Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1390500, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104390

RESUMO

Some tannin-rich plants such as Combretum mucronatum and Phyllanthus urinaria are widely used in Africa for the control of parasitic nematodes in both humans and livestock. Tannins have been recognized as an alternative source of anthelmintic therapies, and hence, recent studies have focused on both the hydrolyzable and condensed tannins. These groups of compounds, however, have poor oral bioavailability and are metabolized by gut microbiota into lower molecular weight compounds. The role of these metabolites in the anthelmintic activities of tannins has not been explored yet. This study investigated the effects of fecal metabolism on the anthelmintic potential of procyanidin C1 (PC1) and geraniin and the tannin-enriched extracts of C. mucronatum (CML) and P. urinaria (PUH), which contain these compounds, respectively. Metabolites were formed by anaerobic fermentation of the test compounds and extracts in a fresh human fecal suspension for 0 h, 4 h, and 24 h. Lyophilized samples were tested in vitro against hookworm larvae and whipworm (Trichuris trichiura) larvae obtained from naturally infected human populations in Pru West District, Bono East Region, Ghana, and against the wildtype strain of Caenorhabditis elegans (L4). Both extracts and compounds in the undegraded state exhibited concentration-dependent inhibition of the three nematodes. Their activity, however, significantly decreased upon fecal metabolism. Without fermentation, the proanthocyanidin-rich CML extract was lethal against hookworm L3 (LC50 = 343.5 µg/mL, 95% confidence interval (CI) = 267.5-445.4), T. trichiura L1 (LC50 = 230.1 µg/mL, CI = 198.9-271.2), and C. elegans (LC50 = 1468.1 µg/mL, CI = 990.3-1946.5). PUH, from which the ellagitannin geraniin was isolated, exhibited anthelmintic effects in the unfermented form with LC50 of 300.8 µg/mL (CI = 245.1-374.8) against hookworm L3 and LC50 of 331.6 µg/mL (CI = 290.3-382.5) against T. trichiura L1, but it showed no significant activity against C. elegans L4 larvae at the tested concentrations. Similarly, both compounds, procyanidin C1 and geraniin, lost their activity when metabolized in fecal matter. The activity of geraniin at a concentration of 170 µg/mL against C. elegans significantly declined from 30.4% ± 1.8% to 14.5% ± 1.5% when metabolized for 4 h, whereas that of PC1 decreased from 32.4% ± 2.3% to 8.9% ± 0.9% with similar treatment. There was no significant difference between the anthelmintic actions of metabolites from the structurally different tannin groups. The outcome of this study revealed that the intact bulky structure of tannins (hydrolyzable or condensed) may be required for their anthelmintic action. The fermented products from the gut may not directly contribute toward the inhibition of the larvae of soil-transmitted helminths.

2.
Biochimie ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39102999

RESUMO

In the pursuit of safer and more effective treatments, there is a growing interest in plant-derived compounds, particularly lectins, because of their diverse pharmacological properties. This study focused on isolating, purifying, and characterizing lectin from Combretum glutinosum seeds (CGSLs) to assess its potential as an analgesic and antiulcer agent. CGSL extraction involved defatting and buffer extraction, followed by purification using ammonium sulfate fractionation and fetuin-agarose affinity column chromatography. The isolectins (iso-CGSLs), each consisting of 60 kDa and 57 kDa heterodimeric subunits, displayed glycoprotein properties with a 40 % neutral sugar content. They exhibited peak activity at 55 °C and remained stable for up to the fifth day at room temperature. The activity exhibited a pH dependence, peaking between 7.5 and 10.5, and all seemingly operated independently of metal ions. CGSL, at optimal doses ranging from 6 to 12 mg/kg, had significant analgesic effects on acetic acid-induced writhing and hot plate tests in mice. Evaluation using 0.7 % acetic acid resulted in notable pain reduction across all doses (P < 0.05). The analgesic effect of lectin was partially reversed by naloxone (a morphine antagonist), indicating partial involvement of the opioid receptor system. Furthermore, CGSL exhibited antiulcer effects in ethanol-induced gastric ulcer models in rats, highlighting its therapeutic potential as a natural alternative for analgesic and antiulcer treatments.

3.
Bioinform Biol Insights ; 18: 11779322241271537, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39183772

RESUMO

Objectives: Oxidative stress is implicated in several metabolic cascades involved in glucose control. Hence, investigating antioxidant and antidiabetic activities is crucial for discovering an effective diabetes mellitus (DM) agent. This study was aimed at probing the therapeutic efficacy of hydro-ethanolic extract of Combretum paniculatum (HECP) and gas chromatography-flame ionization detector (GC-FID)-identified phytochemicals as novel agents for DM. Methods: We determined the total phenols, flavonoids, and antioxidant vitamins in HECP using standard methods. A GC-FID was used to decipher phytochemicals of HECP. The antioxidant and antidiabetic activities of HECP were assessed using in vitro and in silico approaches. Results: The results revealed that HECP is affluent in phenols, flavonoids, and vitamin E and demonstrated engaging antioxidant activities in 1,1-diphenyl-2-picryl-hydroxyl (DPPH; IC50 = 0.83 µg/mL), thiobarbituric acid-reactive substances TBARS; IC50 = 2.28 µg/mL), and ferric-reducing antioxidant power assay (FRAP; IC50 = 2.89 µg/mL). Compared with the reference drug, acarbose, HECP exhibited good α-amylase and α-glucosidase inhibitory capacity, having IC50 values of 14.21 and 13.23 µg/mL, respectively, against 13.06 and 11.71 µg/mL recorded for acarbose. More so, the extract's top 6 scoring phytochemicals (rutin, kaempferol, epicatechin, ephedrine, naringenin, and resveratrol) had strong interactions with amino acid residues within and around α-amylase and α-glucosidase active site domains. All the compounds but rutin had favourable drug-like characteristics, pharmacokinetics, and safety profiles when compared with acarbose. Conclusion: Altogether, our results vindicate the use of this herb in treating DM locally and reveal that it has pharmaceutically active components that could be used as novel leads in the development of DM drugs.

