enzymolysis is a major bottleneck for the industrialisation of lignocellulosic enzymatic hydrolysis technology, and recycling cellulase can reduce this cost. Herein, a sulfobetaine prepolymer (CPS) with terminal chlorine was grafted onto enzymatic hydrolysis residual lignin (EHL) from corncob to construct thermosensitive lignin-based "molecular glues" (lignin-based sulfobetaine polymers, L-CPS) that were used to recover and recycle cellulase. L-CPS2 (1.0 g/L) was added to the corncob residue (CCR) enzymolysis system (50 °C, pH 4.5). After hydrolysis, L-CPS2 co-precipitated with cellulase through hydrophobic binding when cooling to 25 °C. This co-precipitation decreased the amount of cellulase by 40 %. In summary, a thermally responsive lignin-based molecular glue was constructed for green recycling of cellulase, providing a new approach to decreasing the cost of lignocellulosic enzymolysis and high value utilisation of industrial lignin.

5.
Carbohydr Polym ; 344: 122529, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39218551

RESUMO

The mechanical pulp industry is diversifying through the manufacture of high-value paper products, such as microfibrillated cellulose. However, the development of fibre quality is still energy-intensive. Enzymatic hydrolysis is hypothesized to promote fibre cutting, greater fibrillation, and reduce refining energy costs. Despite potential benefits, there is little understanding of the mechanisms behind fibre development during enzymatic hydrolysis of mechanical pulp. This work investigates how incubation pH and temperature during enzymatic hydrolysis impact the refining of mechanical pulp short fibres. Incubation with endoglucanase at pH 5 and 60 °C increased fibre cutting by approximately 20 %. Fibrillation was negatively affected at this condition, resulting in increased slim fines formation with refining. Incubation at pH 8 and 80 °C promoted >15 % reduction in fibre length, despite such conditions being associated with low enzyme activity. The pH variation modified the sedimentation height of the fibres and the conductivity of suspensions, indicating a change in fibre surface charge. Fibre morphology changes were induced by enzyme hydrolysis conducted at conditions representative of the full range of pH and temperature observed in mechanical pulp mills.


Assuntos
Celulase , Celulose , Temperatura , Hidrólise , Celulase/metabolismo , Concentração de Íons de Hidrogênio , Celulose/química , Celulose/metabolismo , Papel
6.
Bioresour Technol ; 413: 131431, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39241812

RESUMO

Fungi play a crucial role in straw composting due to the synergistic degradation effects of their secreted lignocellulose hydrolases. An efficient straw-composting system relies on thermophilic fungi and their lignocellulose hydrolases. Thermomyces lanuginosus, a typical thermophilic fungus in compost, lacks cellulase genes. A versatile Thermomyces strain capable of degrading cellulose, T. lanuginosus M85, which grows at 67 °C, was developed and transformed using the AgCMCase of Aspergillus glaucus. The R6 transformant exhibited high-level expression of the AgCMCase. Significant quantities of active cellulase produced by R6 were detected in the cellulose fermentation broth, peaking within 6-8 days. Compost analysis indicated that R6 increased the internal compost temperatures and prolonged high-temperature durations. Correspondingly, more reducing sugars and humus were released, which could promote plants growth. In summary, a cellulase-producing strain of T. lanuginosus capable of efficiently converting straws into organic fertilizers was engineered. This innovation holds considerable promise for sustainable and circular agricultural practices.

7.
Bioresour Technol ; 413: 131452, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39245065

RESUMO

As the most abundant renewable carbon source, lignocellulose holds potential as a raw material for biofuels and biochar. The components required for biofuel production differ from those for biochar, so combining processes can reduce costs. Biofuel preparation necessitates cellulase treatment of lignocellulose. This study examines the effects of various enzyme treatment conditions (dosage, time, temperature) on lignocellulose, focusing on the properties of biochar derived from it (BC-SR). A mathematical model was constructed to study the relationship between enzyme treatment conditions and BC-SR properties. BC-SR exhibited high adsorption selectivity for bisphenol A and outperformed untreated biochar in fixed-bed column experiments, demonstrating greater removal efficiency and structural integrity. This study provides insights into the impact of enzymatic treatment on biochar and offers a cost-effective method for producing stable, efficient biochar. Additionally, a highly persistent biochar can enter the carbon trading market as a carbon-neutral technology, further realizing economic and environmental benefits.

