Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
1.
Glob Chang Biol ; 30(8): e17431, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39092769

RESUMO

Forests provide important ecosystem services (ESs), including climate change mitigation, local climate regulation, habitat for biodiversity, wood and non-wood products, energy, and recreation. Simultaneously, forests are increasingly affected by climate change and need to be adapted to future environmental conditions. Current legislation, including the European Union (EU) Biodiversity Strategy, EU Forest Strategy, and national laws, aims to protect forest landscapes, enhance ESs, adapt forests to climate change, and leverage forest products for climate change mitigation and the bioeconomy. However, reconciling all these competing demands poses a tremendous task for policymakers, forest managers, conservation agencies, and other stakeholders, especially given the uncertainty associated with future climate impacts. Here, we used process-based ecosystem modeling and robust multi-criteria optimization to develop forest management portfolios that provide multiple ESs across a wide range of climate scenarios. We included constraints to strictly protect 10% of Europe's land area and to provide stable harvest levels under every climate scenario. The optimization showed only limited options to improve ES provision within these constraints. Consequently, management portfolios suffered from low diversity, which contradicts the goal of multi-functionality and exposes regions to significant risk due to a lack of risk diversification. Additionally, certain regions, especially those in the north, would need to prioritize timber provision to compensate for reduced harvests elsewhere. This conflicts with EU LULUCF targets for increased forest carbon sinks in all member states and prevents an equal distribution of strictly protected areas, introducing a bias as to which forest ecosystems are more protected than others. Thus, coordinated strategies at the European level are imperative to address these challenges effectively. We suggest that the implementation of the EU Biodiversity Strategy, EU Forest Strategy, and targets for forest carbon sinks require complementary measures to alleviate the conflicting demands on forests.


Assuntos
Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais , União Europeia , Agricultura Florestal , Florestas , Modelos Teóricos , Europa (Continente)
2.
Sci Total Environ ; : 175829, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39197784

RESUMO

For decades, tropical peatlands in Indonesia have been deforested and converted to other land uses, mainly oil palm plantations which now cover one-fourth of the degraded peatland area. Given that the capacity for peatland ecosystems to store carbon depends largely on hydrology, there is a growing interest in rewetting degraded peatlands to shift them back to a carbon sink. Recent estimates suggest that peatland rewetting may contribute up to 13 % of Indonesia's total mitigation potential from natural climate solutions. In this study, we measured CO2 and CH4 fluxes, soil temperature, and water table level (WTL) for drained oil palm plantations, rewetted oil palm plantations, and secondary forests located in the Mempawah and Kubu Raya Regencies of West Kalimantan, Indonesia. We found that peatland rewetting significantly reduced peat CO2 emissions, though CH4 uptake was not significantly different in rewetted peatland compared to drained peatland. Rewetting drained peatlands on oil palm plantations reduced heterotrophic respiration by 34 % and total respiration by 20 %. Our results suggest that rewetting drained oil palm plantations will not achieve low CO2 emissions as observed in secondary forests due to differences in vegetation or land management. However, extrapolating our results to the areas of degraded oil palm plantations in West Kalimantan suggests that successful peatland rewetting could still reduce emissions by 3.9 MtCO2 yr-1. This result confirms that rewetting oil palm plantations in tropical peatlands is an effective natural climate solution for achieving national emission reduction targets.

3.
Risk Anal ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39182138

RESUMO

Early investments in regional hydrogen systems carry two distinct types of risk: (1) economic risk that projects will not be financially viable, resulting in stranded capital, and (2) environmental risk that projects will not deliver deep reductions in greenhouse gas emissions and through leaks, perhaps even contribute to climate change. This article systematically reviews the literature and performs analysis to describe both types of risk in the context of recent efforts in the United States and worldwide to support the development of "hydrogen hubs" or regional systems of hydrogen production and use. We review estimates of hydrogen production costs and projections of how future costs are likely to change over time for different production routes, environmental impacts related to hydrogen and methane leaks, and the availability and effectiveness of carbon capture and sequestration. Finally, we consider system-wide risks associated with evolving regional industrial structures, including job displacement and underinvestment in shared components, such as refueling. We conclude by suggesting a set of design principles that should be applied in developing early hydrogen hubs if they are to be a successful step toward creating a decarbonized energy system.