4.
Vet Parasitol ; 331: 110288, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39178741

RESUMO

Parasitic infections with gastrointestinal nematodes are a serious problem for the health and welfare of domestic animals and negatively affect the economics of animal production. Haemonchus contortus is a haematophagous nematode of small ruminants responsible for significant mortality and morbidity. In addition, the widespread resistance to synthetic anthelmintic drugs emphasizes the urgent need of alternative treatment options against haemonchosis. This work aims to investigate the anthelmintic activity of an hydroethanolic Combretum mucronatum leaf extract (CMLE) against Haemonchus contortus in goats. Goats were artificially infected with 3500 third-stage larvae of H. contortus, and 21 days later, treated with CMLE (1000, 500, 250 mg/kg) for 4 consecutive days. Different parameters such as faecal egg count reduction, weight and haematocrit were monitored during the experimental period. The number of eggs per gram of faeces (EPG) was concentration-depended lower and significantly reduced compared to the untreated control (p < 0.0001). The effect of the highest CMLE dose (4 ×1000 mg/kg body weight) was similar to the effect of albendazole (1 ×5 mg/kg of body weight). The ED50 and ED90 values calculated were 189.17 and 392.33 mg/kg body weight respectively. ED50 and ED90 values were time-dependent. Moreover, CMLE improved haematocrit and weight of goats in dose-dependent and time-dependent manner. These results showed that CMLE could be used for haemonchosis treatment in small ruminants.


Assuntos
Anti-Helmínticos , Combretum , Fezes , Doenças das Cabras , Cabras , Hemoncose , Haemonchus , Contagem de Ovos de Parasitas , Extratos Vegetais , Folhas de Planta , Animais , Haemonchus/efeitos dos fármacos , Hemoncose/veterinária , Hemoncose/tratamento farmacológico , Hemoncose/parasitologia , Doenças das Cabras/tratamento farmacológico , Doenças das Cabras/parasitologia , Extratos Vegetais/farmacologia , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Folhas de Planta/química , Contagem de Ovos de Parasitas/veterinária , Combretum/química , Fezes/parasitologia , Hematócrito/veterinária , Feminino , Masculino
5.
J Invertebr Pathol ; 206: 108177, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39142469

RESUMO

This study is the first to report ciliate infection on soft corals in the Northern Coral Triangle. Infected Briareum violacea will undergo tissue ulceration and death within a short period of time. This ciliate was identified as Scuticociliatia sp. through 18S rRNA gene identification. In this study, the body length of the ciliate was approximately 80-85 µm before parasitizing the B. violacea. After being parasitizing, the body length was approximately 200-250 µm, and the body width was 50 µm. Body size increased three times after parasitism. According to observations, ciliates will first parasitize the coral endoderm in the early stage of infection, and no ciliates were found in the ectoderm. Preliminary judgment suggests that it may invade the coral endoderm through the mouth for parasitism. After parasitism, the ciliate eats the coral tissue and zooxanthellae. The antioxidant enzymes SOD, CAT, and MDA of infected corals were significantly increased, which also means that the corals are in a stress response. Ciliates will eat the zooxanthellae in the coral body, resulting in a significant reduction in the number of zooxanthellae and chlorophyll a. To effectively prevent and treat this disease, Combretum indicum extract was used in this study. It is a tropical plant commonly used medicinally to treat roundworms, pinworms and parasitic diseases. The results showed that at a concentration of 1500-2500 ppm, Combretum indicum extract can be used to treat ciliates and can applied via medicinal bath therapy for long periods without causing coral stress reactions. The results of this study regarding coral disease prevention are in line with SDG 14 and promote the practical application of coral reef ecological sustainability and large-scale coral aquaculture.


Assuntos
Antozoários , Animais , Antozoários/parasitologia , Cilióforos/fisiologia , Infecções por Cilióforos/parasitologia , Infecções por Cilióforos/veterinária
6.
In Vitro Cell Dev Biol Anim ; 60(8): 853-867, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38992216

