Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.426
Filtrar
1.
Front Immunol ; 15: 1432651, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086492

RESUMO

Mucosa-associated invariant T (MAIT) cells are a subset of innate-like non-conventional T cells characterized by multifunctionality. In addition to their well-recognized antimicrobial activity, increasing attention is being drawn towards their roles in tissue homeostasis and repair. However, the precise mechanisms underlying these functions remain incompletely understood and are still subject to ongoing exploration. Currently, it appears that the tissue localization of MAIT cells and the nature of the diseases or stimuli, whether acute or chronic, may induce a dynamic interplay between their pro-inflammatory and anti-inflammatory, or pathogenic and reparative functions. Therefore, elucidating the conditions and mechanisms of MAIT cells' reparative functions is crucial for fully maximizing their protective effects and advancing future MAIT-related therapies. In this review, we will comprehensively discuss the establishment and potential mechanisms of their tissue repair functions as well as the translational application prospects and current challenges in this field.


Assuntos
Células T Invariantes Associadas à Mucosa , Humanos , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Animais , Cicatrização/imunologia , Homeostase/imunologia , Regeneração/imunologia
2.
Bioessays ; : e2400055, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093597

RESUMO

In textbook illustrations of migrating cells, actomyosin contractility is typically depicted as the contraction force necessary for cell body retraction. This dogma has been transformed by the molecular clutch model, which acknowledges that actomyosin traction forces also generate and transmit biomechanical signals at the leading edge, enabling cells to sense and shape their migratory path in mechanically complex environments. To fulfill these complementary functions, the actomyosin system assembles a gradient of contractile energy along the front-rear axis of migratory cells. Here, we highlight the hierarchic assembly and self-regulatory network structure of the actomyosin system and explain how the kinetics of different nonmuscle myosin II (NM II) paralogs synergize during contractile force generation. Our aim is to emphasize how protrusion formation, cell adhesion, contraction, and retraction are spatiotemporally integrated during different modes of migration, including chemotaxis and durotaxis. Finally, we hypothesize how different NM II paralogs might tune aspects of migration in vivo, highlighting future research directions.

3.
Environ Pollut ; 360: 124674, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111532

RESUMO

As the most abundant pollinator insect in crops, Apis mellifera is a sentinel species of the pollinator communities. In these ecosystems, honey bees of different ages and developmental stages are exposed to diverse agrochemicals. However, most toxicological studies analyse the immediate effects during exposure. Late effects during adulthood after early exposure to pollutants during larval development are poorly studied in bees. The herbicide glyphosate (GLY) is the most applied pesticide worldwide. GLY has been detected in honey and beebread from hives near treated crops. Alterations in growth, morphogenesis or organogenesis during pre-imaginal development could induce late adverse effects after the emergence. Previous studies have demonstrated that GLY alters honey bee development, immediately affecting survival, growth and metabolism, followed by late teratogenic effects. The present study aims to determine the late impact on the behaviour and physiology of adult bees after pre-imaginal exposure to GLY. For that, we reared brood in vitro or in the hive with sub-chronic exposure to the herbicide with the average detected concentration in hives. Then, all newly emerged bees were reared in an incubator until maturity and tested when they became nurse-aged bees. Three behavioural responses were assessed as markers of cognitive and physiological impairment. Our results show i) decreased sensitivity to sucrose regardless of the rearing procedure, ii) increased choice latency and locomotor alterations during chemotaxis and iii) impaired associative learning. These late toxicity signs could indicate adverse effects on task performance and colony efficiency.