4.
Front Sociol ; 9: 1439256, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39165860

RESUMO

Migration, from rural to urban settings is a common phenomenon in Latin America, due to social, economic, political, and other factors. Young people in search of economic and educational opportunities, financial, and social stability, have been migrating to larger urban centers, thus crafting important shifts in rural labor, generational transfer, and domestic economies. Through a systematic literature review of scientific literature, and documents from public institutions and international organizations, published between 2012 and 2022, this article addresses rural-urban migration of youth in Colombia and Guatemala's cattle sector, particularly identifying (i) driving factors, (ii) their impacts on cattle farming, and (iii) public policies implemented to counteract prejudicial effects. Results show that unemployment, lack of educational opportunities, and insecurity are the main reasons for youth migration to cities or abroad, with Mexico, the United States, and Spain being the most common destinations. Additionally, impacts on the cattle sector include shortage of labor and a perfectible generational transfer, hindering the modernization of the industry and investments in climate change adaptation and mitigation strategies. Despite various implemented public policies, the results are partial, and the issue of accelerated youth migration remains relevant. Consequently, without more effective measures adopted by national governments, the cattle sector will lag behind its regional and international competitors, deterring the achievement of the Sustainable Development Goals. As the main contribution of the study, the analysis of migration is highlighted based on its effects on a specific economic sector and not focused on its causes, as evidenced in a wide range of literature.

5.
Glob Chang Biol ; 30(8): e17433, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39171421

RESUMO

Many recent studies have examined the impact of predicted changes in temperature and precipitation patterns on infectious diseases under different greenhouse gas emissions scenarios. But these emissions scenarios symbolize more than altered temperature and precipitation regimes; they also represent differing levels of change in energy, transportation, and food production at a global scale to reduce the effects of climate change. The ways humans respond to climate change, either through adaptation or mitigation, have underappreciated, yet hugely impactful effects on infectious disease transmission, often in complex and sometimes nonintuitive ways. Thus, in addition to investigating the direct effects of climate changes on infectious diseases, it is critical to consider how human preventative measures and adaptations to climate change will alter the environments and hosts that support pathogens. Here, we consider the ways that human responses to climate change will likely impact disease risk in both positive and negative ways. We evaluate the evidence for these impacts based on the available data, and identify research directions needed to address climate change while minimizing externalities associated with infectious disease, especially for vulnerable communities. We identify several different human adaptations to climate change that are likely to affect infectious disease risk independently of the effects of climate change itself. We categorize these changes into adaptation strategies to secure access to water, food, and shelter, and mitigation strategies to decrease greenhouse gas emissions. We recognize that adaptation strategies are more likely to have infectious disease consequences for under-resourced communities, and call attention to the need for socio-ecological studies to connect human behavioral responses to climate change and their impacts on infectious disease. Understanding these effects is crucial as climate change intensifies and the global community builds momentum to slow these changes and reduce their impacts on human health, economic productivity, and political stability.


Assuntos
Mudança Climática , Doenças Transmissíveis , Humanos , Doenças Transmissíveis/transmissão , Adaptação Fisiológica
6.
Artigo em Inglês | MEDLINE | ID: mdl-39179752

RESUMO

BACKGROUND: Lower socioeconomic (SES) communities are more likely to be situated in urban heat islands and have higher heat exposures than their higher SES counterparts, and this inequality is expected to intensify due to climate change. OBJECTIVES: To examine the relationship between surface temperatures and SES in New York City (NYC) by employing a novel analytical approach. Through incorporating modifiable features, this study aims to identify potential locations where mitigation interventions can be implemented to reduce heat disparities associated with SES. METHODS: Using the 2013-2017 American Community Survey, U.S Landsat-8 Analysis Ready Data surface temperatures (measured on 8/12/2016), and the NYC Land Cover Dataset at the census tract level (2098 tracts), this study examines the association between two components of tract-level SES (percentage of individuals living below the poverty line and the percentage of individuals without a high school degree) and summer day surface temperature in NYC. First, we examine this association with an unrestricted NYC linear regression, examining the city-wide association between the two SES facets and summer surface temperature, with additional models adjusting for altitude, shoreline, and nature-cover. Then, we assess geographic effect measure modification by employing the same models to three supplemental regression model strategies (borough-restricted and community district-restricted linear regressions, and geographically weighted regression (GWR)) that examined associations within smaller intra-city areas. RESULTS: All regression strategies identified areas where lower neighborhood SES composition is associated with higher summer day surface temperatures. The unrestricted NYC regressions revealed widespread disparities, while the borough-restricted and community district-restricted regressions identified specific political boundaries within which these disparities existed. The GWR, addressing spatial autocorrelation, identified significant socioeconomic heat disparities in locations such as northwest Bronx, central Brooklyn, and uptown Manhattan. These findings underscore the need for targeted policies and community interventions, including equitable urban planning and cooling strategies, to mitigate heat exposure in vulnerable neighborhoods. IMPACT STATEMENT: This study redefines previous research on urban socioeconomic disparities in heat exposure by investigating both modifiable (nature cover) and non-modifiable (altitude and shoreline) built environment factors affecting local temperatures at the census tract level in New York City. Through a novel analytical approach, the research aims to highlight intervention opportunities to mitigate heat disparities related to socioeconomic status. By examining the association between surface temperatures and socioeconomic status, as well as investigating different geographic and governmental scales, this study offers actionable insights for policymakers and community members to address heat exposure inequalities effectively across different administrative boundaries. The objective is to pinpoint potential sites for reducing socioeconomic heat exposure disparities at various geographic and political levels.

