Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124494, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38788508

RESUMO

Chiral analysis with simple devices is of great importance for analytical chemistry. Based on the photothermal (PT) effect, a simple chiral sensor with a portable laser device as the light source and a thermometer as the detection tool was developed for the chiral recognition of tryptophan (Trp) isomers and the sensitive sensing of one isomer (L-Trp). Gold nanorods (GNRs), which have outstanding photo-thermal conversion ability due to their localized surface plasma resonance (LSPR) effect, are used as PT reagents, and biomacromolecules bovine serum albumin (BSA) are used as natural chiral sources, and thus, GNRs@BSA was obtained through Au-S bonds. The resultant GNRs@BSA displays higher affinity toward L-Trp than D-Trp owing to the inherent chirality of BSA. Under the irradiation of near-infrared (NIR) light, the temperature of GNRs@BSA//L-Trp is greatly lower than that of GNRs@BSA//D-Trp due to its greatly decreased thermal conductivity, and thus chiral discrimination of Trp isomers can be achieved. In addition, the developed PT effect-based chiral sensor can be used for sensitive detection of L-Trp, and the linear range and limit of detection (LOD) are 1 µM-10 mM and 0.43 µM, respectively.


Assuntos
Ouro , Limite de Detecção , Nanotubos , Soroalbumina Bovina , Triptofano , Ouro/química , Soroalbumina Bovina/química , Nanotubos/química , Triptofano/análise , Triptofano/química , Estereoisomerismo , Bovinos , Animais , Temperatura , Espectrometria de Fluorescência
2.
Mikrochim Acta ; 190(11): 435, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37837478

RESUMO

The key to developing sensors for chiral drug determination is to exclude interference from enantiomers. In this study, metal-organic frameworks (MOFs) and molecularly imprinted polymer (MIP) were introduced to prepare a chiral sensor for levofloxacin detection. The MIP was electropolymerised on the surface of the Cu/Fe-benzene-1,3,5-tricarboxylate MOF (Cu/Fe-BTC)-modified Au electrode using levofloxacin as a template molecule. After eluting the levofloxacin, a chiral sensor with recognition sites for levofloxacin was obtained. With this site as a switch, a novel method for detecting levofloxacin was established. Because of the enhanced recognition effect, the sensor can effectively exclude the enantiomeric interference of d-ofloxacin. Moreover, Cu/Fe-BTC can effectively amplify the current response signal and improve the sensitivity of the sensor. The linear range of the sensor was 5 to 4000 × 10-11 mol L-1, and the detection limit was 2.07 × 10-11 mol L-1. When applied to detecting levofloxacin in actual samples, the sensor showed a 92.7-109.8% recovery.


Assuntos
Estruturas Metalorgânicas , Impressão Molecular , Levofloxacino , Técnicas Eletroquímicas/métodos , Impressão Molecular/métodos , Polímeros Molecularmente Impressos
3.
ACS Appl Mater Interfaces ; 15(37): 44127-44136, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37731221

RESUMO

Chirality plays an extremely important role in nature. In this work, a highly ordered and non-clustered crystalline material UiO-88-LP was synthesized by using l-proline (l-Pro)-tuning Zr-MOF and the solvothermal method, which was then modified on the glassy carbon electrode (GCE) to construct an electrochemical chiral interface for the recognition of tryptophan (Trp) configuration. UiO-88-LP composites were characterized by scanning electron microscopy, X-ray transmission diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy. After optimization of the experimental conditions, redox peaks for l-Trp and d-Trp were clearly observed at the UiO-88-LP/GCE electrochemical sensing interface with a peak-to-current ratio (IL/ID) of 2.47. The peak current was positively correlated with the concentration of Trp. The electrochemical recognition behavior of l-Trp and d-Trp was investigated by differential pulse voltammetry. The electrochemical characterization showed that UiO-88-LP/GCE had an enantiomeric resolution of amino acids. The recognition mechanism showed that l-Pro entering the UiO-66 molecular cage provided a site for the system to be recognized, so the purpose of recognition was achieved. The relevant data provide theoretical support for the practical application of UiO-88-LP in electrochemical sensors.