4.
Am J Cancer Res ; 14(7): 3600-3613, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113854

RESUMO

Intricate signaling cascades involving chemokines and their cognate receptors on neoplastic and immune constituents within tumor microenvironment have garnered substantial research interest. Our investigation delineates the contribution of Chemokine (C-C motif) ligand 16 (CCL16) to the clinico-pathological features and tumorigenesis of hepatocellular carcinoma (HCC). Analysis of 237 pairs of HCC specimens unraveled a significant association between CCL16 expression and vascular invasion, early-stage clinicopathological features, and diminished recurrence-free survival among HCC patients. Immunohistochemical (IHC) assays of the clinical HCC specimens indicated elevated CCL16 in tumorous versus normal hepatic tissues. Our in vivo experiments demonstrated CCL16 overexpression fostered tumor proliferation, whereas in vitro assays elucidated that CCL16-mediated chemotactic recruitment of monocytes and M2 macrophages was orchestrated via CCR1 and CCR5. In contrast to previous claims that CCL16 is physiologically irrelevant and has minimal affinity for its receptors (CCR1, CCR2, CCR5, CCR8), our findings unravel that inhibition of CCL16/CCR1 and CCL16/CCR5 interactions through receptor-specific antagonists markedly impeded CCL16-directed chemotaxis, migration, adhesion, and leukocyte recruitment. Moreover, CCL16-overexpression in HCCs significantly augmented levels of several cytokines implicated in tumor progression, namely IL-6, IL-10 and VEGFA. IHC analysis of CCL16-overexpressing xenografts elicited greatly enhanced levels of VEGFA and IL-6, while assessments of HCC specimens confirmed a positive correlation between CCL16 expression and IL-6 and VEGFA levels. Collectively, our study highlights oncogenic role of CCL16 in hepatocarcinogenesis and provides a foundational basis for novel therapeutic interventions targeting the CCL16/CCR1/CCR5 axis.

5.
J Leukoc Biol ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107254

RESUMO

During recovery from septic shock, circulating mitochondrial N-formyl peptides (mtFPs) predispose to secondary infection by occupying formyl peptide receptor 1 (FPR1) on the neutrophil (polymorphonuclear leukocyte, PMN) membrane, suppressing cytosolic calcium ([Ca2+]i)-dependent responses to secondarily encountered bacteria. However, no study has yet investigated therapeutic clearance of circulating mtFPs in clinical settings. Thus, we studied how to remove mtFPs from septic-shock plasma and whether such removal could preserve cell-surface FPR1 and restore sepsis-induced PMN dysfunction by normalizing [Ca2+]i flux. In in vitro model systems, mtFP removal rescued PMN FPR1-mediated [Ca2+]i flux and chemotaxis that had been suppressed by prior mtFP exposure. However, PMN functional recovery occurred in a stepwise fashion over 30 - 90 minutes. Intracellular Ca2+-calmodulin appears to contribute to this delay. In ex vivo model systems using blood samples obtained from patients with septic shock, anti-mtFP antibodies alone failed to eliminate mtFPs from septic-shock plasma or inhibit mtFP activity. We therefore created a beads-based anti-mtFP antibody cocktail (bb-AMfpA) by combining protein A/sepharose with antibodies specific for the most potent human mtFP chemoattractants. The bb-AMfpA treatment successfully removed those active mtFPs from septic-shock plasma. Furthermore, the bb-AMfpA treatment significantly restored chemotactic and bactericidal dysfunction of PMNs obtained from patients with septic shock who developed secondary infections. By clearing circulating mtFPs, the immobilized anti-mtFP antibody therapy prevented mtFP interactions with surface FPR1, thereby restoring [Ca2+]i-dependent PMN antimicrobial function in clinical septic-shock environments. This approach may help prevent the development of secondary, nosocomial infections in patients recovering from septic shock.