7.
Ambio ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177924

RESUMO

We compare public perceptions of restoring different ecosystems to increase CO2 uptake in Germany, through focus groups and a general population survey. Among focus group participants forests were highly popular, peatlands evoked negative associations, and seagrass was largely unknown. Nevertheless, the restoration of all ecosystems was viewed positively. We contrast these reactions to those of survey respondents who had not received additional information on restoration. They voiced narrower, less diverse opinions centering around afforestation. Further, focus group participants preferred expert-led restoration decisions, citing low trust in politicians' technical competence. Contrary to common policy recommendations, also beyond the German context, participants did not emphasize the need of citizen participation and were not strongly concerned about land use conflicts or compensation of affected user groups. The results imply that the public underestimates the political complexity of negotiation processes in ecosystem governance, which are becoming increasingly relevant in the international policy landscape.

8.
Proc Natl Acad Sci U S A ; 121(34): e2402970121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39133856

RESUMO

Ecosystem restoration is inherently a complex activity with inevitable tradeoffs in environmental and societal outcomes. These tradeoffs can potentially be large when policies and practices are focused on single outcomes versus joint achievement of multiple outcomes. Few studies have assessed the tradeoffs in Nature's Contributions to People (NCP) and the distributional equity of NCP from forest restoration strategies. Here, we optimized a defined forest restoration area across India with systematic conservation planning to assess the tradeoffs between three NCP: i) climate change mitigation NCP, ii) biodiversity value NCP (habitat created for forest-dependent mammals), and iii) societal NCP (human direct use of restored forests for livelihoods, housing construction material, and energy). We show that restoration plans aimed at a single-NCP tend not to deliver other NCP outcomes efficiently. In contrast, integrated spatial forest restoration plans aimed at achievement of multiple outcomes deliver on average 83.3% (43.2 to 100%) of climate change mitigation NCP, 89.9% (63.8 to 100%) of biodiversity value NCP, and 93.9% (64.5 to 100%) of societal NCP delivered by single-objective plans. Integrated plans deliver NCP more evenly across the restoration area when compared to other plans that identify certain regions such as the Western Ghats and north-eastern India. Last, 38 to 41% of the people impacted by integrated spatial plans belong to socioeconomically disadvantaged groups, greater than their overall representation in India's population. Moving ahead, effective policy design and evaluation integrating ecosystem protection and restoration strategies can benefit from the blueprint we provide in this study for India.


Assuntos
Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais , Florestas , Conservação dos Recursos Naturais/métodos , Humanos , Índia , Ecossistema , Recuperação e Remediação Ambiental/métodos
9.
Environ Evid ; 13(1): 22, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39188311