RESUMO

Combretum leprosum Mart. is a plant of the Combretaceae family, widely distributed in the Northeast region of Brazil, popularly used as an anti-inflammatory agent, and rich in triterpenes. This study evaluated in vitro and in silico potential osteogenic of two semisynthetic triterpenes (CL-P2 and CL-P2A) obtained from the pentacyclic triterpene 3ß,6ß,16ß-trihydroxylup-20(29)-ene (CL-1) isolated from C. leprosum. Assays were carried out in cultured murine osteoblasts (OFCOL II), first investigating the possible toxicity of the compounds on these cells through viability assays (MTT). Cell proliferation and activation were investigated by immunohistochemical evaluation of Ki-67, bone alkaline phosphatase (ALP) activity, and mineralization test by Von Kossa. Molecular docking analysis was performed to predict the binding affinity of CL-P2 and CL-P2A to target proteins involved in the regulation of osteogenesis, including: bone morphogenetic protein 2 (BMP-2), proteins related to Wingless-related integration (WNT) pathway (Low-density lipoprotein receptor-related protein 6-LRP6 and sclerostin-SOST), and receptor activator of nuclear factor (NF)-kB-ligand (RANK-L). Next, Western Blot and immunofluorescence investigated BMP-2, WNT, RANK-L, and OPG protein expressions in cultured murine osteoblasts (OFCOL II). None of the CL-P2 and CL-P2A concentrations were toxic to osteoblasts. Increased cell proliferation, ALP activity, and bone mineralization were observed. Molecular docking assays demonstrated interactions with BMP-2, LRP6, SOST, and RANK-L/OPG. There was observed increased expression of BMP-2, WNT, and RANK-L/OPG proteins. These results suggest, for the first time, the osteogenic potential of CL-P2 and CL-P2A.


Assuntos
Proteína Morfogenética Óssea 2 , Proliferação de Células , Simulação de Acoplamento Molecular , Osteoblastos , Osteogênese , Triterpenos , Animais , Osteogênese/efeitos dos fármacos , Triterpenos/farmacologia , Triterpenos/química , Camundongos , Proteína Morfogenética Óssea 2/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Proliferação de Células/efeitos dos fármacos , Ligante RANK/metabolismo , Simulação por Computador , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fosfatase Alcalina/metabolismo , Sobrevivência Celular/efeitos dos fármacos
7.
Plant Dis ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082929

RESUMO

Combretum indicum(L.)Jongkind, distributed in Southeast Asia, is widely planted in southern China for its ornamental and medicinal value. In February 2023, anthracnose symptoms were observed on C. indicum leaves in Nanning Garden Expo (N22°43', E108°28'), Guangxi, China, causing severe defoliation of infected plants with a foliar disease incidence ranging from 40 to 60% (n = 100) in a 2 ha field. Disease symptoms began with small red spots (2 to 3 mm by 2 to 3 mm) on the leaves and gradually enlarged to larger irregular light grey lesions with yellowish halos (3 to 5 mm by 2 to 8 mm). In the late stage, spots merged into larger irregular lesions (5 to 15 mm by 6 to 13 mm) and the necrotic lesions abscised. Three diseased samples in total were collected from plants in three different locations. Symptomatic leaves were cut into small pieces (3×3 mm), disinfected with 75% ethanol solution for 10 s, 2% NaClO for 1 min followed by three washes in sterile distilled water. Tissue pieces were separately plated on potato dextrose agar (PDA) and incubated at 25°C for five days. One representative isolate from each sample (SJ-1, SJ2-1 and SJ3-1) were chosen for further analysis. Colonies were villiform, initially white, later turning gray in 7 days on PDA at 25℃. The average diameter for colonies were 8.1 cm, 8.0 cm and 8.1 cm for SJ1-1, SJ2-1 and SJ3-1, respectively. Conidia were aseptate, hyaline, cylindroid, and averaged 11.94 µm × 5.04 µm, 11.78 µm × 5.14 µm and 11.74 µm × 4.59 µm (n=90) for SJ1-1, SJ2-1 and SJ3-1, respectively. The characteristics were close to the descriptions of Colletotrichum spp. (Weir et al. 2012). Genomic DNA was extracted from 7-day-old aerial mycelia of these isolates. The internal transcribed spacer (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin (ACT), ß-tubulin (TUB2), chitin synthase (CHS-1), calmodulin (CAL) and the intergenic region between apn2 and MAT1-2-1 (ApMat) were amplified using primers ITS1/ITS4 (White et al. 1990), GDF/GDR, ACT-512F/ACT-783R, T1/Bt2b, CHS-79F/CHS-354R, CL1C/CL2C (Weir et al. 2012) and AM-F/AM-R (Silva et al. 2012), respectively. Sequences were deposited in GenBank (ITS: OR540240-OR540242; GAPDH: PP328968-PP328970; ACT: PP328959-PP328961; TUB2: PP328971-PP328973; CHS-1: PP328965-PP328967; CAL: PP328962-PP328964 and ApMat: OR548253-OR548255). A phylogenetic analysis was made via Bayesian inference based on the concatenated sequences (ITS, GAPDH, ACT, TUB2, CHS-1, CAL and ApMat). According to morphology and phylogenetic analysis, SJ1-1, SJ2-1 and SJ3-1 were identified as C. aeschynomenes. Pathogenicity was confirmed on leaves with and without wounds of 24 one-year-old C. indicum plants in a greenhouse in Nanning, Guangxi Province. The wound was made with a sterilized needle. Wounded and unwounded leaves were inoculated with 20 µl of conidial suspension (106 spores/ml in 0.1% sterile Tween 20) of the three isolates and control plants were inoculated with water containing 0.1% sterile Tween 20 (6 leaves/plant, 3 plants/treatment). All plants were covered with plastic bags to maintain a high humidity environment and placed in a 28°C growth chamber with constant light. After 7 days of incubation, necrotic lesions were observed on inoculated wounded leaves, whereas unwounded leaves and control plants showed no symptoms. The fungi were re-isolated from symptomatic leaves, completing Koch's postulates. These species can cause severe diseases in a variety of plants worldwide, such as Manihot esculenta, Theobroma cacao and Myrciaria dubia (Sangpueak et al. 2018; Nascimento et al. 2019; Matos et al. 2020). To our knowledge, this is the first report of C. aeschynomenes causing C. indicum leaf anthracnose in China. The results will provide valuable information for management of anthracnose in C. indicum.

