Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Physiol Genomics ; 56(4): 327-342, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38314698

RESUMO

This study investigated the interaction between genetic differences in stress reactivity/coping and environmental challenges, such as acute stress during adolescence on adult contextual fear memory and anxiety-like behaviors. Fischer 344 (F344) and the inbred F344;WKY-Stresp3/Eer congenic strain (congenic), in which chromosomal regions from the Wistar-Kyoto (WKY) strain were introgressed into the F344 background, were exposed to a modified forced swim test during adolescence, while controls were undisturbed. In adulthood, fear learning and memory, assessed by contextual fear conditioning, were significantly greater in congenic animals compared with F344 animals, and stress during adolescence increased them even further in males of both strains. Anxiety-like behavior, measured by the open field test, was also greater in congenic than F344 animals, and stress during adolescence increased it further in both strains of adult males. Whole genome sequencing of the F344;WKY-Stresp3/Eer strain revealed an enrichment of WKY genotypes in chromosomes 9, 14, and 15. An example of functional WKY sequence variations in the congenic strain, cannabinoid receptor interacting protein 1 (Cnrip1) had a Cnrip1 transcript isoform that lacked two exons. Although the original hypothesis that the genetic predisposition to increased anxiety of the WKY donor strain would exaggerate fear memory relative to the background strain was confirmed, the consequences of adolescent stress were strain independent but sex dependent in adulthood. Molecular genomic approaches combined with genetic mapping of WKY sequence variations in chromosomes 9, 14, and 15 could aid in finding quantitative trait genes contributing to the variation in fear memory.NEW & NOTEWORTHY This study found that 1) whole genome sequencing of congenic strains should be a criterion for their recognition; 2) sequence variations between Wistar-Kyoto and Fischer 344 strains at regions of chromosomes 9, 14, and 15 contribute to differences in contextual fear memory and anxiety-like behaviors; and 3) stress during adolescence affects these behaviors in males, but not females, and is independent of strain.


Assuntos
Ansiedade , Medo , Masculino , Ratos , Animais , Ratos Endogâmicos WKY , Ratos Endogâmicos F344 , Ansiedade/genética , Cromossomos , Animais Congênicos , Proteínas de Transporte/genética
2.
Mol Neurobiol ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938511

RESUMO

Adrenaline (Ad) and glucose released into the bloodstream during stress may strengthen contextual fear memory. However, no previous studies have detached the effects of glucose from Ad in this paradigm. Using Ad-deficient mice, we aimed to evaluate the effect of glucose on contextual fear memory when endogenous Ad is absent. Fear conditioning was performed in wild-type (WT) and Ad-deficient mice (129 × 1/SvJ) administered with glucose (30 or 10 mg/kg; i.p.) or/and Ad (0.01 mg/kg; i.p.) or vehicle (0.9% NaCl; i.p.). Catecholamines were quantified using HPLC-ED. Real-time qPCR was used to assess mRNA expression of hippocampal genes. WT and Ad-deficient mice display increased contextual fear memory when administered with glucose both in acquisition and context days when compared to vehicle. Also, Nr4a3 and Bdnf mRNA expression increased in glucose-administered Ad-deficient mice. Sub-effective doses of glucose plus Ad administered simultaneously to Ad-deficient mice increased contextual fear memory, contrary to independent sub-effective doses. Concluding, glucose may be an important part of the peripheral to central pathway involved in the retrieval and reconsolidation of fear contextual memories independently of Ad, possibly due to increased hippocampal Nr4a3 and Bdnf gene expression. Furthermore, Ad and glucose may act synergically to strengthen contextual fear memory.

3.
Cell Rep ; 42(9): 113073, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37676764

RESUMO

Overly strong fear memories can cause pathological conditions. Histamine H3 receptor (H3R) has been viewed as an optimal drug target for CNS disorders, but its role in fear memory remains elusive. We find that a selective deficit of H3R in cholinergic neurons, but not in glutamatergic neurons, enhances freezing level during contextual fear memory retrieval without affecting cued memory. Consistently, genetically knocking down H3R or chemogenetically activating cholinergic neurons in the ventral basal forebrain (vBF) mimics this enhanced fear memory, whereas the freezing augmentation is rescued by re-expressing H3R or chemogenetic inhibition of vBF cholinergic neurons. Spatiotemporal regulation of H3R by a light-sensitive rhodopsin-H3R fusion protein suggests that postsynaptic H3Rs in vBF cholinergic neurons, but not presynaptic H3Rs of cholinergic projections in the dorsal hippocampus, are responsible for modulating contextual fear memory. Therefore, precise modulation of H3R in a cell-type- and subcellular-location-specific manner should be explored for pathological fear memory.