RESUMO

Background: Grasslands are essential for providing vital resources in the livestock sector and delivering invaluable ecosystem services such as biodiversity and soil carbon (C) sequestration. Despite their critical importance, these ecosystems face escalating threats from human disturbances, human degradation, and climate change, compromising their ability to effectively stock C. Restoring degraded grasslands emerges as a pragmatic and cost-effective approach to tackling climate change. However, the successful implementation of grassland management toward this goal, faces significant challenges. A systematic mapping approach will help to compile a comprehensive global inventory of studies investigating the impact of differing grassland management practices on soil carbon. In addition, the potential for trade-offs with other greenhouse gas emissions further underlines the value of a systematic assessment. This approach aims to identify knowledge clusters (i.e., well-represented subtopics that are amenable to full synthesis) for potential systematic reviews and pinpoint knowledge gaps requiring further primary research efforts, all contributing to a better understanding of the evidence surrounding this topic. Methods: Following systematic evidence synthesis standards, we developed the question to address in the systematic map protocol using the PICO framework. We established a preliminary search string by combining search terms for the Population (Grasslands), Intervention (management) and Outcome (soil carbon) categories, as well as with one additional group (Study types-to focus on farm and field experiments). We will conduct a comprehensive literature search of relevant peer-reviewed and grey literature using Web of Science, Scopus, CABI platforms, Google Scholar, and specialised websites (e.g., Agrotrop). Searches will be conducted in the English, Spanish, Portuguese, French, German, and Mongolian languages, as per the linguistic capabilities of the research team. The comprehensiveness of the search will be assessed by comparing the literature collected to a test-list of forty relevant articles. The repeatability of the literature screening process will be ensured by a list of inclusion/exclusion criteria and inter-reviewer consistency statistical tests. Data extraction will be organised into four complementary sections (article information, PICO categories, study characteristics, measurable parameters), on which we will perform queries to produce the tables, figures and evidence maps that will compose the systematic map. The results will identify and describe knowledge gaps and clusters. Supplementary Information: The online version contains supplementary material available at 10.1186/s13750-024-00345-2.

10.
Glob Chang Biol ; 30(8): e17460, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39136170

RESUMO

New soil organic carbon (SOC) formation in cropland from straw/stover or manure input is a vital source of SOC for climate change mitigation. However, location and variations in the efficiency, specifically the ratio of new SOC formation to organic C input (NCE), remain unquantified globally. In this study, the spatial variability of cropland NCE from straw/stover or manure input and explanatory factors were determined by analyzing 897 pairs of long-term field measurements from 404 globally distributed sites and by mapping grid-level cropland NCEs. The global NCE for paddy and upland averaged 13.8% (8.7%-25.1%, 5th-95th percentile) and 10.9% (6.8%-17.3%), respectively. The initial SOC and the clay content of soil, rather than temperature, were the most important factors regulating NCE. A parabola with an apex at approximately 17 g kg-1 between the initial SOC and NCE was resolved, and a positive correlation between soil clay content and NCE was observed. High-resolution mapping of the global NCE derived from manure/straw and insight into NCE dynamics provide a benchmark for diagnosing cropland soil C dynamics under climate change and identifying priority regions and actions for C management.


Assuntos
Carbono , Esterco , Solo , Esterco/análise , Solo/química , Carbono/análise , Agricultura/métodos , Mudança Climática , Produtos Agrícolas/crescimento & desenvolvimento
11.
Heliyon ; 10(13): e33451, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39035510

RESUMO

The current study aims to test the usage of econometric and machine learning approaches to study the relationship between methane (CH4), a hydrocarbon component of natural gas, as a proxy of carbon emission, GDP as economic growth, financial development (FIN), and medium and high technologies as a proxy of information technology (ICT) and human development (HDI). This study observes two extended moderating effect models of human development index and financial development via medium and high technologies on carbon emissions over the 15-year periods from 2007 to 2021 for the 27 EU economies. Results indicate that when considered solely, ICT, economic growth, and HDI improve environmental quality and contribute to climate change mitigation, reducing methane emissions, whereas financial development seems to damage environmental quality. However, the crossed effects of ICT with HDI, and that of ICT with FIN, were considered in estimations, with results pointing out that those favorably affect climate change mitigation. Jointly considering ICT, HDI, and financial development proves to have a synergistic effect in promoting environmental health than each element on its own. Green and yellow countries were also identified revealing the countries for which a reduction and increase, respectively, in the value of methane emissions is predicted after three years. In the case of the entire panel, the STR (linear regression tree) algorithm predicts an average growth in methane emissions of around 3.64 %. Important policy directions are drawn considering the results obtained.