8.
Heliyon ; 10(13): e33392, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39055842

RESUMO

Ethiopia's lowland woodlands are comprised of the major gum and resin-producing genera Acacia, Boswellia, and Commiphora. Boswellia papyrifera is primarily found in the degraded drylands, Burie Zuria district is the existence of the species; however, limited information is available on the woodland socio-economic contribution and determinants of locals' use of woodlands for their livelihoods, particularly Boswellia papyrifera. So to fill this gap, the study was conducted to examine the locals' socio-economic benefits from the woodland and to identify the determinants of locals' engagement in the collection of the benefits for better wise use and conservation policy implementation. The data was collected from household interviews, focus group discussions, and key informants. Species' socio-economic benefits were analyzed through descriptive statistics, whereas determinants of local's willingness to use woodlands were analyzed through an econometric model. The dependent variable used was annual income gained from the woodland and explanatory variables taken were gender, marital status, livestock number, family size, land holding size, age of the respondent, education level, wealth status, perception of local communities towards forest cover change, and distance from woodlands to the household's residence. Based on the results, the total annual income derived from the woodland by the sampled households' was a mean of 1759.45 USD. The result shows the woodland species shares 14.37 % of the total annual income, but because of legal investors Boswellia papyrifera had no contribution to this share. However, the local communities use woodlands for their livelihoods due to explanatory variables, and the usage percentage shows significant differences. The multiple linear regression results showed that the model was significant at a 5 % probability level, and 95.9 % of the variation was due to the explanatory variables. Age of respondent, family size, total land holding size, and education level showed positive and statistically significant relations to annual income derived from the woodland while other remaining variables showed non-significant. The result concludes that the species contributes significantly to local communities' livelihoods and engagement in gathering timber and non-timber products. The study recommended that awareness about the use of non-timber products in addition to forest products be created among the locals, and policies related to woodland sustainability and conservation should also be implemented.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38934447

RESUMO

A new compound, combrebisbibenzyl (1) as well as two sterols including stigmasterol (2) and 3-O-ß-D-glucopyranoside of ß-sitosterol (3) and seven triterpenoids namely mollic acid (4), oleanolic acid (5), ursolic acid (6), arjunglucoside I (7), arjungenin (8), bellericagenin B (9) and combregenin (10) were isolated from the root of Combretum molle. Compounds 1, 7 and 9, AcOEt and MeOH extracts exhibited moderate antioxidant activity with an IC50 value of 179.32, 185.21, 195.11 197.41 and 170.21 µg/mL, respectively, for reactive oxygen species inhibition and, inhibition percent value of 57.23, 64.52, 53.55, 67.42 and 65.04, respectively, for DPPH free-radical scavenging. The E. MeOH presented a moderate antibacterial activity against Staphylococcus aureus with DIZs value of 10.1 ± 0.2 from 800 µg/mL while the others tested strains were not sensitive. However, most of the tested bacteria, (S. aureus, Escherichia coli and Salmonella typhimurium) were moderately sensitive to E. AcOEt from 800 µg/mL with DIZs value of 8.2 ± 0.1. From the E. AcOEt, five of the isolated compounds were tested against four bacteria strains using the disc-dilusion method. The results showed that compound 1 and 2 exhibited very good antibacterial activity against all the tested bacteria at the concentration of 30 µg/mL with respective DIZ value of 22.2 and 25.4 for E. coli, 20.2 and 30.2 for S. typhimurium, 22.3 and 23.1 for S. aureus and, 22.1 and 24.1 for Streptococcus faecalis. This antibacterial activity significantly depends on the concentration.