Assuntos
Prosencéfalo Basal , Histamina , Neurônios Colinérgicos/fisiologia , Memória/fisiologia , Medo/fisiologia
4.
Neurobiol Learn Mem ; 205: 107821, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37666411

RESUMO

Destabilization of previously consolidated memories places them in a labile state in which they are open to modification. However, strongly encoded fear memories tend to be destabilization-resistant and the conditions required to destabilize such memories remain poorly understood. Our lab has previously shown that exposure to salient novel contextual cues during memory reactivation can destabilize strongly encoded object location memories and that activity at muscarinic cholinergic receptors is critical for this effect. In the current study, we similarly targeted destabilization-resistant fear memories, hypothesizing that exposure to salient novelty at the time of reactivation would induce destabilization of strongly encoded fear memories in a muscarinic receptor-dependent manner. First, we show that contextual fear memories induced by 3 context-shock pairings readily destabilize upon memory reactivation, and that this destabilization is blocked by systemic (ip) administration of the muscarinic receptor antagonist scopolamine (0.3 mg/kg) in male rats. Following that, we confirm that this effect is dorsal hippocampus (dHPC)-dependent by targeting M1 receptors in the CA1 region with pirenzepine. Next, we show that more strongly encoded fear memories (induced with 5 context-shock pairings) resist destabilization. Consistent with our previous work, however, we report that salient novelty (a change in floor texture) presented during the reactivation session promotes destabilization of resistant contextual fear memories in a muscarinic receptor-dependent manner. Finally, the effect of salient novelty on memory destabilization was mimicked by stimulating muscarinic receptors with the selective M1 agonist CDD-0102A (ip, 0.3 mg/kg). These findings reveal further generalizability of our previous results implicating novel cues and M1 muscarinic signaling in promoting destabilization of resistant memories and suggest possible therapeutic options for disorders characterized by persistent, maladaptive fear memories such as PTSD and phobias.


Assuntos
Memória , Receptor Muscarínico M1 , Ratos , Masculino , Animais , Memória/fisiologia , Medo/fisiologia , Antagonistas Muscarínicos/farmacologia , Escopolamina/farmacologia
5.
Life Sci ; 328: 121881, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37356751

RESUMO

AIMS: Adrenaline enhances contextual fear memory consolidation possibly by activating liver ß2-adrenoceptors causing transient hyperglycaemia. Contrastingly, insulin-induced hypoglycaemia may culminate in blood adrenaline increment, hidering the separation of each hormone's action in contextual fear memory. Therefore, an adrenaline-deficient mouse model was used aiming to investigate if contextual fear memory consolidation following insulin administration requires or not subsequent increases in plasma adrenaline, which occurs in response to insulin-induced hypoglycemia. MAIN METHODS: Fear conditioning was performed in wild-type (WT) and adrenaline-deficient (Pnmt-KO) male mice (129 × 1/SvJ) treated with insulin (2 U/kg, intraperitoneal (i.p.)) or vehicle (0.9 % NaCl (i.p.)). Blood glucose was quantified. Catecholamines were quantified using HPLC with electrochemical detection. Quantitative real-time polymerase chain reaction was used to assess mRNA expression of hippocampal Nr4a1, Nr4a2, Nr4a3, and Bdnf genes. KEY FINDINGS: Insulin-treated WT mice showed increased freezing behaviour when compared to vehicle-treated WT mice. Also, plasma dopamine, noradrenaline, and adrenaline increased in this group. Insulin-treated Pnmt-KO animals showed increased freezing behaviour when compared with respective vehicle. However, no changes in plasma or tissue catecholamines were identified in insulin-treated Pnmt-KO mice when compared with respective vehicle. Furthermore, insulin-treated Pnmt-KO mice presented increased Bdnf mRNA expression when compared to vehicle-treated Pnmt-KO mice. SIGNIFICANCE: Concluding, enhanced freezing behaviour after insulin treatment, even in adrenaline absence, may indicate a key role of insulin in contextual fear memory. Insulin may cause central molecular changes promoting contextual fear memory formation and/or retrieval. This work may indicate a further role of insulin in the process of contextual fear memory modulation.