8.
Int J Biol Macromol ; 278(Pt 1): 134469, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39102911

RESUMO

In this study, pectin extracted from pomelo peel was investigated using three different combination methods of pulsed electric field (PEF) and cellulase. Three action sequences were performed, including PEF treatment followed by enzymatic hydrolysis, enzymatic hydrolysis followed by PEF treatment, and enzymatic hydrolysis simultaneously treated by PEF. The three corresponding pectins were namely PEP, EPP and SP. The physiochemical, molecular structural and functional properties of the three pectins were determined. The results showed that PEP had excellent physiochemical properties, with the highest yield (12.08 %), total sugar (80.17 %) and total phenol content (38.20 %). The monosaccharide composition and FT-IR analysis indicated that the three pectins were similar. The molecular weights of PEP, EPP and SP were 51.13, 88.51 and 40.00 kDa, respectively. PEP showed the best gel properties, emulsification stability and antioxidant capacity among the three products, due to its high galacturonic acid and total phenol content, appropriate protein and low molecular weight. The mechanism of PEF-assisted cellulase hydrolysis of pomelo peel was also revealed by SEM analysis. These results suggested that PEF pretreatment was the best method, which not only improved the efficiency of enzymatic extraction, but also reduced resource waste and increased financial benefits.

9.
Food Res Int ; 193: 114847, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39160052

RESUMO

Rice bran is abundant in dietary fiber and is often referred to as the seventh nutrient, recognized for its numerous health benefits. The objective of the current study is to investigate the extraction of both soluble and insoluble dietary fiber from defatted rice bran (DRB) using an alkali-enzymatic treatment through response surface methodology. The independent variables like substrate percentage (5-30 %), enzyme concentration (1-50 µL/g), and treatment time (2-12 h) and dependent variables were the yield of soluble and insoluble DF. The highest extraction yield was observed with alkali enzyme concentration (50 µL/g) treatment, resulting in 2 % SDF and 59.5 % IDF at 24 h of extraction. The results indicate that cellulase-AC enzyme aids in the hydrolysis of higher polysaccharides, leading to structural alterations in DRB and an increase in DF yield. Furthermore, the disruption of intra-molecular hydrogen bonding between oligosaccharides and the starch matrix helps to increase in DF yield, was also confirmed through FTIR and SEM. The extracted DF soluble and insoluble was then used to develop rice porridge. Sensory evaluation using fuzzy logic analysis reported the highest scores for samples containing 0.5 % insoluble DF and 1.25 % soluble DF.


Assuntos
Álcalis , Fibras na Dieta , Oryza , Oryza/química , Fibras na Dieta/análise , Álcalis/química , Solubilidade , Hidrólise , Espectroscopia de Infravermelho com Transformada de Fourier , Celulase/metabolismo , Celulase/química , Manipulação de Alimentos/métodos , Cristalização
10.
J Biosci Bioeng ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39168730