10.
J Cancer Res Clin Oncol ; 150(5): 257, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753184

RESUMO

PURPOSE: Breast cancer metastasis relies on cellular invasion and angiogenesis facilitated by the downregulation of metastatic suppressor proteins like Cluster of Differentiation 82 (CD82). Currently, no medicines target multiple systems to prevent metastatic progression through CD82 upregulation. This study screened for plant extracts displaying effects on cell proliferation, invasion, and CD82 expression in breast cancer cells, and in vivo angiogenesis, and further correlated between the biological activities and effect on CD82 expression. METHODS: Seventeen ethanolic plant extracts were screened for their effect on cell proliferation (against MDA-MB-231 and MCF-7 breast cancer and Hek293 kidney cells), cell invasion and effect on CD82 expression in metastatic MDA-MB-231 cells. Selected extracts were further evaluated for in vivo anti-angiogenesis. RESULTS: Extracts displayed varying antiproliferative activity against the different cell lines, and those that showed selectivity indexes (SI) > 0.5 against MDA-MB-231 were selected for anti-invasion evaluation. Buddleja saligna Willd. (BS), Combretum apiculatum Sond. (CA), Foeniculum vulgare, Greyia radlkoferi, Gunnera perpensa and Persicaria senegalensis (Meisn.) Soják (PS) displayed 50% inhibitory concentration (IC50) values of 44.46 ± 3.46, 74.00 ± 4.48, 180.43 ± 4.51, 96.97 ± 2.29, 55.29 ± 9.88 and 243.60 ± 2.69 µg/mL, respectively against MDA-MB-231, and compared to Hek293 showed SI of 0.9, 0.7, 1.4, 1.1, 2.2 and 0.5. Significant invasion inhibition was observed at both 20 and 40 µg/mL for BS (94.10 ± 0.74 and 96.73 ± 0.95%) and CA (87.42 ± 6.54 and 98.24 ± 0.63%), whereas GR (14.91 ± 1.62 and 41 ± 1.78%) and PS (36.58 ± 0.54 and 51.51 ± 0.83%), only showed significant inhibition at 40 µg/mL, and FV (< 5% inhibition) and GP (10 ± 1.03 and 22 ± 1.31%) did not show significant inhibition at both concentrations. Due to the significant anti-invasive activity of BS, CA and PS at 40 µg/mL, these extracts were further evaluated for their potential to stimulate CD82. BS showed significant (p < 0.05) reduction in CD82 at 20 and 40 µg/mL (13.2 ± 2.2% and 20.3 ± 1.5% decrease, respectively), whereas both CA and PS at 20 µg/mL increased (p < 0.05) CD82 expression (16.4 ± 0.8% and 5.4 ± 0.6% increase, respectively), and at 40 µg/mL significantly reduced CD82 expression (23.4 ± 3.1% and 11.2 ± 2.9% decrease, respectively). Using the yolk sac membrane assay, BS (59.52 ± 4.12 and 56.72 ± 3.13% newly formed vessels) and CA (83.33 ± 3.17 and 74.00 ± 2.12%) at both 20 and 40 µg/egg showed significant (p < 0.001) angiogenesis inhibition, with BS showing statistical similar activity to the positive control, combretastatin A4 (10 nmol/egg), whereas PS only displayed significant (p < 0.001) angiogenesis stimulation at 40 µg/egg (120.81 ± 3.34% newly formed vessels). CONCLUSION: BS exhibits antiproliferative, anti-invasive, and anti-angiogenic activity despite inhibiting CD82, suggesting an alternative mode of action. CA at 20 µg/mL shows moderate anti-invasive and anti-angiogenic potential by stimulating CD82, while at 40 µg/mL it still displays these properties but inhibits CD82, suggesting an additional mode of action. PS, with the least antiproliferative activity, stimulates CD82 and inhibits angiogenesis at 20 µg/mL but inhibits CD82 and increases angiogenesis at 40 µg/mL, indicating CD82 targeting as a major mode of action. Future studies should explore breast cancer xenograft models to assess the extracts' impact on CD82 expression and angiogenesis in the tumor microenvironment, along with isolating bioactive compounds from the extracts.


Assuntos
Neoplasias da Mama , Proliferação de Células , Proteína Kangai-1 , Invasividade Neoplásica , Neovascularização Patológica , Extratos Vegetais , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Extratos Vegetais/farmacologia , Feminino , Animais , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Neovascularização Patológica/prevenção & controle , Proteína Kangai-1/metabolismo , Plantas Medicinais/química , Células HEK293 , Linhagem Celular Tumoral , Etanol/química , Etanol/farmacologia , Embrião de Galinha , Metástase Neoplásica , Membrana Corioalantoide/efeitos dos fármacos , Angiogênese
11.
Molecules ; 29(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38731582

RESUMO

Clinicians often have to face infections caused by microorganisms that are difficult to eradicate due to their resistance and/or tolerance to antimicrobials. Among these pathogens, Pseudomonas aeruginosa causes chronic infections due to its ability to form biofilms on medical devices, skin wounds, ulcers and the lungs of patients with Cystic Fibrosis. In this scenario, the plant world represents an important reservoir of natural compounds with antimicrobial and/or antibiofilm properties. In this study, an extract from the leaves of Combretum micranthum G. Don, named Cm4-p, which was previously investigated for its antimicrobial activities, was assayed for its capacity to inhibit biofilm formation and/or to eradicate formed biofilms. The model strain P. aeruginosa PAO1 and its isogenic biofilm hyperproducer derivative B13 were treated with Cm4-p. Preliminary IR, UV-vis, NMR, and mass spectrometry analyses showed that the extract was mainly composed of catechins bearing different sugar moieties. The phytocomplex (3 g/L) inhibited the biofilm formation of both the PAO1 and B13 strains in a significant manner. In light of the obtained results, Cm4-p deserves deeper investigations of its potential in the antimicrobial field.


Assuntos
Antibacterianos , Biofilmes , Catequina , Combretum , Testes de Sensibilidade Microbiana , Extratos Vegetais , Pseudomonas aeruginosa , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Catequina/farmacologia , Catequina/química , Combretum/química , Folhas de Planta/química , Açúcares , Humanos
12.
Nat Prod Res ; : 1-8, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516731

RESUMO

The phytochemical composition of the Combretum trifoliatum leaves was studied for the first time. Two new triterpenoid saponins, named comtrifoside A (1) and comtrifoside B (2), together with two other saponins (3-4) were purified by variously chromatographic techniques. For the first time, compound 3 was informed from the Combretum genus, as well as all of the isolated compounds (1-4) were reported from C. trifoliatum. The chemical structures of them were clearly characterised using extensive UV-VIS, IR, HRMS-ESI, and NMR experimental data. The in vitro anti-inflammatory activities of 1 & 2 were examined against NO overproduction in LPS activation of RAW264.7.

