Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 406
Filtrar
1.
J Med Entomol ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39373161

RESUMO

Culex quinquefasciatus is an important mosquito vector responsible for the transmission of filarial worms, arthropod-borne viruses like Oropouche, St. Louis encephalitis, and West Nile and protozoans that cause avian malaria. Due to insecticide resistance documented in Cx. quinquefasciatus populations worldwide, integrated vector management programs can benefit from new strategies to control this species. The In2Care Mosquito Station (In2Care station), a commercially available dissemination station containing pyriproxyfen (PPF) and Beauveria bassiana spores, has been shown to be effective against skip-ovipositing Aedes aegypti and Aedes albopictus in previously conducted semifield and field trials. To determine the potential of Cx. quinquefasciatus adult females to autodisseminate PPF and if the In2Care station could be used for Cx. quinquefasciatus control, we assessed its efficacy in a semifield setting against wild Cx. quinquefasciatus. We found that the In2Care station was attractive to gravid Cx. quinquefasciatus females, with a significantly higher percentage of egg rafts laid in the In2Care station compared to alternative ovipots. Adult females successfully autodisseminated PPF from the In2Care station to surrounding ovipots, leading to a significant increase in mosquito emergence inhibition. Additionally, adult Cx. quinquefasciatus exposure to B. bassiana spores significantly reduced mosquito survivorship. These results suggest that the In2Care station may be effective against Cx. quinquefasciatus in addition to Ae. aegypti and Ae. albopictus. Additional field evaluations are needed to assess impacts at the population level.

2.
Vet Res ; 55(1): 109, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294772

RESUMO

The ongoing epidemic of flaviviruses worldwide has underscored the importance of studying flavivirus vector competence, considering their close association with mosquito vectors. Tembusu virus is an avian-related mosquito-borne flavivirus that has been an epidemic in China and Southeast Asia since 2010. However, the reason for the outbreak of Tembusu virus in 2010 remains unclear, and it is unknown whether changes in vector transmission played an essential role in this process. To address these questions, we conducted a study using Culex quinquefasciatus as a model for Tembusu virus infection, employing both oral infection and microinjection methods. Our findings confirmed that both vertical and venereal transmission collectively contribute to the cycle of Tembusu virus within the mosquito population, with persistent infections observed. Importantly, our data revealed that the prototypical Tembusu virus MM_1775 strain exhibited significantly greater infectivity and transmission rates in mosquitoes than did the duck Tembusu virus (CQW1 strain). Furthermore, we revealed that the viral E protein and 3' untranslated region are key elements responsible for these differences. In conclusion, our study sheds light on mosquito transmission of Tembusu virus and provides valuable insights into the factors influencing its infectivity and transmission rates. These findings contribute to a better understanding of Tembusu virus epidemiology and can potentially aid in the development of strategies to control its spread.


Assuntos
Culex , Infecções por Flavivirus , Flavivirus , Mosquitos Vetores , Animais , Culex/virologia , Flavivirus/fisiologia , Infecções por Flavivirus/veterinária , Infecções por Flavivirus/transmissão , Infecções por Flavivirus/virologia , Mosquitos Vetores/virologia , Feminino
3.
Trop Med Infect Dis ; 9(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39330890

RESUMO

West Nile Virus (WNV) poses a significant global public health threat as a mosquito-borne pathogen. While laboratory mouse models have historically played a crucial role in understanding virus biology, recent research has focused on utilizing immunocompromised models to study arboviruses like dengue and Zika viruses, particularly their interactions with Aedes aegypti mosquitoes. However, there has been a shortage of suitable mouse models for investigating WNV and St. Louis encephalitis virus interactions with their primary vectors, Culex spp. mosquitoes. Here, we establish the AG129 mouse (IFN α/ß/γ R-/-) as an effective vertebrate model for examining mosquito-WNV interactions. Following intraperitoneal injection, AG129 mice exhibited transient viremia lasting several days, peaking on the second or third day post-infection, which is sufficient to infect Culex quinquefasciatus mosquitoes during a blood meal. We also observed WNV replication in the midgut and dissemination to other tissues, including the fat body, in infected mosquitoes. Notably, infectious virions were present in the saliva of a viremic AG129 mouse 16 days post-exposure, indicating successful transmission capacity. These findings highlight the utility of AG129 mice for studying vector competence and WNV-mosquito interactions.