RESUMO

The production of cellulolytic enzymes in response to inducible carbon sources is mainly regulated at the transcriptional level in filamentous fungi. We have identified a cellobiose-response regulator (ClbR) controlling the expression of cellulolytic enzyme-encoding genes in Aspergillus aculeatus. However, the engineering potential of combining the deletion of transcriptional repressors with the overexpression of transcriptional activators to enhance enzyme production has not been analyzed. Here, we investigated the effect of the deletion of the transcriptional repressor creA and the overexpression of the transcriptional activator clbR in enzyme production in A. aculeatus. Here, we verified that a combination of creA deletion and clbR overexpression (Δc&OE) improved cellulase, ß-1,4-xylanase, and ß-glucosidase production. Cellulase and ß-1,4-xylanase production increased 3.4- and 8.0-fold in Δc&OE compared with the host strain (MR12) at 96-h incubation, respectively. ß-Glucosidase production in ΔcreA and Δc&OE increased approximately 5.0-fold compared with that in MR12 at 240-h incubation. Transcriptional analysis revealed that the increase in enzyme production was due to increased expression of cellobiohydrolase, endo-ß-1,4-glucanase, ß-1,4-xylanase, and ß-glucosidase 1 (bgl1). Interestingly, bgl1 expression in ΔcreA increased in a dose-dependent manner in response to glucose. Thus, combinational manipulation of transcription factors improved cellulase, xylanase, and ß-glucosidase production in A. aculeatus.

11.
Protein Expr Purif ; 225: 106594, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39197672

RESUMO

Cryptococcus gattii and its medical implications have been extensively studied. There is, however, a significant knowledge gap regarding cryptococcal survival in its environmental niche, namely woody material, which is glaring given that infection is linked to environmental populations. A gene from C. gattii (WM276), the predominant global molecular type (VGI), has been sequenced and annotated as a putative cellulase. It is therefore, of both medical and industrial intertest to delineate the structure and function of this enzyme. A homology model of the enzyme was constructed as a fusion protein to a maltose binding protein (MBP). The CGB_E4160W gene was overexpressed as an MBP fusion enzyme in Escherichia coli T7 cells and purified to homogeneity using amylose affinity chromatography. The structural and functional character of the enzyme was investigated using fluorescence spectroscopy and enzyme activity assays, respectively. The optimal enzyme pH and temperature were found to be 6.0 and 50 °C, respectively, with an optimal salt concentration of 500 mM. Secondary structure analysis using Far-UV CD reveals that the MBP fusion protein is primarily α-helical with some ß-sheets. Intrinsic tryptophan fluorescence illustrates that the MBP-cellulase undergoes a conformational change in the presence of its substrate, CMC-Na+. The thermotolerant and halotolerant nature of this particular cellulase, makes it useful for industrial applications, and adds to our understanding of the pathogen's environmental physiology.

12.
FEBS J ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190632

RESUMO

Because of the association with other complex polysaccharides, extracting and utilizing cellulose from lignocellulosic materials requires the combined action of a broad range of carbohydrate-active enzymes, including multiple glycoside hydrolases (GHs) and lytic polysaccharide monooxygenases (LPMOs). The interplay between these enzymes and the way in which Nature orchestrates their co-existence and combined action are topics of great scientific and industrial interest. To gain more insight into these issues, we have studied the lignocellulose-degrading abilities of an enzyme from Caldibacillus cellulovorans (CcLPMO10-Man5), comprising an LPMO domain, a GH5 mannanase domain and two family 3 carbohydrate-binding modules (CBM3). Using a natural softwood substrate, we show that this enzyme promotes cellulase activity, i.e., saccharification of cellulose, both by removing mannan covering the cellulose and by oxidatively breaking up the cellulose structure. Synergy with CcLPMO10-Man5 was most pronounced for two tested cellobiohydrolases, whereas effects were smaller for a tested endoglucanase, which is in line with the notion that cellobiohydrolases and LPMOs attack the same crystalline regions of the cellulose, whereas endoglucanases attack semi-crystalline and amorphous regions. Importantly, the LPMO domain of CcLPMO10-Man5 is incapable of accessing the softwood cellulose in absence of the mannanase domain. Considering that LPMOs not bound to a substrate are sensitive to autocatalytic inactivation, this intramolecular synergy provides a perfect rationale for the evolution of modular enzymes such as CcLPMO10-Man5. The intramolecular coupling of the LPMO with a mannanase and two CBMs ensures that the LPMO is directed to areas where mannans are removed and cellulose thus becomes available.