13.
Parasit Vectors ; 17(1): 99, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429804

RESUMO

BACKGROUND: Soil-transmitted helminths (STH) infect more than a quarter of the world's human population. In the absence of vaccines for most animal and human gastrointestinal nematodes (GIN), treatment of infections primarily relies on anthelmintic drugs, while resistance is a growing threat. Therefore, there is a need to find alternatives to current anthelmintic drugs, especially those with novel modes of action. The present work aimed to study the composition and anthelmintic activity of Combretum mucronatum leaf extract (CMLE) by phytochemical analysis and larval migration inhibition assays, respectively. METHODS: Combretum mucronatum leaves were defatted with petroleum ether and the residue was extracted by ethanol/water (1/1) followed by freeze-drying. The proanthocyanidins and flavonoids were characterized by thin layer chromatography (TLC) and ultra-high performance liquid chromatography (UPLC). To evaluate the inhibitory activity of this extract, larval migration assays with STH and GIN were performed. For this purpose, infective larvae of the helminths were, if necessary, exsheathed (Ancylostoma caninum, GIN) and incubated with different concentrations of CMLE. RESULTS: CMLE was found to be rich in flavonoids and proanthocyanidins; catechin and epicatechin were therefore quantified for standardization of the extract. Data indicate that CMLE had a significant effect on larval migration. The effect was dose-dependent and higher concentrations (1000 µg/mL) exerted significantly higher larvicidal effect (P < 0.001) compared with the negative control (1% dimethyl sulfoxide, DMSO) and lower concentrations (≤ 100 µg/ml). Infective larvae of Ascaris suum [half-maximal inhibitory concentration (IC50) = 5.5 µg/mL], Trichuris suis (IC50 = 7.4 µg/mL), and A. caninum (IC50 = 18.9 µg/mL) were more sensitive to CMLE than that of Toxocara canis (IC50 = 310.0 µg/mL), while infective larvae of Toxocara cati were largely unaffected (IC50 > 1000 µg/mL). Likewise, CMLE was active against most infective larvae of soil-transmitted ruminant GIN, except for Cooperia punctata. Trichostrongylus colubriformis was most sensitive to CMLE (IC50 = 2.1 µg/mL) followed by Cooperia oncophora (IC50 = 27.6 µg/mL), Ostertagia ostertagi (IC50 = 48.5 µg/mL), Trichostrongylus axei (IC50 = 54.7 µg/mL), Haemonchus contortus (IC50 = 145.6 µg/mL), and Cooperia curticei (IC50 = 156.6 µg/mL). CONCLUSIONS: These results indicate that CMLE exhibits promising anthelmintic properties against infective larvae of a large variety of soil-transmitted nematodes.


Assuntos
Anti-Helmínticos , Combretum , Helmintos , Nematoides , Proantocianidinas , Trichostrongyloidea , Animais , Humanos , Combretum/química , Proantocianidinas/farmacologia , Proantocianidinas/química , Larva , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Helmínticos/farmacologia , Ruminantes , Flavonoides/farmacologia , Compostos Fitoquímicos/farmacologia
14.
BMC Vet Res ; 20(1): 102, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481214

RESUMO

BACKGROUND: Effective therapy for many infections is becoming difficult due to the evolutionary development of drug resistance, and hence, the development of alternative treatment options mainly from herbs is crucial. The objective of this study was to investigate the antibacterial effects of ethanol extracts of stem bark, leaves and roots of Combretum molle against Streptococcus equi isolated from clinical cases of strangles using in vitro tests. METHODS: Plant extraction was performed using a maceration technique with 80% ethanol. The mean zone of inhibition was determined using the agar well diffusion method. Six serial dilutions with different concentrations (10%, 5%, 2.5%, 1.25%, 0.625% and 0.3125%) of each plant extract were prepared using dimethyl sulfoxide (DMSO). A modified agar microdilution method was used to determine the minimum inhibitory concentration (MICs) of the extracts. RESULTS: The results revealed that all plant extracts showed significant antibacterial activity. The root extract showed the best antibacterial effect compared to the others at all concentrations, with MZI values of 27.5, 23.225, 20.5, 17.9, 15.65 and 12.25 for the respective concentrations mentioned above and an MIC of 250 µg/ml. It was followed by the stem bark extract, which had MZI values of 24.67, 22.35, 18.225, 16.175, 11.125 and 8.2 millimeters and an MIC of 375 µg/ml. The leaf extract also had significant activity, with MZI values of 20.175, 18.25, 15.7, 13.125, 9.4 and 6.75 in millimeters and an MIC of 500 µg/ml. There was a direct relationship between the concentrations of the plant extracts and the level of inhibition. CONCLUSION: The test plant extracts were compared with the conventional antibiotic penicillin G, and the results indicated that the parts of the test plant have significant antibacterial activity, which may support traditional claims and could be candidates for alternative drug discoveries.