4.
Parasit Vectors ; 17(1): 399, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300572

RESUMO

BACKGROUND: The recent rise in the transmission of mosquito-borne diseases such as dengue virus (DENV), Zika (ZIKV), chikungunya (CHIKV), Oropouche (OROV), and West Nile (WNV) is a major concern for public health managers worldwide. Emerging technologies for automated remote mosquito classification can be supplemented to improve surveillance systems and provide valuable information regarding mosquito vector catches in real time. METHODS: We coupled an optical sensor to the entrance of a standard mosquito suction trap (BG-Mosquitaire) to record 9151 insect flights in two Brazilian cities: Rio de Janeiro and Brasilia. The traps and sensors remained in the field for approximately 1 year. A total of 1383 mosquito flights were recorded from the target species: Aedes aegypti and Culex quinquefasciatus. Mosquito classification was based on previous models developed and trained using European populations of Aedes albopictus and Culex pipiens. RESULTS: The VECTRACK sensor was able to discriminate the target mosquitoes (Aedes and Culex genera) from non-target insects with an accuracy of 99.8%. Considering only mosquito vectors, the classification between Aedes and Culex achieved an accuracy of 93.7%. The sex classification worked better for Cx. quinquefasciatus (accuracy: 95%; specificity: 95.3%) than for Ae. aegypti (accuracy: 92.1%; specificity: 88.4%). CONCLUSIONS: The data reported herein show high accuracy, sensitivity, specificity and precision of an automated optical sensor in classifying target mosquito species, genus and sex. Similar results were obtained in two different Brazilian cities, suggesting high reliability of our findings. Surprisingly, the model developed for European populations of Ae. albopictus worked well for Brazilian Ae. aegypti populations, and the model developed and trained for Cx. pipiens was able to classify Brazilian Cx. quinquefasciatus populations. Our findings suggest this optical sensor can be integrated into mosquito surveillance methods and generate accurate automatic real-time monitoring of medically relevant mosquito species.


Assuntos
Aedes , Culex , Mosquitos Vetores , Animais , Aedes/classificação , Aedes/fisiologia , Culex/classificação , Mosquitos Vetores/classificação , Brasil , Feminino , Masculino , Controle de Mosquitos/métodos , Controle de Mosquitos/instrumentação
5.
Sci Rep ; 14(1): 20677, 2024 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237741