12.
J Environ Manage ; 366: 121732, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981262

RESUMO

Trees in cities perform important environmental functions: they produce oxygen, filter pollutants, provide habitat for wildlife, mitigate stormwater runoff, and reduce the effects of climate change, especially in terms of lowering temperatures and converting carbon dioxide from the atmosphere into stored carbon. Generally, to increase the environmental benefits of urban forests, the number of trees is increased, directly influencing the canopy coverage. However, little is known about potential of modifying the species composition of urban tree communities in order to increase ecological benefits. Planting and managing trees to increase canopy is particularly challenging in city centres, where the dense, often historic infrastructure of buildings and roads do not allow for a significant increase in greenspace. Estimations of canopy cover obtained through i-Tree Canopy analysis unveiled significant potential to increase canopy cover in historical urban areas in Polish cities from 15-34% to 31-51%. This study models the ecological benefits of urban forests in Polish cities, focusing on how different species compositions can enhance environmental functions such as carbon sequestration and pollution filtration. Two main scenarios were analyzed: one involving the addition of trees based on the most common species currently planted ("standard option" SO), and another incorporating changes to the species composition to enhance ecological benefits ("city specific option" SCO). Acer platanoides (14.5%) and Tilia cordata (11.45%) were the most frequently species of Polish cities. Betula pendula, Quercus robur, Robinia pseudoacacia, Fraxinus excelsior, Acer pseudoplatanus, Aesculus hippocastanum and Acer campestre were also common species in urban forest communities (up to 5%). The diverse range of tree species in Polish cities contributes significantly to the overall carbon sequestration potential. The results suggest that modifying species composition could significantly increase carbon sequestration rates by 47.8%-114% annually, with the city specific option (SCO) being the most effective in enhancing carbon sequestration potential. This highlights the importance of strategic species selection in urban forestry practices to maximize environmental benefits and mitigate climate change effects.


Assuntos
Cidades , Florestas , Árvores , Polônia , Mudança Climática , Ecossistema , Conservação dos Recursos Naturais , Ecologia , Sequestro de Carbono
13.
NPJ Clim Action ; 3(1): 63, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39070178

RESUMO

Under the next cycle of target setting under the Paris Agreement, countries will be updating and submitting new nationally determined contributions (NDCs) over the coming year. To this end, there is a growing need for the United States to assess potential pathways toward a new, maximally ambitious 2035 NDC. In this study, we use an integrated assessment model with state-level detail to model existing policies from both federal and non-federal actors, including the Inflation Reduction Act, Bipartisan Infrastructure Law, and key state policies, across all sectors and gases. Additionally, we develop a high-ambition scenario, which includes new and enhanced policies from these actors. We find that existing policies can reduce net greenhouse gas (GHG) emissions by 44% (with a range of 37% to 52%) by 2035, relative to 2005 levels. The high-ambition scenario can deliver net GHG reductions up to 65% (with a range of 59% to 71%) by 2035 under accelerated implementation of federal regulations and investments, as well as state policies such as renewable portfolio standards, EV sales targets, and zero-emission appliance standards. This level of reductions would provide a basis for continued progress toward the country's 2050 net-zero emissions goal.

14.
Waste Manag Res ; : 734242X241262717, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39068519

RESUMO

Numbers do matter; the Intergovernmental Panel on Climate Change (IPCC)'s 2010 data that the waste sector is responsible for just 3% of global greenhouse gas (GHG) emissions has led to the misperception that solid waste management (SWM) has little to contribute to climate mitigation. Global efforts to control methane emissions and divert organic waste from landfills had already reduced direct emissions. But end-of-pipe SWM has also been evolving into more circular waste and resource management, with indirect GHG savings from the 3Rs (reduce, reuse, recycle) which IPCC accounts for elsewhere in the economy. The evidence compiled here on both direct emissions and indirect savings demonstrates with high confidence that better waste and resource management can make a significant contribution to climate mitigation, and must form a core part of every country's nationally determined contribution. Even the most advanced countries can still achieve much from the 3Rs. In the Global South, the challenge of extending waste collection to all and stopping open dumping and burning (sustainable development goal 11.6.1), essential to improve public health, can be turned into a huge opportunity. Moving early to divert waste from landfill by separation at source and collecting clean organic and dry recycling fractions, will mitigate global GHG emissions, slash ocean plastics and create decent livelihoods. But this can only happen with targeted climate, plastics and extended producer responsibility finance; and help to local communities to help themselves.