4.
ACS Appl Mater Interfaces ; 14(47): 53183-53192, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36379040

RESUMO

Low-cost and large-area chiral metamaterials (CMs) are highly desirable for practical applications in chiral biosensors, nanophotonic chiral emitters, and beyond. A promising fabrication method takes advantage of self-assembled colloidal particles, onto which metal patches with defined orientation are created using glancing angle deposition (GLAD). However, using this method to make uniform and well-defined CMs over macroscopic areas is challenging. Here, we fabricate a uniform large-area colloidal particle array by interface-mediated self-assembly and precisely control the structural handedness of chiral plasmonic shells (CPSs) using GLAD. Strong chiroptical signals arise from twisted currents at the main, corner, and edge of CPSs, allowing a balance between strong chiroptical and high transmittance properties. Our shell-like chiral geometry shows excellent sensor performance in detecting chiral molecules due to the formation of uniform superchiral fields. Systematic investigations optimize the interplay between peak and null point resonances in different CPSs and result in a record consistency chiral sensor parameter U, i.e., 3.77 for null points and 0.0867 for peaks, which are about 54 and 1.257 times larger than the highest value (0.068) of previously reported CMs. The geometrical chirality, surface plasmonic resonance, chiral surface lattice resonance, and chiral sensor performance evidence the chiroptical effect and the excellent chiral sensor performance.

5.
Mikrochim Acta ; 189(6): 225, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35585299

RESUMO

A simple, selective, and accurate electrochemical chiral sensor based on molecularly imprinted polymer (MIP) has been developed for sensitive and selective detection of esomeprazole (ESOM). For this purpose, the porous MIP sensor was prepared using tetraethyl orthosilicate (TEOS) and cetyltrimethylammonium bromide (CTAB) in the presence of ß-cyclodextrin (ß-CD) as a chiral recognizing element on a glassy carbon electrode (GCE). The changes in the MIP-layer related to removal and rebinding of the target ESOM were performed via differential pulse voltammetry (DPV) and cyclic voltammetry (CV) by using [Fe(CN)6]3-/4- as the redox probe. The structures of the developed sensor surface were characterized by using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Electrochemical impedance spectroscopy (EIS) was also utilized for a complementary electrochemical characterization. The calibration curve was obtained in the range 1.0 × 10-14-2.0 × 10-13 M with a limit of detection (LOD) of 1.9 × 10-15 M. The developed method has improved the accessibility of binding sites by producing the porous material via hydrolysis/condensation reaction of TEOS in presence of CTAB. The selectivity tests of the developed SiO2-ß-CD@MIP/GCE sensor indicated a high specificity towards ESOM compared with structurally related competitor molecules such as R-omeprazole (R-OM), R-lansoprazole, and S-lansoprazole. The developed sensor was successfully used to determine ESOM in tablets and commercial human serum samples with satisfactory recoveries (100.25 to 100.60%) and precision (RSD 0.46 to 0.66%).


Assuntos
Impressão Molecular , Carbono , Cetrimônio , Técnicas Eletroquímicas/métodos , Esomeprazol , Humanos , Dióxido de Silício , Estereoisomerismo
6.
Anal Chim Acta ; 1191: 339276, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35033270

RESUMO

Molecular self-assembly provides a reasonably effective strategy for the design and construction of chiral sensors. Here, Cu2+ was connected to ß-cyclodextrin (ß-CD) through coordination to synthesize Cu2-ß-CD, subsequently assembled with ammoniated chitosan-MWCNTs (NH2-CS-MWCNTs) by the effect of coordination driver to form a chiral sensing interface Cu2-ß-CD/NH2-CS-MWCNTs. Using the electrochemical method, the valid recognition of tryptophan (Trp) isomers was achieved on the self-assembly interface. Under the optimal experimental conditions, the developed sensor exhibited good linearity and satisfactorily renewable ability. Cu2-ß-CD/NH2-CS-MWCNTs/GCE showed the capacity to predict the ratio of D-Trp and L-Trp in racemic mixtures and the possibility of qualitative and quantitative determination for Trp isomers. Finally, the electrochemical sensor was used to detect the Trp enantiomers in rat serum, further verifying the feasibility of the sensor in the determination of actual samples. Therefore, the electrochemical chiral sensor not only is used for the recognition of Trp enantiomers but shows great potential in practical applications.


Assuntos
Quitosana , Triptofano , Animais , Técnicas Eletroquímicas , Ratos , Estereoisomerismo
7.
ACS Appl Mater Interfaces ; 13(39): 46886-46893, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34570473

RESUMO

Recognition of enantiomeric molecules is essential in pharmaceutical and biomedical applications. In this Article, a novel approach is introduced to monitor chiral molecules via a helical magnetic field (hB), where chiral-inactive magnetoplasmonic nanoparticles (MagPlas NPs, Ag@Fe3O4 core-shell NPs) are assembled into helical nanochain structures to be chiral-active. An in-house generator of hB-induced chiral NP assembly, that is, a plasmonic chirality enhancer (PCE), is newly fabricated to enhance the circular dichroism (CD) signals from chiral plasmonic interaction of the helical nanochain assembly with circularly polarized light, reaching a limit of detection (LOD) of 10-10 M, a 1000-fold enhancement as compared to that of conventional CD spectrometry. These enhancements were successfully observed from enantiomeric molecules, oligomers, polymers, and drugs. Computational simulation studies also proved that total chiroptical properties of helical plasmonic chains could be readily changed by modifying the chiral structure of the analytes. The proposed PCE has the potential to be used as an advanced tool for qualitative and quantitative recognition of chiral materials, enabling further application in pharmaceutical and biomedical sensing and imaging.