Assuntos
Combretum , Streptococcus equi , Cavalos , Animais , Equidae , Casca de Planta , Ágar , Extratos Vegetais/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana/veterinária , Etanol
15.
Chem Biodivers ; 21(5): e202301606, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353648

RESUMO

Combretum micranthum (Combretaceae) is a medicinal plant widely known and used in Africa to treat a variety of conditions such as diabetes, fever, coughs, bronchitis, diarrhea, pain, malaria and liver disorders, among others. Due to its wide traditional use, in this review, published scientific reports on its composition and pharmacological properties were explored by conducting a literature search of databases. To date, 155 organic compounds including 34 flavonoids, 16 phenolic acids, 14 alkaloids, 15 fatty acids, 14 terpenoids/steroids, 24 amino acids, 8 carbohydrate substances and 30 other organic compounds have been identified from this plant. In addition to these organic compounds, 6 minerals (potassium nitrate, calcium, magnesium, potassium, sodium, iron and zinc) have also been reported. In vitro and in vivo studies have shown that these phytochemicals and plant extracts have a wide range of pharmacological potential, including antibacterial, antiviral, antioxidant, antidiabetic, anti-inflammatory, analgesic, antihypertensive, nephroprotective, hepatoprotective, anxiolytic, anti-cholinesterase and antidiarrheal activities. Additionally, no harmful effects have been revealed through studies. Thus, this study could constitute a valuable reference for the valorization of C. micranthum in the pharmaceutical industry.


Assuntos
Compostos Fitoquímicos , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Animais , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Plantas Medicinais/química
16.
Artigo em Inglês | MEDLINE | ID: mdl-37740802

RESUMO

Water contamination becomes one of the most high-priority environmental concerns, calling for the efficient treatment techniques. Bionanocomposites can be robust adsorbents, but the synthesis requires toxic chemicals or energy consuming and cause the secondary pollution. Green nanocomposites can be biogenically synthesized using the plant extract to end up with a critically safe strategy. Herein, we used the flower extract of Combretum indicum plant as a bio-based reductant and carbonaceous source for the green CuO@C nanocomposite. This green nanoadsorbent obtained a specific surface area of 17.33 m2/g, good crystallinity, and functional group-containing surface, i.e., -OH and -CONH-. We also conducted the optimization of parameters, i.e., concentration, CuO@C dose, pH, time, and temperature, and reached removal efficiencies towards malachite green (MG, 83.23%), Congo red (CR, 84.60%), brilliant blue (BB, 71.39%), and methylene blue (MB, 23.67%). The maximum adsorption capacities were found as ordered, MG (46.387 mg/g) > MB (23.154 mg/g) > BB (22.8 mg/g) > CR dye (11.063 mg/g). Through the intra-particle diffusion kinetic model, MG and BB adsorption endured a three-step process, while CR and MB adsorption was a two-step process. The recyclability of the green CuO@C nanocomposite was three cycles with 67.54% for the final cycle of BB removal. Moreover, the nanoadsorbent displayed a high stability, checked by X-ray diffraction, FT-IR analysis, EDX spectra, and SEM images. It is recommended that the green CuO@C nanocomposite biosynthesized using the Combretum indicum flower extract can be a good alternative for the dye treatment from wastewater.

17.
Pest Manag Sci ; 79(12): 4868-4878, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37506299

RESUMO

BACKGROUND: The fall armyworm Spodoptera frugiperda (J.E. Smith), is an important pest of agronomical crops. It is interesting to discover secondary metabolites in plants that are environmentally safer than synthetic pesticides. For this purpose, Combretum trifoliatum crude extract and its isolated compounds were investigated for their insecticidal activities against S. frugiperda. RESULTS: The median lethal dose (LD50 ) was evaluated in the second-instar larvae using the topical application method. The isolated compounds, apigenin and camphor, demonstrated a highly toxic effect on larvae at a lower LD50 dose than crude extract. Moreover, when the larvae were exposed to crude extract concentrations, the development to pupa and adult stages was reduced by more than 50%. The ovicidal toxicity was examined using a hand sprayer. The extract concentration 5, 10, and 20 µg/egg significantly decreased the egg hatchability. In addition, crude extract showed a significant difference in inhibiting acetylcholinesterase (AChE) activity while crude extract and camphor showed significant inhibitory effects on carboxylesterase (CE) and glutathione-S-transferase (GST) activities. CONCLUSION: The crude ethanol extract of Combretum trifoliatum was toxic to S. frugiperda in terms of larval mortality, negatively affecting biological parameters, and decreasing egg hatchability. Additionally, the activities of cholinergic and detoxifying enzymes were affected by crude extract and its isolated compounds. These results highlight that Combretum trifoliatum might be efficient as a bioinsecticide to control S. frugiperda. © 2023 Society of Chemical Industry.


Assuntos
Combretaceae , Combretum , Inseticidas , Myrtales , Animais , Inseticidas/farmacologia , Spodoptera , Combretum/metabolismo , Combretaceae/metabolismo , Myrtales/metabolismo , Cânfora/toxicidade , Acetilcolinesterase/metabolismo , Larva , Extratos Vegetais/farmacologia , Zea mays/metabolismo
18.
Anticancer Agents Med Chem ; 23(13): 1545-1566, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37073157