13.
Enzyme Microb Technol ; 180: 110503, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39208708

RESUMO

The scarcity of cellulases with low ß-glucosidase activity poses a significant technological challenge in precisely controlling the partial hydrolysis of lignocellulose to cellobiose, crucial for producing high-value chemicals such as starch, inositol, and NMN. Trichoderma reesei is a primary strain in cellulase production. Therefore, this study targeted the critical ß-glucosidase gene, Trbgl1, resulting in over an 86 % reduction in ß-glucosidase activity. However, cellulase production decreased by 19.2 % and 20.3 % with lactose or cellulose inducers, respectively. Notably, transcript levels of cellulase genes and overall yield remained unaffected with an inducer containing sophorose. This indicates that ß-glucosidase BGL1 converts lactose or cellulose to sophorose through transglycosylation activity, inducing cellulase gene transcription. The resulting enzyme cocktail, comprising recombinant cellulase and cellobiose phosphorylase, was applied for corn stover hydrolysis, resulting in a 24.3 % increase in glucose-1-phosphate yield. These findings provide valuable insights into obtaining enzymes suitable for the high-value utilization of lignocellulose.

14.
Anim Biosci ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39210794

RESUMO

Objective: This study aimed to assess the impact of corn straw-based unfermented and fermented total mixed rations (TMR) supplemented with exogenous cellulase on the in vitro fermentation characteristics, growth performance, feeding behavior, apparent digestibility, rumen fermentation and digestive enzyme activities of Chinese Simmental bulls. Methods: Unfermented (direct spraying of exogenous cellulase onto TMR, TMR) and fermented (exogenous cellulase fermentation for more than 7 d, fermented total mixed rations [FTMR]) TMR were collected, dried, powdered and used as fermentation substrates. The fermentation liquid was ruminal fluid collected from Chinese Simmental bulls. The artificial rumen culture fluid were continuously cultured in vitro for 48 h. Based on the diets they were fed, 24 healthy Chinese Simmental bulls (average weight of 495.93 ±10.89 kg) were randomly divided into two groups, with 12 bulls in each group, which were fed TMR or FTMR. The study lasted 56 d. Results: In in vitro experiments, the neutral detergent fiber degradability and total volatile fatty acid, propionate, iso-butyrate, iso-valerate and valerate concentrations were greater in the FTMR group (p<0.05) than in the TMR group. However, the methane production, pH and A/P of the FTMR group tended to be lower (p<0.05) than those of the TMR group. In the in vivo experiments, the average daily gain, eating rate, and feed efficiency of the FTMR groups were greater (p<0.05) than those of the TMR group. Similarly, the NDF degradability of the FTMR group was greater (p<0.05) than that of the TMR group. Compared to those in the TMR group, the concentrations of total volatile fatty acids, iso-butyrate, propionate and butyrate were greater in the FTMR group (p<0.05), and the A/P ratio was lower (p<0.05). Similarly, cellulase, xylanase, and ß-glucosidase activities were greater (p<0.05) in the FTMR group than in the TMR group. Conclusion: Corn straw-based fermented total mixed rations supplemented with exogenous cellulase play a vital role in decreasing the structural carbohydrate content of TMR and ruminal methane production in vitro, improving nutrient digestion and absorption, optimizing rumen fermentation, and improving the growth performance of beef cattle.

15.
Int J Biol Macromol ; 277(Pt 4): 134539, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39122065

RESUMO

Cellulases have been widely used in many fields such as animal feed, textile, food, lignocellulose bioconversion, etc. Efficient and low-cost production of cellulases is very important for its industrial application, especially in bioconversion of lignocellulosic biomass. Filamentous fungi are currently widely used in industrial cellulase production due to their ability to secrete large amounts of active free cellulases extracellularly. This review comprehensively summarized the research progress on cellulases from filamentous fungi in recent years, including filamentous fungi used for cellulase production and its modification strategies, enzyme compositions, characterization methods and application of fungal cellulase systems, and the production of fungal cellulase includes production processes, factors affecting cellulase production such as inducers, fermentation medium, process parameters and their control strategies. Also, the future perspectives and research topics in fungal cellulase production are presented in the end of the review. The review helps to deepen the understanding of the current status of fungal cellulases, thereby promoting the production technology progress and industrial application of filamentous fungal cellulase.