Assuntos
Aminoácidos/análise , Nanopartículas de Magnetita/química , Peptídeos/análise , Proteínas/análise , Aminoácidos/química , Dicroísmo Circular , Limite de Detecção , Peptídeos/química , Proteínas/química , Prata/química , Estereoisomerismo
8.
ACS Appl Mater Interfaces ; 13(31): 37412-37421, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34340310

RESUMO

A promising route toward the enantioselective recognition and separation of racemic molecules is the design of chiral metal-organic frameworks (CMOFs) with high enantioselectivity and stability. Herein, we report porous CMOFs Δ- and Λ-RuEu-MOFs constructed from the D3-symmetry helical chiral Ru(phen)3-derived tricarboxylate ligand and Eu2 units, which can be utilized as adsorbents for the enantioselective recognition and separation of 1,1'-bi-2-naphthol (BINOL) derivatives. Investigation of the circular dichroism enantiodifferentiation between the host and guest suggested that Δ- and Λ-RuEu-MOFs can be employed as chiral sensors to discriminate axial enantiomers due to their diastereomeric host-guest relationship. Density functional theory calculations reveal that chiral recognition is attributed to the distinguishing binding affinities stemming from N···H-O hydrogen bonds and π-π stacking between the host and guest. Moreover, the reticulate structure of Δ- and Λ-RuEu-MOFs can be readily recycled and reused for the successive enantioselective separation of BINOL up to 80% ee.

9.
Sensors (Basel) ; 21(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540721

RESUMO

A chiral sensor with optical rotation detection based on weak measurement for the kinetic study of sucrose hydrolysis is presented. Based on the polarization modulation to the pre-selection state, the optical rotation of chiral sample was accurately determined through the central wavelength shift of the output spectrum. With this approach, the concentration response curves of sucrose and its hydrolysis products, i.e., fructose and glucose, were experimentally obtained for the hydrolysis analysis. By collecting the output spectrum with a frequency of 100 Hz and fitting the central wavelength shift synchronously during the measurement, the sucrose hydrolysis process was monitored in real time. Different hydrolysis conditions with varied concentration of invertase enzyme and citrate were implemented in this work. As a consequence, the real-time hydrolysis curves of the hydrolysis process with distinct velocities was achieved and analyzed. Such a kinetic monitoring about sucrose hydrolysis with optical rotation detection technology played a critical role in the researches involving sucrose, and also revealed the great potential of weak measurement in intersections, such as food safety inspection and chemical analysis.

10.
Talanta ; 224: 121894, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33379102

RESUMO

Low-cost, high-throughput, broadly useful photoresponsive enantiomeric excess (ee) sensing of amino acids remains challenging to date. Herein, based on the selective oxidation reaction of amino acid oxidase (AAO) to amino acid enantiomers (D/L-AA) and the oxidation reaction of substrate (H2O2) with aromatic boronic ester, we put forward a photoresponsive strategy for the determination of D/L-AA at a certain concentration. In this scheme, the substrate H2O2 produced by the enzyme-catalyzed reaction was determined by sensitive fluorescent and colorimetric response of ethyl-3-(3-(benzothiazol-2-yl)-5-methyl-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)phenyl)-2-cyanoacrylate (HBT-PB) to reflect the enantiomeric content at a certain concentration. The photoresponsive probe HBT-PB was readily available and inexpensive with sensitive long-wavelength red fluorescence and colorimetric light response to H2O2, the detection limit (LOD) was estimated as 2.91 µM. The operation of the sensing method was simple and data collection and processing are straightforward. The practicability of the scheme was favorably confirmed by accurate and scientific analysis of methionine and Dopa samples. As a result, the scheme was not only suitable for high-throughput screening but also adaptable to low-cost and sensitive RGB colorimetric analysis platform (LOD of methionine and Dopa was calculated as 9.23 µM and 8.34 µM respectively) with modern plate readers, and possessed extremely high enantioselectivity and wide applicability which benefited from the specificity and efficiency of enzyme catalytic reaction.