6.
bioRxiv ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39091774

RESUMO

Lymph nodes (LNs) are common sites of metastatic invasion in breast cancer, often preceding spread to distant organs and serving as key indicators of clinical disease progression. However, the mechanisms of cancer cell invasion into LNs are not well understood. Existing in vivo models struggle to isolate the specific impacts of the tumor-draining lymph node (TDLN) milieu on cancer cell invasion due to the co-evolving relationship between TDLNs and the upstream tumor. To address these limitations, we used live ex vivo LN tissue slices with intact chemotactic function to model cancer cell spread within a spatially organized microenvironment. After showing that BRPKp110 breast cancer cells were chemoattracted to factors secreted by naïve LN tissue in a 3D migration assay, we demonstrated that ex vivo LN slices could support cancer cell seeding, invasion, and spread. This novel approach revealed dynamic, preferential cancer cell invasion within specific anatomical regions of LNs, particularly the subcapsular sinus (SCS) and cortex, as well as chemokine-rich domains of immobilized CXCL13 and CCL1. While CXCR5 was necessary for a portion of BRPKp110 invasion into naïve LNs, disruption of CXCR5/CXCL13 signaling alone was insufficient to prevent invasion towards CXCL13-rich domains. Finally, we extended this system to pre-metastatic TDLNs, where the ex vivo model predicted a lower invasion of cancer cells. The reduced invasion was not due to diminished chemokine secretion, but it correlated with elevated intranodal IL-21. In summary, this innovative ex vivo model of cancer cell spread in live LN slices provides a platform to investigate cancer invasion within the intricate tissue microenvironment, supporting time-course analysis and parallel read-outs. We anticipate that this system will enable further research into cancer-immune interactions and allow isolation of specific factors that make TDLNs resistant to cancer cell invasion, which are challenging to dissect in vivo.

7.
bioRxiv ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39091725

RESUMO

The experimental challenges posed by integral membrane proteins hinder molecular understanding of transmembrane signaling mechanisms. Here, we exploited protein crosslinking assays in living cells to follow conformational and dynamic stimulus signals in Tsr, the Escherichia coli serine chemoreceptor. Tsr mediates serine chemotaxis by integrating transmembrane serine-binding inputs with adaptational modifications of a methylation helix bundle to regulate a signaling kinase at the cytoplasmic tip of the receptor molecule. We created a series of cysteine replacements at Tsr residues adjacent to hydrophobic packing faces of the bundle helices and crosslinked them with a cell-permeable, bifunctional thiol-reagent. We identified an extensively crosslinked dynamic junction midway through the methylation helix bundle that seemed uniquely poised to respond to serine signals. We explored its role in mediating signaling shifts between different packing arrangements of the bundle helices by measuring crosslinking in receptor molecules with apposed pairs of cysteine reporters in each subunit and assessing their signaling behaviors with an in vivo kinase assay. In the absence of serine, the bundle helices evinced compact kinase-ON packing arrangements; in the presence of serine, the dynamic junction destabilized adjacent bundle segments and shifted the bundle to an expanded, less stable kinase-OFF helix-packing arrangement. An AlphaFold 3 model of kinase-active Tsr showed a prominent bulge and kink at the dynamic junction that might antagonize stable structure at the receptor tip. Serine stimuli probably inhibit kinase activity by shifting the bundle to a less stably-packed conformation that relaxes structural strain at the receptor tip, thereby freezing kinase activity.

8.
Plants (Basel) ; 13(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39124181

RESUMO

Ericameria nauseosa (Pall. ex Pursh) G.L. Nesom & G.I. Baird) is used in traditional medicine to treat various diseases; however, little is known about the immunomodulatory activity of essential oil from this plant. Thus, we isolated essential oil from the aerial parts of E. nauseosa and evaluated their chemical composition and biological activity. Compositional analysis of E. nauseosa essential oil revealed that the main (>2%) components were γ-decalactone (13.3%), cryptone (9.4%), terpinen-4-ol (9.3%), (E)-methyl cinnamate (6.0%), T-cadinol (4.7%), spathulenol (3.6%), 8Z-2,3-dihydromatricaria ester (3.1%), ß-phellandrene (3.0%), p-cymen-8-ol (2.2%), 3-ethoxy-2-cycloocten-1-one (2.2%), and trans-p-menth-2-en-1-ol (2.1%). Distinctive features were the lactones (up to 15%) and polyacetylenes (up to 3.1%), including (2Z,8Z)-matricaria ester and 8Z-2,3-dihydromatricaria ester. A comparison with other reported E. nauseosa essential oil samples showed that our samples were distinct from those collected in other areas of the country; however, they did have the most similarity to one sample collected in North Central Utah. Pharmacological studies showed that E. nauseosa essential oil activated human neutrophil Ca2+ influx, which desensitized these cells to subsequent agonist-induced functional responses. Based on our previously reported data that nerolidol, ß-pinene, spathulenol, sabinene, and γ-terpinene were active in human neutrophils, these compounds are the most likely constituents contributing to this immunomodulatory activity. However, the relatively high amount of polyacetylenes may also contribute, as these compounds have been characterized as potent immunomodulators.