Assuntos
Celulase , Fermentação , Fungos , Celulase/biossíntese , Celulase/metabolismo , Fungos/enzimologia , Celulases/metabolismo , Celulases/biossíntese , Biomassa , Lignina
16.
Int J Biol Macromol ; 277(Pt 4): 134612, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39127268

RESUMO

In this study, a cellulase-responsive controlled-release formulation (FPR-HMS-HPC) was developed by grafting hydroxypropyl cellulose (HPC) onto fipronil (FPR) loaded hollow mesoporous silica (HMS) nanoparticles via ester linkage. The FPR-HMS-HPC formulation was characterized using scanning and transmission electron microscopies, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The results indicated that FPR-HMS-HPC exhibited a high loading capacity of 10.0 % (w/w) and demonstrated favorable responsiveness to cellulase enzyme. Moreover, its insecticidal efficacy against Reticulitermes flaviceps surpassed that of an equivalent dose of FPR. Toxicology studies showed that the mortality and hatching rates of zebrafish exposed to FPR-HMS-HPC nanoparticles were reduced by >6.5 and 8.0 times, respectively. Thus, HPC-anchored HMS nanoparticles as insecticide delivery systems present a sustainable method for pest control significantly reducing harm to non-target organisms and the environment.


Assuntos
Celulase , Celulose , Portadores de Fármacos , Nanopartículas , Dióxido de Silício , Celulose/análogos & derivados , Celulose/química , Dióxido de Silício/química , Animais , Porosidade , Nanopartículas/química , Celulase/química , Celulase/metabolismo , Portadores de Fármacos/química , Peixe-Zebra , Praguicidas/química , Praguicidas/farmacologia , Inseticidas/química , Inseticidas/farmacologia , Pirazóis/química , Pirazóis/farmacologia
17.
Polymers (Basel) ; 16(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39065354

RESUMO

Cellulases are one of the most essential natural factors for cellulose degradation and, thus, have attracted significant interest for various applications. In this study, a cellulase from Paenibacillus elgii TKU051 was produced, purified, and characterized. The ideal fermentation conditions for cellulase productivity were 2% carboxymethyl cellulose (CMC) as the growth substrate, pH = 8, temperature of 31 °C, and 4 days of culturing. Accordingly, a 45 kDa cellulase (PeCel) was successfully purified in a single step using a High Q column with a recovery yield of 35% and purification of 42.2-fold. PeCel has an optimal activity at pH 6 and a temperature of 60 °C. The activity of cellulase was significantly inhibited by Cu2+ and enhanced by Mn2+. The PeCel-catalyzed products of the CMC hydrolysis were analyzed by high-performance liquid chromatography, which revealed chitobiose and chitotriose as the major products. Finally, the clarity of apple juice was enhanced when treated with PeCel.