RESUMO

Mosquito-borne diseases, such as malaria, dengue, and Zika, pose major public health challenges globally, affecting millions of people. The growing resistance of mosquito populations to synthetic insecticides underscores the critical need for effective and environmentally friendly larvicides. Although chemical pesticides can initially be effective, they often lead to negative environmental consequences and health hazards for non-target species, including humans. This study aimed to evaluate the larvicidal effects of Trachyspermum ammi essential oil and Delphinium speciosum extract on the larvae of three major mosquito species: Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Mosquito larvae of Ae. aegypti, An. stephensi, and Cx. quinquefasciatus were reared under controlled laboratory conditions. The larvicidal activity of T. ammi essential oil and D. speciosum extract was evaluated through standard bioassays, using various concentrations of essential oils (10, 20, 40, 80, and 160 ppm) and extracts (160, 320, 640, 1280, and 2560 ppm) to determine the lethal concentration (LC50) values after 24 h of exposure. Fresh plant materials were collected, with the essential oil extracted via hydro-distillation, and the extract prepared using methanol solvent extraction. The chemical composition of T. ammi essential oil was examined using gas chromatography-mass spectrometry (GC-MS). Additionally, the preliminary analysis of the chemical compounds in D. speciosum extract was carried out using thin layer chromatography (TLC) and nuclear magnetic resonance spectroscopy (NMR) techniques. The results indicated that the essential oil of T. ammi exhibited more effective larvicidal activity compared to the D. speciosum extract. Specifically, the essential oil demonstrated LC50 values of 18 ppm for Cx. quinquefasciatus and 19 ppm for Ae. aegypti. In contrast, the D. speciosum extract showed the strongest larvicidal effect against An. stephensi, with an LC50 of 517 ppm. Concentrations of 40 ppm of the essential oil and 1280 ppm of the extract resulted in 100% mortality across all three species. Both the essential oil of T. ammi and the D. speciosum extract exhibited concentration-dependent larvicidal activity, and these results were statistically significant (p < 0.001) compared to the no-treatment group. GC-MS analysis revealed thymol (88.95%), o-cymen-5-ol (4.11%), and γ-terpinene (2.10%) as the major constituents of the T. ammi essential oil. Additionally, TLC verified the presence of alkaloids in both chloroform and methanolic extracts. Proton NMR identified a diterpene structure for these alkaloids. These findings suggest that T. ammi essential oil is a promising candidate for natural mosquito control strategies. Given its efficacy, further research is warranted to explore its potential in integrated vector management programs.


Assuntos
Delphinium , Inseticidas , Larva , Mosquitos Vetores , Óleos Voláteis , Extratos Vegetais , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Larva/efeitos dos fármacos , Mosquitos Vetores/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Inseticidas/farmacologia , Inseticidas/química , Delphinium/química , Aedes/efeitos dos fármacos , Dengue , Malária/prevenção & controle , Anopheles/efeitos dos fármacos , Filariose , Culex/efeitos dos fármacos , Controle de Mosquitos/métodos
6.
Pest Manag Sci ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225317

RESUMO

BACKGROUND: Spinosad consists of spinosyn A and spinosyn D that are produced by the soil-dwelling actinomycete Saccharopolyspora spinosa. It has been used to control a wide variety of arthropod pests of economic importance. Formulations of spinosad have been used to control larval mosquitoes since approximately 2010. However, the target site- and metabolism-based resistance to this neurotoxin has been reported since 2000 in agricultural pests The current studies aim to further evaluate resistance risk and develop resistance prevention tactics in the southern house mosquito Culex quinquefasciatus. RESULTS: The first comparison group involved selection at lethal concentration, 75% (LC75) of technical spinosad for 30 generations, resulting in baseline resistance ratios (RRs) of 51.1-fold at LC50 and 45.4-fold at LC90 in Cx. quinquefasciatus. However, under the same conditions, selection by a combination of spinosad and Bacillus thuringiensis subsp. israelensis (B.t.i.), negated resistance development to spinosad, RRs ranging 1.00-1.75-fold at LC50 and 0.83-1.76-fold at LC90. At the same time, the selected population remained susceptible to the combination throughout the selection process, RRs fluctuating 0.74-1.38-fold at LC50 and 0.63-1.23-fold at LC90. CONCLUSION: Combination of spinosad and B.t.i. negates resistance development to spinosad, as opposed to spinosad alone in Cx. quinquefasciatus. Moreover, the species tested does not develop resistance to this combination upon repeated exposures, implying the potential for further developing this combination as a viable product for larval mosquito control. © 2024 Society of Chemical Industry.