9.
ACS Nano ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137334

RESUMO

A long-standing goal in colloidal active matter is to understand how gradients in fuel concentration influence the motion of phoretic Janus particles. Here, we present a theoretical description of the motion of a spherical phoretic Janus particle in the presence of a radial gradient of the chemical solute driving self-propulsion. Radial gradients are a geometry relevant to many scenarios in active matter systems and naturally arise due to the presence of a point source or sink of fuel. We derive an analytical solution for the Janus particle's velocity and quantify the influence of the radial concentration gradient on the particle's trajectory. Compared to a phoretic Janus particle in a linear gradient in fuel concentration, we uncover a much richer set of dynamic behaviors including circular orbits and trapped stationary states. We identify the ratio of the phoretic mobilities between the two domains of the Janus particle as a central quantity in tuning their dynamics. Our results provide a path for developing optimum protocols for tuning the dynamics of phoretic Janus particles and mixing fluid at the microscale. In addition, this work suggests a method for quantifying the surface properties of phoretic Janus particles, which have proven to be challenging to probe experimentally.

10.
Methods Mol Biol ; 2828: 23-36, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39147967

RESUMO

Cell-cell interaction mediated by secreted and adhesive signaling molecules forms the basis of the coordinated cell movements (i.e., collective cell migration) observed in developing embryos, regenerating tissues, immune cells, and metastatic cancer. Decoding the underlying input/output rules at the single-cell level, however, remains a challenge due to the vast complexity in the extracellular environments that support such cellular behaviors. The amoebozoa Dictyostelium discoideum uses GPCR-mediated chemotaxis and cell-cell contact signals mediated by adhesion proteins with immunoglobulin-like folds to form a collectively migrating slug. Coordinated migration and repositioning of the cells in this relatively simple morphogenetic system are driven strictly by regulation of actin cytoskeleton by these signaling factors. Its unique position in the eukaryotic tree of life outside metazoa points to basic logics of tissue self-organization that are common across taxa. Here, we describe a method to reconstitute intercellular contact signals and the resulting cell polarization using purified adhesion proteins. In addition, a protocol using a microfluidic chamber is laid out where one can study how the cell-cell contact signal and chemoattractant signals, when simultaneously presented, are interpreted. Quantitative image analysis for obtaining cell morphology features is also provided. A similar approach should be applicable to study other collectively migrating cells.


Assuntos
Comunicação Celular , Movimento Celular , Quimiotaxia , Dictyostelium , Dictyostelium/fisiologia , Dictyostelium/citologia , Adesão Celular , Transdução de Sinais , Polaridade Celular
11.
Methods Mol Biol ; 2828: 1-9, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39147965

RESUMO

Immune responses rely on efficient and coordinated migration of immune cells to the site of infection or injury. To reach the site of immunological threat often requires long-range navigation of immune cells through complex tissue and vascular networks. Chemotaxis, cell migration steered by gradients of cell-attractive chemicals that bind sensory receptors, is central to this response. Chemoattractant receptors mostly belong to the G-protein-coupled receptor (GPCR) family, but the way attractant-receptor signaling directs cell migration is not fully understood. Direct-viewing chemotaxis chambers combined with time-lapse microscopy give a powerful tool to study the dynamic details of cells' responses to different attractant landscapes. Here, we describe the application of one such chamber (the Dunn chamber) to study bone marrow-derived macrophage chemotaxis to gradients of complement C5a.