Assuntos
Condicionamento Clássico , Epinefrina , Masculino , Animais , Camundongos , Epinefrina/farmacologia , Condicionamento Clássico/fisiologia , Insulina , Fator Neurotrófico Derivado do Encéfalo , Camundongos Knockout , Medo/fisiologia , RNA Mensageiro , Camundongos Endogâmicos C57BL
6.
J Chem Neuroanat ; 131: 102285, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37150363

RESUMO

This study investigated the ameliorating effects of a natural antioxidant formula (NAF) consisting of Ginkgo biloba leaf extract, docosahexaenoic acid/eicosapentaenoic acid, ferulic acid, flaxseed oil, vitamin E, and vitamin B12 on a lipopolysaccharide (LPS)-induced cognitive dysfunction model in rats. Six-week-old rats received a diet containing 0.5% (w/w) NAF for 38 days from Day 1, and LPS (1 mg/kg body weight) was administered intraperitoneally once daily on Days 8 and 10. On Day 11, LPS alone increased interleukin-1ß and tumor necrosis factor-α in the hippocampus and cerebral cortex and the numbers of M1-type microglia/macrophages and GFAP+ reactive astrocytes in the hilus of the hippocampal dentate gyrus. NAF treatment decreased brain proinflammatory cytokine levels and increased the number of M2-type microglia/macrophages. During Days 34-38, LPS alone impaired fear memory acquisition and the extinction learning process, and NAF facilitated fear extinction learning. On Day 38, LPS alone decreased the number of type-3 neural progenitor cells in the hippocampal neurogenic niche, and NAF restored the number of type-3 neural progenitor cells and increased the numbers of both immature granule cells in the neurogenic niche and reelin+ hilar interneurons. Thus, NAF exhibited anti-inflammatory effects and ameliorated LPS-induced adverse effects on hippocampal neurogenesis and fear memory learning, possibly through amplification of reelin signaling by hilar interneurons. These results suggest that neuroinflammation is a key factor in the development of LPS-induced impairment of fear memory learning, and supplementation with NAF in the present study helped to prevent hippocampal neurogenesis and disruptive neurobehaviors caused by neuroinflammation.


Assuntos
Medo , Lipopolissacarídeos , Ratos , Animais , Lipopolissacarídeos/farmacologia , Medo/fisiologia , Antioxidantes/farmacologia , Doenças Neuroinflamatórias , Extinção Psicológica , Hipocampo , Neurogênese , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/patologia
7.
ACS Chem Neurosci ; 14(4): 619-627, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36748948

RESUMO

The dorsal hippocampus (DH) is primarily involved in the formation of contextual fear-conditioned (CxFC) memory. However, CxFC memory can be formed even in the absence of the DH. In addition to the DH, the infralimbic cortex (IL), a sub-region of the medial prefrontal cortex (mPFC), also plays an important role in the consolidation of CxFC memory. However, role of IL in the development of compensatory CxFC memory is not known. Here, we have examined (a) the development of the compensatory circuitry of CxFC memory within 3 days after the first test in the absence of the DH and (b) the role of IL in the induction of compensatory CxFC memory in the absence of the DH. The DH-lesioned rats re-trained for CxFC 1 day after the first testing exhibited significantly less freezing compared to the control group. However, the DH-lesioned rats, re-trained for CxFC 3 days after the first testing, showed a robust freezing response. It suggests that the fully functional compensatory circuitry of contextual fear memory develops after multiple training separated by 3 days. Furthermore, we observed that reversible inactivation of the IL of the DH-lesioned rats during the first training waned the formation of compensatory CxFC. It suggests that (a) the IL receives contextual fear memory information during the first trial in the absence of the DH and (b) perturbation in fear memory information encoding in the IL during the first trial impairs the development of the compensatory network in the absence of the DH.