18.
Front Bioeng Biotechnol ; 12: 1419723, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055343

RESUMO

Enzymatic saccharification is used to convert polysaccharides in lignocellulosic biomass to sugars which are then converted to ethanol or other bio-based fermentation products. The efficacy of commercial cellulase preparations can potentially increase if lytic polysaccharide monooxygenase (LPMO) is included. However, as LPMO requires both a reductant and an oxidant, such as molecular oxygen, a reevaluation of process configurations and conditions is warranted. Saccharification and fermentation of pretreated softwood was investigated in demonstration-scale experiments with 10 m3 bioreactors using an LPMO-containing cellulase preparation, a xylose-utilizing yeast, and either simultaneous saccharification and fermentation (SSF) or hybrid hydrolysis and fermentation (HHF) with a 24-hour or 48-hour initial phase and with 0.15 vvm aeration before addition of the yeast. The conditions used for HHF, especially with 48 h initial phase, resulted in better glucan conversion, but in poorer ethanol productivity and in poorer initial ethanol yield on consumed sugars than the SSF. In the SSF, hexose sugars such as glucose and mannose were consumed faster than xylose, but, in the end of the fermentation >90% of the xylose had been consumed. Chemical analysis of inhibitory pretreatment by-products indicated that the concentrations of heteroaromatic aldehydes (such as furfural), aromatic aldehydes, and an aromatic ketone decreased as a consequence of the aeration. This was attributed mainly to evaporation caused by the gas flow. The results indicate that further research is needed to fully exploit the advantages of LPMO without compromising fermentation conditions.

19.
Int J Biol Macromol ; 275(Pt 2): 133168, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38950801

RESUMO

Softness is a crucial criterion in assessing the comfort and usability of tissue paper. Flexible fibers contribute to the softness of the tissue paper by allowing the sheets to conform to the contours of the skin without feeling rough or abrasive. This study focuses on developing innovative CGG/APAM/PDA hydrogels with interpenetrating networks consisting of cationic guar gum, anionic polyacrylamide, and polydopamine for cellulase immobilization, aimed at improving bamboo fiber flexibility. Cellulase biomolecules are efficiently immobilized on CGG/APAM/PDA hydrogels through the Schiff base reaction. Immobilized cellulases have a wider pH applicability than free cellulases, good storage stability, and can maintain high relative activity at relatively high temperatures. The treatment of bamboo fibers with immobilized cellulase results in a significant increase in flexibility, reaching 6.90 × 1014 N·m2, which is 7.18 times higher than that of untreated fibers. The immobilization of cellulases using CGG/APAM/PDA hydrogels as carriers results in a substantial enhancement of storage stability, pH applicability, and inter-fiber bonding strength, as well as the capacity to sustain high relative enzymatic activity at elevated temperatures. The immobilization of cellulase within CGG/APAM/PDA interpenetrating network hydrogels presents a viable strategy for enhancing bamboo fiber flexibility, thereby expanding the accessibility of tissue products.


Assuntos
Resinas Acrílicas , Celulase , Enzimas Imobilizadas , Galactanos , Hidrogéis , Indóis , Mananas , Gomas Vegetais , Polímeros , Gomas Vegetais/química , Hidrogéis/química , Resinas Acrílicas/química , Celulase/química , Celulase/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Indóis/química , Polímeros/química , Galactanos/química , Mananas/química , Concentração de Íons de Hidrogênio , Temperatura , Sasa/química
20.
Carbohydr Res ; 543: 109208, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39013334

RESUMO

Enzyme immobilization has emerged as a prodigious strategy in the enzymatic hydrolysis of lignocellulosic biomass (LCB) promising enhanced efficacy and stability of the enzymes. Further, enzyme immobilization on magnetic nanoparticles (MNPs) facilitates the easy recovery and reuse of biocatalysts. This results in the development of a nanobiocatalytic system, that serves as an eco-friendly and inexpensive LCB deconstruction approach. This review provides an overview of nanomaterials used for immobilization with special emphasis on the nanomaterial-enzyme interactions and strategies of immobilization. After the succinct outline of the immobilization procedures and supporting materials, a comprehensive assessment of the catalysis enabled by nanomaterial-immobilized biocatalysts for the conversion and degradation of lignocellulosic biomasses is provided by gathering state-of-the-art examples. The challenges and future directions associated with this technique providing a potential solution in the present article. Insight on the recent advancements in the process of nanomaterial-based immobilization for the hydrolysis of lignocellulosic biomass has also been highlighted in the article.


Assuntos
Biomassa , Enzimas Imobilizadas , Lignina , Nanoestruturas , Lignina/química , Lignina/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Hidrólise , Nanoestruturas/química , Biocatálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...