Assuntos
Quimiotaxia , Macrófagos , Quimiotaxia/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Animais , Camundongos , Complemento C5a/metabolismo , Complemento C5a/farmacologia , Imagem com Lapso de Tempo/métodos , Movimento Celular , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo
12.
Methods Mol Biol ; 2828: 87-106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39147973

RESUMO

Methods that identify protein-protein interactions are essential for understanding molecular mechanisms controlling biological systems. Proximity-dependent labeling has proven to be a valuable method for revealing protein-protein interaction networks in living cells. A mutant form of the biotin protein ligase enzyme from Aquifex aeolicus (BioID2) underpins this methodology by producing biotin that is attached to proteins that enter proximity to it. This labels proteins for capture, extraction, and identification. In this chapter, we present a toolkit for BioID2 specifically adapted for use in E. coli, exemplified by the chemotaxis protein CheA. We have created plasmids containing BioID2 as expression cassettes for proteins (e.g., CheA) fused to BioID2 at either the N or C terminus, optimized with an 8 × GGS linker. We provide a methodology for expression and verification of CheA-BioID2 fusion proteins in E. coli cells, the in vivo biotinylation of interactors by protein-BioID2 fusions, and extraction and analysis of interacting proteins that have been biotinylated.


Assuntos
Biotinilação , Escherichia coli , Mapeamento de Interação de Proteínas , Escherichia coli/genética , Escherichia coli/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Biotina/metabolismo , Mapas de Interação de Proteínas , Coloração e Rotulagem/métodos , Plasmídeos/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Carbono-Nitrogênio Ligases/metabolismo , Carbono-Nitrogênio Ligases/genética
13.
Methods Mol Biol ; 2828: 185-204, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39147978

RESUMO

Amoeboid cells such as the protist Dictyostelium, human neutrophils, and the fungus B.d. chytrid move by extending pseudopods. The trajectories of cell movement depend on the size, rhythm, and direction of long series of pseudopods. These pseudopod properties are regulated by internal factors such as memory of previous directions and by external factors such as gradients of chemoattractants or electric currents. Here a simple method is described that defines the X, Y time coordinates of a pseudopod at the start and the end of the extension phase. The connection between the start and end of an extending pseudopod defines a vector, which is the input of different levels of analysis that defines cell movement. The primary information of the vector is its spatial length (pseudopod size), temporal length (extension time), extension rate (size divided by time), and direction. The second layer of information describes the sequence of two (or more) pseudopods: the direction of the second pseudopod relative to the direction of the first pseudopod, the start of the second pseudopod relative to the extension phase of the first pseudopod (the second starts while the first is still extending or after the first has stopped), and the alternating right/left extension of pseudopods. The third layer of information is provided by specific and detailed statistical analysis of these data and addresses question such as: is pseudopod extension in buffer in random direction or has the system internal directional memory, and how do shallow external electrical or chemical gradients bias the intrinsic pseudopod extension. The method is described for Dictyostelium, but has been used successfully for fast-moving neutrophils, slow-moving stem cells, and the fungus B.d. chytrid.


Assuntos
Quimiotaxia , Dictyostelium , Quimiotaxia/fisiologia , Dictyostelium/fisiologia , Dictyostelium/citologia , Pseudópodes/fisiologia , Movimento Celular/fisiologia , Humanos , Soluções Tampão , Neutrófilos/citologia , Neutrófilos/fisiologia
14.
Methods Mol Biol ; 2828: 205-220, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39147979

RESUMO

The process of chemotaxis of living cells is complex. Cells follow gradients of an external signal because the interior of the cells gets polarized. The description of the exterior and the interior of the cell together with its motion for the convenient realization of the computational modeling of the whole process is a complex technical problem. Here, we employ a phase field model to characterize the interior of the cell, permitting the integration of stochastic partial differential equations, responsible for the polarization in the interior of the cell, and simultaneously, the calculation of the shape deformations of the cell, including its locomotion. We detail the mathematical description of the process and the procedure to calculate numerically the phase field with a simple reaction-diffusion equation for a single concentration.