Assuntos
Medo , Hipocampo , Ratos , Animais , Ratos Wistar , Hipocampo/fisiologia , Medo/fisiologia , Córtex Pré-Frontal/metabolismo
8.
J Gerontol A Biol Sci Med Sci ; 78(6): 930-937, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778266

RESUMO

Human beings are living longer than ever before and the cognitive decline experienced by aged adults, such as compromise in cognitive flexibility, has been attracting more and more attention. One such example is the aging-related impairment of memory extinction. However, its underlying neural basis, especially its functional basis at the synapse level, is largely unknown. This study verifies that Pavlovian contextual fear memory extinction is impaired in aged mice. A large body of previous studies has shown that the infralimbic prefrontal cortex (ilPFC) plays a pivotal role in memory extinction. Correspondingly, this study reveals an aging-related reduction in the efficacy of excitatory synaptic transmission onto the ilPFC pyramidal neurons via electrophysiology recordings. This study further suggests that this reduced excitation potentially contributes to the aging-related impairment of contextual fear memory extinction: chemogenetically suppressing the activity of the ilPFC pyramidal neurons in young mice impairs contextual fear memory extinction, whereas chemogenetically compensating for the reduced excitation of the ilPFC pyramidal neurons in aged mice restores contextual fear memory extinction. This study identifies a functional synaptic plasticity in the ilPFC pyramidal neurons that potentially contributes to the aging-related impairment of contextual fear memory extinction, which would potentially help to develop a therapy to treat related cognitive decline in aged human adults.


Assuntos
Medo , Córtex Pré-Frontal , Humanos , Camundongos , Animais , Pessoa de Meia-Idade , Idoso , Córtex Pré-Frontal/fisiologia , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Transmissão Sináptica , Extinção Psicológica/fisiologia
9.
Front Mol Neurosci ; 16: 1332348, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260808

RESUMO

The sympathoadrenal medullary system and the hypothalamic-pituitary-adrenal axis are both activated upon stressful events. The release of catecholamines, such as dopamine, norepinephrine (NE), and epinephrine (EPI), from sympathetic autonomic nerves participate in the adaptive responses to acute stress. Most theories suggest that activation of peripheral ß-adrenoceptors (ß-ARs) mediates catecholamines-induced memory enhancement. These include direct activation of ß-ARs in the vagus nerve, as well as indirect responses to catecholamine-induced glucose changes in the brain. Excessive sympathetic activity is deeply associated with memories experienced during strong emotional stressful conditions, with catecholamines playing relevant roles in fear and traumatic memories consolidation. Recent findings suggest that EPI is implicated in fear and traumatic contextual memories associated with post-traumatic stress disorder (PTSD) by increasing hippocampal gene transcription (e.g., Nr4a) downstream to cAMP response-element protein activation (CREB). Herein, we reviewed the literature focusing on the molecular mechanisms underlying the pathophysiology of memories associated with fear and traumatic experiences to pave new avenues for the treatment of stress and anxiety conditions, such as PTSD.

10.
Alzheimers Res Ther ; 14(1): 183, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36482297

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide and remains without effective cure. Increasing evidence is supporting the mitochondrial cascade hypothesis, proposing that loss of mitochondrial fitness and subsequent ROS and ATP imbalance are important contributors to AD pathophysiology. METHODS: Here, we tested the effects of SUL-138, a small hibernation-derived molecule that supports mitochondrial bioenergetics via complex I/IV activation, on molecular, physiological, behavioral, and pathological outcomes in APP/PS1 and wildtype mice. RESULTS: SUL-138 treatment rescued long-term potentiation and hippocampal memory impairments and decreased beta-amyloid plaque load in APP/PS1 mice. This was paralleled by a partial rescue of dysregulated protein expression in APP/PS1 mice as assessed by mass spectrometry-based proteomics. In-depth analysis of protein expression revealed a prominent effect of SUL-138 in APP/PS1 mice on mitochondrial protein expression. SUL-138 increased the levels of proteins involved in fatty acid metabolism in both wildtype and APP/PS1 mice. Additionally, in APP/PS1 mice only, SUL-138 increased the levels of proteins involved in glycolysis and amino acid metabolism pathways, indicating that SUL-138 rescues mitochondrial impairments that are typically observed in AD. CONCLUSION: Our study demonstrates a SUL-138-induced shift in metabolic input towards the electron transport chain in synaptic mitochondria, coinciding with increased synaptic plasticity and memory. In conclusion, targeting mitochondrial bioenergetics might provide a promising new way to treat cognitive impairments in AD and reduce disease progression.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Neurodegenerativas , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Proteoma , Placa Amiloide/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle , Ácidos Graxos
11.
Mol Brain ; 15(1): 74, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038926