15.
Glob Chang Biol ; 30(6): e17372, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38894582

RESUMO

Widespread adoption of regenerative agriculture practices is an integral part of the US plan to achieve net-zero greenhouse gas emissions by 2050. National incentives have particularly increased for the adoption of cover crops (CCs), which have presumably large carbon (C) sequestration potential. However, assessments of national CC climate benefits have not fully considered regional variability, changing C sequestration rates over time, and potential N2O trade-offs. Using the DayCent soil biogeochemical model and current national survey data, we estimate CC climate change mitigation potential to be 39.0 ± 24.1 Mt CO2e year-1, which is 45%-65% lower than previous estimates, with large uncertainty attributed to N2O impacts. Three-fourths of this climate change mitigation potential is concentrated in the North Central, Southern Great Plains and Lower Mississippi regions. Public investment should be focused in these regions to maximize CC climate benefits, but the national contribution of CC to emissions targets may be lower than previously anticipated.


Assuntos
Mudança Climática , Produtos Agrícolas , Estados Unidos , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/métodos , Modelos Teóricos , Sequestro de Carbono , Gases de Efeito Estufa/análise
16.
Sci Total Environ ; 947: 174302, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38945244

RESUMO

As the imperative to address climate change becomes more pressing, there is an increasing focus on limiting global temperature increase to 1.5 °C by the end of the century relative to pre-industrial levels. During the recent Conference of Parties (COP28), nations committed to tripling renewable energy generation to a minimum of 11,000 GW by 2030 and increasing the global annual energy efficiency from 2 % to 4 % annually until 2030. Additionally, the Food and Agricultural Organization (FAO) introduced a roadmap to transition the Agri-food system from a net emitter to a carbon sink. The role of carbon dioxide removal (CDR) is important; first to accelerate the near-term reduction in net emissions, counterbalance residual emissions at the point of net-zero by mid-century, and sustain large net negative emissions beyond mid-century to return warming to safe levels after decades of temporal overshoot. This paper assesses the impact of the COP 28 agreements, alongside the complementary role of CDR on emission levels, energy structure, land use, and global warming temperature. The findings indicate that implementing the COP28 pledges and FAO roadmap leads to a warming temperature of 2 °C, falling short of the ambitious 1.5 °C temperature limit. Likewise, more stringent actions on transitioning away from fossil plants is a high-priority mitigation action which drives significant emissions reduction. The modelled result shows that Agricultural soil carbon and biochar contribute 47-58 % share of the total CDR deployed in the stylized scenarios. In conclusion, CDR can expedite climate goals but must complement emission reduction efforts; hence, the transition away from fossil fuels should prompt the development of detailed roadmaps. Also, more global efforts should be placed on nature-based CDR methods, as they offer diverse co-benefits.

17.
Sci Total Environ ; 939: 173622, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38821273

RESUMO

This review critically examines hydrogen energy systems, highlighting their capacity to transform the global energy framework and mitigate climate change. Hydrogen showcases a high energy density of 120 MJ/kg, providing a robust alternative to fossil fuels. Adoption at scale could decrease global CO2 emissions by up to 830 million tonnes annually. Despite its potential, the expansion of hydrogen technology is curtailed by the inefficiency of current electrolysis methods and high production costs. Presently, electrolysis efficiencies range between 60 % and 80 %, with hydrogen production costs around $5 per kilogram. Strategic advancements are necessary to reduce these costs below $2 per kilogram and push efficiencies above 80 %. Additionally, hydrogen storage poses its own challenges, requiring conditions of up to 700 bar or temperatures below -253 °C. These storage conditions necessitate the development of advanced materials and infrastructure improvements. The findings of this study emphasize the need for comprehensive strategic planning and interdisciplinary efforts to maximize hydrogen's role as a sustainable energy source. Enhancing the economic viability and market integration of hydrogen will depend critically on overcoming these technological and infrastructural challenges, supported by robust regulatory frameworks. This comprehensive approach will ensure that hydrogen energy can significantly contribute to a sustainable and low-carbon future.