Assuntos
Quimiotaxia , Modelos Biológicos , Quimiotaxia/fisiologia , Simulação por Computador , Movimento Celular/fisiologia , Amoeba/fisiologia
15.
J Colloid Interface Sci ; 677(Pt B): 171-180, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39142158

RESUMO

HYPOTHESIS: Through a large parameter space, electric fields can tune colloidal interactions and forces leading to diverse static and dynamical structures. So far, however, field-driven interactions have been limited to dipole-dipole and hydrodynamic contributions. Nonetheless, in this work, we propose that under the right conditions, electric fields can also induce interactions based on local chemical fields and diffusiophoretic flows. EXPERIMENTS: Herein, we present a strategy to generate and measure 3D chemical gradients under electric fields. In this approach, faradaic reactions at electrodes induce global pH gradients that drive long-range transport through electrodiffusiophoresis. Simultaneously, the electric field induces local pH gradients by driving the particle's double layer far from equilibrium. FINDINGS: As a result, while global pH gradients lead to 2D focusing away from electrodes, local pH gradients induce aggregation in the third dimension. Evidence points to a mechanism of interaction based on diffusiophoresis. Interparticle interactions display a strong dependence on surface chemistry, zeta potential and diameter of particles. Furthermore, pH gradients can be readily tuned by adjusting the voltage and frequency of the electric field. For large Péclet numbers, we observed a collective chemotactic-like collapse of particles. Remarkably, such collapse occurs without reactions at a particle's surface. By mixing particles with different sizes, we also demonstrate, through experiments and Brownian dynamics simulations, the emergence of non-reciprocal interactions, where small particles are more drawn towards large ones.

16.
Environ Int ; 190: 108915, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39084127

RESUMO

Pathogenic microorganisms with antibiotic resistance genes (ARGs) pose a serious threat to public health and soil ecology. Although new drugs and available antibacterial materials can kill ARG carriers but accidentally kill beneficial microorganisms. Therefore, the rapid enrichment and separation of ARGs and their carriers from soil is becoming an important strategy for controlling the diffusion of ARGs. Hydroxamate siderophore (HDS) has gained widespread attentions for its involvement in trace element transfer among microorganisms in the soil environment, we thus explored an in-situ trapping-enrichment method for ARGs and their carriers via a small molecular HDS secreted by Pseudomonas fluorescens HMP01. In this study, we demonstrate that HDS significantly in-situ traps and enriches certain ARGs, including chloramphenicol, MLS, rifamycin, and tetracycline resistance genes in the soil environment. The enrichment efficiencies were 1473-fold, 38-fold, 17-fold, and 5-fold, respectively, higher than those in the control group. Specifically, the primary enriched ARGs were rpoB, mphL, catB2, and tetA(60), and Bacillus, Rhizobium, Rossellomorea, and Agrobacterium were hosts for these ARGs. This enrichment was caused by the upregulation of chemotaxis genes (e.g., cheW, cheC, and cheD) and rapid biofilm formation within the enriched bacterial population. Notably, representative ARGs such as cat, macB, and rpoB were significantly reduced by 36%, 85.7%, and 72%, respectively, in the paddy soil after HDS enrichment. Our research sheds light on the potential application of siderophore as a rapping agent for the eco-friendly reduction of ARGs and their carriers in soil environments.

17.
J R Soc Interface ; 21(216): 20240100, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39081250

RESUMO

Biological systems such as axonal growth cones perform chemotaxis at micrometre-level length scales, where chemotactic molecules are sparse. Such systems lie outside the range of validity of existing models, which assume smoothly varying chemical gradients. We investigate the effect of introducing discrete chemoattractant molecules by constructing a minimal dynamical model consisting of a chemotactic cell without internal memory. Significant differences are found in the behaviour of the cell as the chemical gradient is changed from smoothly varying to discrete, including the emergence of a homing radius beyond which chemotaxis is not reliably performed.