RESUMO

Accumulating evidence has shown that intestinal inflammations in inflammatory bowel disease (IBD) also drive pathological responses in organs outside the intestine, including the brain. Previous studies using the dextran sodium sulfate (DSS)-induced colitis model have shown that colonic inflammation contributes to the development of anxiety- and depression-related behaviors; however, little is known about whether memory function is affected. Here, we subjected male and female C57BL/6J mice to DSS-induced colitis for 6 days, followed by Pavlovian conditioned fear (CF) tests 15 days after the start of inflammation, when local colonic inflammation has receded. The contextual and cued CF tests were used to assess associative fear memory. We found that DSS-induced colitis led to significant impairment in contextual fear memory in both male and female mice; on the other hand, auditory cued fear memories were comparable between control and DSS-treated mice. There were marked signs of astrogliosis in the hippocampal regions 17 days (D17) after colitis induction. Furthermore, molecular characterization of hippocampi showed marked but transient increases in the expression of inflammatory genes Nfkb, Trem2 (microglial marker), GFAP (astrocyte marker), Il1b, and S100a8 in DSS-treated mice. While the expression of Nfkb, Trem2, and GFAP showed a peak on day 10, the S100a8 expression was high on days 10 and 17 and subsided on day 42. Interestingly, expression of Bdnf remained elevated in the times assessed (D10, 17, 42). Together, these results demonstrated that DSS-induced colitis could induce prolonged neuroinflammation and impaired contextual fear memory.


Assuntos
Colite , Animais , Colite/complicações , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Medo , Feminino , Inflamação/patologia , Masculino , Glicoproteínas de Membrana , Memória , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B , Receptores Imunológicos
12.
Neuropharmacology ; 218: 109215, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35977628

RESUMO

We recently reported that the competitive NMDAR antagonist (R,S)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) does not suppress NMDAR-mediated field EPSPs (fEPSPNMDA) or long-term potentiation (LTP) in vitro at concentrations that block contextual conditioning in vivo. Here we tested one possible explanation for the mismatch - that the hippocampus is relatively resistant to CPP compared to other brain structures engaged in contextual fear conditioning. Using the context pre-exposure facilitation effect (CPFE) paradigm to separate the hippocampal and extra-hippocampal components of contextual learning, we found that the active enantiomer (R)-CPP suppressed the hippocampal component with an IC50 of 3.1 mg/kg, a dose that produces brain concentrations below those required to block fEPSPNMDA or LTP. Moreover, using in-vivo calcium imaging of place cells and spatial engrams to directly assess hippocampal spatial coding, we found that (R)-CPP dose-dependently reduced the development of place cells and interfered with the formation of stable spatial engrams when it was administered prior to exposing mice to a novel context. Both effects occurred at doses that interfered with freezing to context in CPFE experiments. We conclude that (R)-CPP blocks memory formation by interfering with hippocampal function, but that it does so by modulating NMDARs at sites that are not engaged in vitro in the same manner that they are in vivo - perhaps through interneuron circuits that do not contribute to fEPSPs and are not required to elicit LTP using standard induction protocols in vitro, but are essential for successful mnemonic function in vivo.


Assuntos
Células de Lugar , Animais , Camundongos , Hipocampo , Memória , N-Metilaspartato/farmacologia , Células de Lugar/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
13.
Biochem Biophys Res Commun ; 622: 8-14, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-35841770

RESUMO

Post-traumatic stress disorder (PTSD) is a pathological fear memory-related disease. The persistence of pathological fearful memories is one of the most characteristic symptoms of PTSD. However, this can be eliminated by intervening in reconsolidation. Inflammation is intimately involved in the pathophysiologic progression of PTSD. Amentoflavone (AF) has anti-inflammatory effects. However, the effect of AF on fear memory reconsolidation remains unclear. In the present series of experiments, the CFC paradigm of rats were constructed. This was followed by AF administration immediately after exposure to the conditioning chamber to observe the maintenance of fear memory. Finally, a Western blot for the amygdala was used to explore the possible molecular biological mechanisms of AF affecting animal behavior. The findings suggest that re-exposure to the conditioning chamber for retrieval of CFC memory followed by immediate intragastric AF administration in rats attenuated the fear response for at least 14 days. In addition, the Western blot results show that the CFC memory intervention effect of AF administration during the reconsolidation phase may be related to the ERK signaling pathway inhibition. In general, the administration of AF in the reconsolidation phase to inhibit neuroinflammation can block the reconsolidation process and disrupt fear memory retention in the long term, at least in part through ERK pathway.