18.
Environ Sci Technol ; 58(21): 9175-9186, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38743611

RESUMO

We include biodiversity impacts in forest management decision making by incorporating the countryside species area relationship model into the partial equilibrium model GLOBIOM-Forest. We tested three forest management intensities (low, medium, and high) and limited biodiversity loss via an additional constraint on regional species loss. We analyzed two scenarios for climate change mitigation. RCP1.9, the higher mitigation scenario, has more biodiversity loss than the reference RCP7.0, suggesting a trade-off between climate change mitigation, with increased bioenergy use, and biodiversity conservation in forests. This trade-off can be alleviated with biodiversity-conscious forest management by (1) shifting biomass production destined to bioenergy from forests to energy crops, (2) increasing areas under unmanaged secondary forest, (3) reducing forest management intensity, and (4) reallocating biomass production between and within regions. With these mechanisms, it is possible to reduce potential global biodiversity loss by 10% with minor changes in economic outcomes. The global aggregated reduction in biodiversity impacts does not imply that biodiversity impacts are reduced in each ecoregion. We exemplify how to connect an ecologic and an economic model to identify trade-offs, challenges, and possibilities for improved decisions. We acknowledge the limitations of this approach, especially of measuring and projecting biodiversity loss.


Assuntos
Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais , Florestas , Biomassa
19.
Environ Sci Technol ; 58(21): 9031-9039, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38752553

RESUMO

Contemporary resource management is doubly burdened by high rates of organic material disposal in landfills, generating potent greenhouse gases (GHG), and globally degraded soils, which threaten future food security. Expansion of composting can provide a resilient alternative, by avoiding landfill GHG emissions, returning valuable nutrients to the soil to ensure continued agricultural production, and sequestering carbon while supporting local communities. Recognizing this opportunity, California has set ambitious organics diversion targets in the Short-Lived Climate Pollutant Law (SB1383) which will require significant increases (5 to 8 million tonnes per year) in organic material processing capacity. This paper develops a spatial optimization model to consider how to handle this flow of additional material while achieving myriad social and ecological benefits through compost production. We consider community-based and on-farm facilities alongside centralized, large-scale infrastructure to explore decentralized and diversified alternative futures of composting infrastructure in the state of California. We find using a diversity of facilities would provide opportunity for cost savings while achieving significant emissions reductions of approximately 3.4 ± 1 MMT CO2e and demonstrate that it is possible to incorporate community protection into compost infrastructure planning while meeting economic and environmental objectives.


Assuntos
Solo , California , Compostagem , Gases de Efeito Estufa , Conservação dos Recursos Naturais , Agricultura
20.
Sci Total Environ ; 934: 173219, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750738

RESUMO

Although seaweeds rank among the most productive vegetated habitats globally, their inclusion within Blue Carbon frameworks is at its onset, partially because they usually grow in rocky substrates and their organic carbon (Corg) is mostly exported and stored beyond their habitat and thus, demonstrating its long-term storage is challenging. Here, we studied the sedimentary Corg storage in macroalgal forests dominated by Gongolaria barbata and in adjacent seagrass Cymodocea nodosa mixed with Caulerpa prolifera algae meadows, and bare sand habitats in Mediterranean shallow coastal embayments. We characterized the biogeochemistry of top 30 cm sedimentary deposits, including sediment grain-size, organic matter and Corg contents, Corg burial rates and the provenance of sedimentary Corg throughout stable carbon isotopes (δ13Corg) and pyrolysis analyses. Sediment Corg stocks and burial rates (since 1950) in G. barbata forests (mean ± SE, 3.5 ± 0.2 kg Corg m-2 accumulated at 15.5 ± 1.6 g Corg m-2 y-1) fall within the range of those reported for traditional Blue Carbon Ecosystems. Although the main species contributing to sedimentary Corg stocks in all vegetated habitats examined was C. nodosa (36 ± 2 %), macroalgae contributed 49 % (19 ± 2 % by G. barbata and 30 ± 3 % by C. prolifera) based on isotope mixing model results. Analytical pyrolysis confirmed the presence of macroalgae-derived compounds in the sediments, including N-compounds and α-tocopherol linked to G. barbata and C. prolifera, respectively. The sedimentary Corg burial rate linked to macroalgae within the macroalgal forests examined ranged from 5.4 to 9.5 g Corg m-2 y-1 (7.4 ± 2 g Corg m-2 y-1). This study provides empirical evidence for the long-term (∼70 years) sequestration of macroalgae-derived Corg within and beyond seaweed forests in Mediterranean shallow coastal embayments and thereby, supports the inclusion of macroalgae in Blue Carbon frameworks.


Assuntos
Florestas , Alga Marinha , Sequestro de Carbono , Carbono/análise , Mar Mediterrâneo , Monitoramento Ambiental , Ecossistema , Sedimentos Geológicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...