Assuntos
Quimiotaxia , Modelos Biológicos , Quimiotaxia/fisiologia , Animais , Fatores Quimiotáticos/metabolismo
18.
ACS Appl Mater Interfaces ; 16(30): 40131-40138, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39021097

RESUMO

The achievement of consistent and static chemical gradients is critically important in the study of diffusion and chemotaxis at the micro- and nanoscales. In this context, a number of groups have reported on hydrogel-based systems for generating concentration gradients. Here, we analyze the behavior of agarose and gelatin-based hydrogels in hybridization chambers of different heights. Our focus is on the issues that are caused by the presence of robust bulk fluid flows in such systems due to the solutes present in the hydrogel and/or the surrounding fluid. We describe the key insights derived from these experiments, offering practical guidelines for establishing gradients using hydrogel-based systems and make the community aware of different variables that can make the experiments nonreproducible and prone to misinterpretations.

19.
Cells ; 13(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39056760

RESUMO

Thousands struggle with acute and chronic intestinal injury due to various causes. Epithelial intestinal healing is dependent on phenotypic transitions to a mobile phenotype. Focal adhesion kinase (FAK) is a ubiquitous protein that is essential for cell mobility. This phenotype change is mediated by FAK activation and proves to be a promising target for pharmaceutical intervention. While FAK is crucial for intestinal healing, new evidence connects FAK with innate immunity and the importance it plays in macrophage/monocyte chemotaxis, as well as other intracellular signaling cascades. These cascades play a part in macrophage/monocyte polarization, maturation, and inflammation that is associated with intestinal injury. Colony stimulating factors (CSFs) such as macrophage colony stimulating factor (M-CSF/CSF-1) and granulocyte macrophage colony stimulating factor (GM-CSF/CSF-2) play a critical role in maintaining homeostasis within intestinal mucosa by crosstalk capabilities between macrophages and epithelial cells. The communication between these cells is imperative in orchestrating healing upon injury. Diving deeper into these connections may allow us a greater insight into the role that our immune system plays in healing, as well as a better comprehension of inflammatory diseases of the gut.


Assuntos
Homeostase , Imunidade Inata , Animais , Humanos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Intestinos/imunologia , Macrófagos/metabolismo , Macrófagos/imunologia , Transdução de Sinais
20.
Front Microbiol ; 15: 1424758, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040900

RESUMO

Background and aims: Root-knot nematodes (RKN; Meloidogyne spp.) are among the highly prevalent and significantly detrimental pathogens that cause severe economic and yield losses in crops. Currently, control of RKN primarily relies on the application of chemical nematicides but it has environmental and public health concerns, which open new doors for alternative methods in the form of biological control. Methods: In this study, we investigated the nematicidal and attractive activities of an endophytic strain WF01 against Meloidogyne incognita in concentration-dependent experiments. The active nematicidal metabolite was extracted in the WF01 crude extract through the Sephadex column, and its structure was identified by nuclear magnetic resonance and mass spectrometry data. Results: The strain WF01 was identified as Aspergillus tubingensis based on morphological and molecular characteristics. The nematicidal and attractive metabolite of A. tubingensis WF01 was identified as oxalic acid (OA), which showed solid nematicidal activity against M. incognita, having LC50 of 27.48 µg ml-1. The Nsy-1 of AWC and Odr-7 of AWA were the primary neuron genes for Caenorhabditis elegans to detect OA. Under greenhouse, WF01 broth and 200 µg ml-1 OA could effectively suppress the disease caused by M. incognita on tomatoes respectively with control efficiency (CE) of 62.5% and 70.83%, and promote plant growth. In the field, WF01-WP and 8% OA-WP formulations showed moderate CEs of 51.25%-61.47% against RKN in tomato and tobacco. The combined application of WF01 and OA resulted in excellent CEs of 66.83% and 69.34% toward RKN in tomato and tobacco, respectively. Furthermore, the application of WF01 broth or OA significantly suppressed the infection of J2s in tomatoes by upregulating the expression levels of the genes (PAL, C4H, HCT, and F5H) related to lignin synthesis, and strengthened root lignification. Conclusion: Altogether, our results demonstrated that A. tubingensis WF01 exhibited multiple weapons to control RKN mediated by producing OA to lure and kill RKN in a concentration-dependent manner and strengthen root lignification. This fungus could serve as an environmental bio-nematicide for managing the diseases caused by RKN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...