Assuntos
Medo , Sistema de Sinalização das MAP Quinases , Tonsila do Cerebelo/metabolismo , Animais , Biflavonoides , Medo/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Memória , Ratos
14.
Front Pharmacol ; 13: 927296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754477

RESUMO

FOXG1 syndrome (FS, aka a congenital variant of Rett syndrome) is a recently defined rare and devastating neurodevelopmental disorder characterized by various symptoms, including severe intellectual disability, autistic features, involuntary, and continuous jerky movements, feeding problems, sleep disturbances, seizures, irritability, and excessive crying. FS results from mutations in a single allele of the FOXG1 gene, leading to impaired FOXG1 function. Therefore, in establishing mouse models for FS, it is important to test if heterozygous (HET) mutation in the Foxg1 gene, mimicking genotypes of the human FS individuals, also manifests phenotypes similar to their symptoms. We analyzed HET mice with a null mutation allele in a single copy of Foxg1, and found that they show various phenotypes resembling the symptoms of the human FS individuals. These include increased anxiety in the open field as well as impairment in object recognition, motor coordination, and fear learning and contextual and cued fear memory. Our results suggest that Foxg1 HET mice recapitulate at least some symptoms of the human FS individuals.

15.
Psychoneuroendocrinology ; 141: 105757, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35427951

RESUMO

Previous studies have suggested that the basolateral amygdala (BLA) and the ventral hippocampus (VH) are critical sites for predator-related fear memory. Predator exposure is an intense emotional experience and should increase plasmatic corticosterone likely to modulate the emotion-related memories. However, it is unclear whether the BLA and VH harbor plastic events underlying predator-related fear memory storage and how molecular and endocrine mechanisms interact to modulate memory to the predatory threat. Here, we first examined the effects of protein synthesis inhibition in the BLA and VH on fear memory to a predatory threat. We next evaluated how exposure to a predatory threat impacts the corticosterone release and how the inhibition of corticosterone synthesis can influence predator-related fear memory. Finally, we examined how predator exposure triggers the activation of glucocorticoid and mineralocorticoid receptors in the BLA and VH and whether the GR antagonist injection affects predator-related fear memory. We showed that predator-related contextual fear is dependent on protein synthesis in the BLA and VH. Moreover, we described the impact of rapid glucocorticoid release during predatory exposure on the formation of contextual fear responses and that GR-induced signaling facilitates memory consolidation within the BLA and VH. The results are relevant in understanding how life-threatening situations such as a predator encounter impact fear memory storage and open exciting perspectives to investigate GR-induced proteins as targets to deciphering and manipulating aversive memories.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Complexo Nuclear Basolateral da Amígdala/metabolismo , Corticosterona/metabolismo , Medo/fisiologia , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Hipocampo/metabolismo , Receptores de Glucocorticoides/metabolismo
16.
J Neurosci ; 42(5): 877-893, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34876468