RESUMO

BACKGROUND: Medicinal plants are known to contain numerous phytometabolites with suggested pharmacological value. Literature suggests that the medicinal use of phytometabolites in its natural state has limited success due to poor absorption rates. Currently, the focus lies on synthesizing phytometabolites extracted from medicinal plants and silver ions to generate nano-scale carriers with specialized properties. Thus, the nano-synthesis of phytometabolites with silver (Ag+) ions is proposed. The use of silver is promoted due to its known antibacterial and antioxidant effectiveness, among many. Nanotechnology allows for the green generation of nano-scaled particles that are able to penetrate target areas due to its size and unique structure. Therefore, this study aimed to generate a novel protocol for the synthesis of AgNP's using the leaf and stembark extracts of C. erythrophyllum. In addition, the biological activity of the generated nanoparticles was evaluated. OBJECTIVES: To synthesis silver nanoparticles (AgNP's) using the leaf and stembark extracts of Combretum erythrophyllum. The relative shape, size, distribution, and zeta potential of the synthesised particles were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Energy-dispersive X-ray (EDX), Nanoparticle tracking analysis (NTA), and UV Spectrophotometry (UV -vis). To screen the synthesised particles for its potential antibacterial, apoptotic and cytotoxic properties. METHODS: A novel protocol for the synthesis of silver nanoparticles (AgNP's) using the leaf and stembark extracts of Combretum erythrophyllum was established. The generated AgNP's were characterised using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Energy-dispersive X-ray (EDX), Nanoparticle tracking analysis (NTA), and UV Spectrophotometry (UV -vis). Furthermore, the AgNP's were evaluated for their antibacterial, cytotoxic and apoptotic activity against a range of bacterial strains and cancer cells. Characterisation was based upon particle size, shape and elemental silver composition. RESULTS: Within the stembark extract, synthesised nanoparticles were large, spherical in shape and dense in elemental silver composition. While synthesised nanoparticles of the leaf extract were small to medium in size, varied in shape established and contained minimal quantities of silver (substantiated by the TEM and NTA results). Furthermore, it was established that the synthesized nanoparticles exhibited high antibacterial properties due to the conducted antibacterial assay. The FTIR analysis revealed the presence of numerous functional groups within active compounds found in the synthesised extracts. Functional groups found varied between the leaf and stembark extracts, each with proposed pharmacological activity. CONCLUSION: Presently, antibiotic-resistant bacteria are continuously evolving thus, posing as a threat to conventional drug delivery systems. Nanotechnology provides a platform that enables the formulation of a low-toxicity and hypersensitive drug delivery system. Further studies evaluating the biological activity of extracts of C. erythrophyllum synthesized with silver nanoparticles could enhance its proposed pharmaceutical value.


Assuntos
Antineoplásicos , Combretum , Nanopartículas Metálicas , Plantas Medicinais , Humanos , Nanopartículas Metálicas/química , Prata/farmacologia , Prata/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antineoplásicos/farmacologia , Antibacterianos/química , Difração de Raios X
19.
Antibiotics (Basel) ; 12(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36830175

RESUMO

Bacterial and fungal resistance to antibiotics is of growing global concern. Plants such as the African Combretum and Pteleopsis species, which are used in traditional medicine for the treatment of infections, could be good sources for antimicrobial extracts, drug scaffolds, and/or antibiotic adjuvants. In African countries, plant species are often used in combinations as traditional remedies. It is suggested that the plant species enhance the effects of each other in these combination treatments. Thus, the multi-species-containing herbal medications could have a good antimicrobial potency. In addition, plant extracts and compounds are known to potentiate the effects of antibiotics. The objective of this review is to compile the information on the botany, ethnopharmacology, ethnobotany, and appearance in herbal markets of African species of the genera Combretum and Pteleopsis. With this ethnobotanical information as a background, this review summarizes the information on the phytochemistry and antimicrobial potency of the extracts and their active compounds, as well as their combination effects with conventional antibiotics. The databases used for the literature search were Scopus, Elsevier, EBSCOhost, PubMed, Google Scholar, and SciFinder. In summary, a number of Combretum and Pteleopsis species were reported to display significant in vitro antibacterial and antifungal efficacy. Tannins, terpenes, flavonoids, stilbenes, and alkaloids-some of them with good antimicrobial potential-are known from species of the genera Combretum and Pteleopsis. Among the most potent antimicrobial compounds are arjunglucoside I (MIC 1.9 µg/mL) and imberbic acid (MIC 1.56 µg/mL), found in both genera and in some Combretum species, respectively. The in vitro antimicrobial properties of the extracts and compounds of many Combretum and Pteleopsis species support their traditional medicinal uses.

20.
Molecules ; 28(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36838778

RESUMO

Kinkéliba (Combretum micranthum, Seh-Haw in Wolof) is a popular bush tea in West African countries. Although the kinkéliba plant's leaves have been widely consumed for its nutritional and medicinal properties, its benefits on skin health potential have been practically untouched. In human epidermal primary keratinocytes, vitexin and isovitexin-rich kinkéliba extract treatment significantly (p < 0.001) enhanced up to 39.6% of the cell survival rate decreased by UV radiation irritation. The treatment of kinkéliba leaf extracts also reduced the production of UV-induced pro-inflammatory cytokines IL-6 and IL-8 by 57.6% and 42.5%, respectively (p < 0.001), which cause skin redness and skin barrier dysfunction, as well as wrinkles and collagen degradation. The anti-inflammation efficacy of kinkéliba leaf extracts might involve significant inhibition on the levels of cellular reactive oxygen species (ROS) (-70.8%, p < 0.001) and nitrotyrosine (-56.9%, p < 0.05). Further topical applications of kinkéliba leaf extract gel were found to reduce sodium lauryl sulfate (SLS)-induced skin inflammation: at D7, the skin trans-epidermal water loss (TEWL) and skin redness (a* value) were both reduced by 59.81% (p < 0.001) and 22.4% (p < 0.001), compared with D0. In vitro and in vivo data support a new topical application of the kinkéliba leaf as an effective active ingredient for the treatment of skin inflammation, as well as subsequent barrier dysfunction and inflammaging.


Assuntos
Combretum , Dermatite , Humanos , Extratos Vegetais/farmacologia , Pele , Queratinócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...