11.
Anal Chim Acta ; 1072: 54-60, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31146865

RESUMO

In this work, we reported a novel electrochemical sensor for enantiorecognition of electrochemically inactive aspartic acid (Asp) enantiomers. By combining sol-gel processing with molecular imprinting technology, an enantioselective interface of molecularly imprinted sol-gel (MIS) films with imprinted cavities was prepared on the surface of a glassy carbon electrode (GCE). In order to obtain the electrochemical responses of electrochemically inactive Asp, the ternary derivative of L-aspartic, (l-aspartic acid)Cu2+(N-carbobenzoxy-l-aspartic acid), was used as the template for fabrication of MIS. The stripping currents of target molecules could be detected by square-wave stripping voltammetry due to the reduction of cupric ion on the modified electrode. The resulted sensor showed good adsorbability to L-Asp derivative, and the recognition efficiency was obtained as 2.1. Meanwhile, the L-Asp was quantitatively determined by the MIS sensor. As a result, the proposed electrochemical sensor could be regarded as a potential platform for enantiorecognition of electrochemically inactive chiral compounds.


Assuntos
Ácido Aspártico/análise , Complexos de Coordenação/química , Cobre/química , Técnicas Eletroquímicas , Impressão Molecular , Géis/química , Conformação Molecular , Tamanho da Partícula , Estereoisomerismo , Propriedades de Superfície
12.
ACS Sens ; 3(2): 304-312, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29299925

RESUMO

Monitoring the dynamic change with respect to chirality and species of amino acids in bacterial peptidoglycan (PG) during cell wall biosynthesis is correlated with bacterial taxonomy, physiology, micropathology, and antibacterial mechanisms. However, this is challenging because reported methods usually lack the ability of chiral analysis with the coexistence of d- and l-amino acids in PG. Here we report a chiral sensor array for PG biosynthesis monitoring through chiral amino acid recognition. Multitypes of host molecule modified MoS2 nanosheets (MNSs) were used as receptor units to achieve more accurate and specific sensing. By applying indicator displacement strategy, the distinct and reproducible fluorescence-response patterns were obtained for linear discriminant analysis (LDA) to accurately discriminate achiral Gly, 19 l-amino acids and the corresponding 19 d-enantiomers simultaneously. The sensor array has also been used for identifying bacterial species and tracking the subtle change of amino acid composition of PG including chirality and species during biosynthesis in different growth status and exogenous d-amino acid stimulation.


Assuntos
Técnicas Biossensoriais/métodos , Dissulfetos/química , Molibdênio/química , Nanoestruturas/química , Peptidoglicano/biossíntese , Aminoácidos/análise , Corantes Fluorescentes/química , Espectrometria de Fluorescência , Estereoisomerismo
13.
Talanta ; 166: 70-74, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28213260

RESUMO

How to align the single-walled carbon nanotubes (SWCNTs) onto the electrode vertically and to control their density and orientation are still a major challenge. Theoretically, properly selected chiral SWCNTs can discriminate enantiomers through their different dielectric response to the adsorption of chiral species, few reports can confirm this theoretic model. Herein, we presented a new strategy to fabricate SWCNTs array-based electrochemical chiral sensor. Carboxylated chiral SWCNTs were vertically attached to the oxidized glass carbon electrode with ethylenediamine as a linker by electrosynthesis. The electrode surface was characterized with atomic force microscope (AFM) and X-ray photoelectron spectroscopy (XPS). The practicability of the sensor was validated by chirally recognizing 3,4-dihydroxyphenylalanine as a model molecule. We found that both the highly ordered standing of SWCNTs and the application of square wave voltammetry (SWV) amplified the intrinsic chirality of chiral SWCNTs.

14.
Anal Biochem ; 449: 83-9, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24374251

RESUMO

We report a novel electrochemical biosensor for direct discrimination of D- and L-mandelic acid (D- and L-MA) in aqueous medium. The glassy carbon electrode (GCE) surface was modified with reduced graphene oxide (rGO) and γ-globulin (GLOB). Electrochemical characterization of the modified electrodes was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The modified electrode surfaces were also characterized by scanning electron microscopy. Electrochemical response of the prepared electrode (GCE/rGO/GLOB) for discrimination of D- and L-MA enantiomers was investigated by cyclic voltammetry and was compared with bare GCE in the concentration range of 2 to 10 mM. Whereas the bare GCE showed no electrochemical response for the MA enantiomers, the GCE/rGO/GLOB electrode exhibited direct and selective discrimination with different oxidation potential values of 1.47 and 1.71 V and weak reduction peaks at potential values of -1.37 and -1.48 V, respectively. In addition, electrochemical performance of the modified electrode was investigated in mixed solution of D- and L-MA. The results show that the produced electrode can be used as electrochemical chiral biosensor for MA.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Ácidos Mandélicos/química , Carbono/química , Espectroscopia Dielétrica , Eletrodos , Desenho de Equipamento , Grafite/química , Proteínas Imobilizadas/química , Ácidos Mandélicos/isolamento & purificação , Oxirredução , Óxidos/química , Estereoisomerismo , gama-Globulinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...