RESUMO

The retrieval of recent and remote memories are thought to rely on distinct brain circuits and mechanisms. The retrosplenial cortex (RSC) is robustly activated during the retrieval of remotely acquired contextual fear memories (CFMs), but the contribution of particular subdivisions [granular (RSG) vs agranular retrosplenial area (RSA)] and the circuit mechanisms through which they interact to retrieve remote memories remain unexplored. In this study, using both anterograde and retrograde viral tracing approaches, we identified excitatory projections from layer 5 pyramidal neurons of the RSG to the CA1 stratum radiatum/lacunosum-moleculare of the dorsal hippocampus and the superficial layers of the RSA in male mice. We found that chemogenetic or optogenetic inhibition of the RSG-to-CA1, but not the RSG-to-RSA, pathway selectively impairs the retrieval of remote CFMs. Collectively, our results uncover a specific role for the RSG in remote CFM recall and provide circuit evidence that RSG-mediated remote CFM retrieval relies on direct RSG-to-CA1 connectivity. The present study provides a better understanding of brain circuit mechanisms underlying the retrieval of remote CFMs and may help guide the development of therapeutic strategies to attenuate remote traumatic memories that lead to mental health issues such as post-traumatic stress disorder.SIGNIFICANCE STATEMENT The RSC is implicated in contextual information processing and remote recall. However, how different subdivisions of the RSC and circuit mechanisms through which they interact to underlie remote memory recall remain unexplored. This study shows that granular subdivision of the RSC and its input to hippocampal area CA1 contributes to the retrieval of remote contextual fear memories. Our results support the hypothesis that the RSC and hippocampus require each other to preserve fear memories and may provide a novel therapeutic avenue to attenuate remote traumatic memories in patients with post-traumatic stress disorder.


Assuntos
Medo , Giro do Cíngulo/fisiologia , Rememoração Mental , Células Piramidais/fisiologia , Animais , Giro do Cíngulo/citologia , Hipocampo/citologia , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Eur J Pharmacol ; 914: 174658, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34861211

RESUMO

Post-traumatic stress disorder (PTSD) is characterized by an enhancement of traumatic memory. Intervention strategies based on the different stages of memory have been shown to be effective in the prevention and control of PTSD. The endogenous gaseous molecule, sulfur dioxide (SO2), has been reported to significantly exert neuromodulatory effects; however, its regulation of learning and memory remains unestablished. This study aimed to investigate the effects of exogenous SO2 derivatives administration on the formation, consolidation, reconsolidation, retention, and expression of contextual fear memory. Behavioral results showed that both intraperitoneal injection (50 mg/kg, ip) and hippocampal infusion (5 µg/side) of SO2 derivatives (a mixture of sodium sulfite and sodium bisulfite, Na2SO3/NaHSO3, 3:1 M/M) significantly impaired consolidation but had no effect on reconsolidation and retention of contextual fear memory. These findings suggest that the attenuating effects of SO2 on the consolidation of fear memory involves, at least partially, the region of the hippocampus. The findings of this study provide direct evidence for the development of new strategies for PTSD prevention and treatment involving the use of gaseous SO2.


Assuntos
Medo , Consolidação da Memória , Memória , Transtornos de Estresse Pós-Traumáticos , Dióxido de Enxofre/farmacologia , Animais , Animais não Endogâmicos , Vias de Administração de Medicamentos , Medo/efeitos dos fármacos , Medo/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Memória/fisiologia , Consolidação da Memória/efeitos dos fármacos , Consolidação da Memória/fisiologia , Camundongos , Neurotransmissores/farmacologia , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/psicologia , Sulfitos/farmacologia
18.
Mol Brain ; 14(1): 162, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749771

RESUMO

Molecular and cellular mechanisms underlying the role of the prelimbic cortex in contextual fear memory remain elusive. Here we examined the kinesin family of molecular motor proteins (KIFs) in the prelimbic cortex for their role in mediating contextual fear, a form of associative memory. KIFs function as critical mediators of synaptic transmission and plasticity by their ability to modulate microtubule function and transport of gene products. However, the regulation and function of KIFs in the prelimbic cortex insofar as mediating memory consolidation is not known. We find that within one hour of contextual fear conditioning, the expression of KIF3B is upregulated in the prelimbic but not the infralimbic cortex. Importantly, lentiviral-mediated knockdown of KIF3B in the prelimbic cortex produces deficits in consolidation while reducing freezing behavior during extinction of contextual fear. We also find that the depletion of KIF3B increases spine density within prelimbic neurons. Taken together, these results illuminate a key role for KIF3B in the prelimbic cortex as far as mediating contextual fear memory.


Assuntos
Extinção Psicológica , Memória , Córtex Cerebral , Extinção Psicológica/fisiologia , Medo/fisiologia , Memória/fisiologia , Córtex Pré-Frontal/metabolismo
19.
Alzheimers Res Ther ; 13(1): 165, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625112

RESUMO

BACKGROUND: Accumulation of amyloid beta oligomers (AßO) in Alzheimer's disease (AD) impairs hippocampal long-term potentiation (LTP), leading to memory deficits. Thus, identifying the molecular targets of AßO involved in LTP inhibition is critical for developing therapeutics for AD. Endocannabinoid (eCB) synthesis and release, a process collectively called eCB mobilization by hippocampal CA1 pyramidal cells, is known to facilitate LTP induction. eCB can be mobilized either by postsynaptic depolarization in an intracellular Ca2+ concentration ([Ca2+]i)-dependent pathway or by group 1 metabotropic glutamate receptor (mGluR) activation in a phospholipase Cß (PLCß)-dependent pathway. Moreover, group 1 mGluR activation during postsynaptic depolarization, which is likely to occur in vivo during memory processing, can cause synergistic enhancement of eCB (S-eCB) mobilization in a PLCß-dependent pathway. Although AßO has been shown to disrupt [Ca2+]i-dependent eCB mobilization, the effect of AßO on PLCß-dependent S-eCB mobilization and its association with LTP and hippocampus-dependent memory impairments in AD is unknown. METHODS: We used in vitro whole-cell patch-clamp recordings and western blot analyses to investigate the effect of AßO on PLCß protein levels, PLCß-dependent S-eCB mobilization, and spike-timing-dependent potentiation (tLTP) in AßO-treated rat hippocampal slices in vitro. In addition, we assessed the relationship between PLCß protein levels and hippocampus-dependent memory impairment by performing a contextual fear memory task in vivo in the 5XFAD mouse model of AD. RESULTS: We found that AßO treatment in rat hippocampal slices in vitro decreased hippocampal PLCß1 protein levels and disrupted S-eCB mobilization, as measured by western blot analysis and in vitro whole-cell patch-clamp recordings. This consequently led to the impairment of NMDA receptor (NMDAR)-mediated tLTP at CA3-CA1 excitatory synapses in AßO-treated rat hippocampal slices in vitro. Application of the PLCß activator, m-3M3FBS, in rat hippocampal slices reinstated PLCß1 protein levels to fully restore S-eCB mobilization and NMDAR-mediated tLTP. In addition, direct hippocampal injection of m-3M3FBS in 5XFAD mice reinstated PLCß1 protein levels to those observed in wild type control mice and fully restored hippocampus-dependent contextual fear memory in vivo in 5XFAD mice. CONCLUSION: We suggest that these results might be the consequence of memory impairment in AD by disrupting S-eCB mobilization. Therefore, we propose that PLCß-dependent S-eCB mobilization could provide a new therapeutic strategy for treating memory deficits in AD.


Assuntos
Doença de Alzheimer , Amiloidose , Peptídeos beta-Amiloides/metabolismo , Animais , Endocanabinoides , Medo , Hipocampo/metabolismo , Camundongos , Fosfolipase C beta , Ratos
20.
Brain Behav Immun ; 94: 79-88, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33677026

RESUMO

Neural inflammation is associated with cognitive decline, especially learning and memory. Tumor necrosis factor α (TNFα) is a major cytokine generated during neuroinflammation. Previous studies indicated that TNFα impairs hippocampus-dependent memory including contextual fear and spatial memories. However, it is unknown which memory processes are impaired by TNFα. Here, we show that TNFα blocked the retrieval and reconsolidation of contextual fear and spatial memories. Micro-infusion of TNFα into the dorsal hippocampus at 6-18 h before retrieval impaired the retrieval of contextual fear memory, although micro-infusion before contextual fear conditioning had no effect on memory formation. Interestingly, hippocampal TNFα micro-infusion before memory retrieval decreased freezing responses, even at 24 h after retrieval, suggesting that TNFα impairs the reconsolidation of contextual fear memory. Similarly, hippocampal TNFα micro-infusion impaired the retrieval and reconsolidation of spatial memory in the Morris water maze. Consistent with these observations, hippocampal TNFα micro-infusion before retrieval blocked the induction of c-fos expression in the hippocampus, which is a marker of neural activation, in response to the retrieval of contextual fear memory. Collectively, our findings indicate that TNFα negatively regulates the retrieval and reconsolidation of hippocampus-dependent memory.


Assuntos
Medo , Hipocampo , Memória Espacial , Fator de Necrose Tumoral alfa , Animais , Hipocampo/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...