7.
Environ Sci Pollut Res Int ; 31(40): 53026-53039, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39172337

RESUMO

Environmental pollution, being a major concern worldwide, needs a unique and ecofriendly solution. To answer this, researchers are aiming in utilizing plant extracts for the synthesis of nanoparticles. These NPs synthesized using plant extracts provide a potential, environmentally benign technique for biological and photocatalytic applications. Especially, plant leaf extracts have been safe, inexpensive, and eco-friendly materials for the production of nanoparticles in a greener way. In this work, zinc ferrite nanoparticles (ZnFe2O4 NPs) were prepared using Nyctanthes arbor-tristis leaf extract by hydrothermal method, and its biological and photocatalytic properties were assessed. The synthesized ZnFe2O4 NPs were characterized using powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FT-IR). X-ray diffraction confirmed the arrangement of the fcc crystal structure of the nanoparticles and that some organic substances were encapsulated within the zinc ferrite. According to the SEM analysis, the resulting nanoparticles got agglomerated and spherical in shape. The ZnFe2O4 nanoparticles are in their pure form, and all of their elemental compositions were shown by the energy-dispersive X-ray analysis (EDAX) spectrum. The FTIR results revealed that the produced nanoparticles contained distinctive functional groups. Fluorescence spectroscopy was used to examine the binding affinities between bovine serum albumin (BSA) and ZnFe2O4 nanoparticles in terms of protein binding, stability, and conformation. The interaction between BSA and ZnFe2O4 NPs was examined using steady-state and time-resolved fluorescence measurements, and it was evident that static quenching occurred. The ability of ZnFe2O4 nanoparticles to kill Culex quinquefasciatus (C. quinquefasciatus) larvae was evaluated. The synthesized NPs demonstrated a noteworthy toxic effect against the fourth instar larvae of C. quinquefasciatus with LC50 values of 43.529 µg/mL and LC90 values of 276.867 µg/mL. This study revealed the toxicity of green synthesized ZnFe2O4 NPs on mosquito larvae, proving that these NPs are good and effective larvicides. Furthermore, the ZnFe2O4 NPs were utilized for dye degradation of methylene blue under visible light treatment and achieved 99.5% degradation.


Assuntos
Compostos Férricos , Zinco , Compostos Férricos/química , Zinco/química , Animais , Nanopartículas/química , Química Verde , Asteraceae/química , Larva/efeitos dos fármacos , Catálise , Extratos Vegetais/química
8.
Environ Sci Pollut Res Int ; 31(40): 53135-53139, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39174827

RESUMO

Musca domestica L., a common housefly, and Culex quinquefasciatus mosquito are quite well-known pests that can transfer a wide range of diseases to humans as well as animals. In this study, various isoborneol derivatives including esters, ethers, and thioethers were synthesized from isoborneol under mild conditions. These derivatives were evaluated for inhibition of house-fly M. domestica adults and Cx. quinquefasciatus larvae. Two of the synthesized isoborneol ester derivatives (2 and 3) showed good activity against both insect species. Additional two derivatives (6 and 9) were active against M. domestica L., and the derivatives (1-3, 8) were active against Cx. quinquefasciatus larvae.


Assuntos
Culex , Moscas Domésticas , Inseticidas , Larva , Animais , Moscas Domésticas/efeitos dos fármacos , Culex/efeitos dos fármacos , Inseticidas/farmacologia , Inseticidas/química , Larva/efeitos dos fármacos
9.
Vet World ; 17(7): 1538-1544, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39185036

RESUMO

Background and Aim: Mosquitoes carry numerous diseases of medical and veterinary significance. While citronella essential oil is safe as a mosquito repellent, extensive research does not document its ability to deter mosquitoes from animals. This study assessed the citronella essential oil bath bomb's ability to repel Culex quinquefasciatus mosquitoes in dogs. Materials and Methods: Citronella essential oil's chemical composition was analyzed using gas chromatography-mass spectrometry (GC-MS). Through freeze-thaw testing, a bath bomb formulation containing 6% w/w citronella essential oil was assessed for its physical and chemical stability. Thirty-two healthy client-owned mixed-breed dogs were employed to test the mosquito-repellency effects of citronella essential oil (treatment group) and olive oil (control group) bath bomb formulations. Bath bombs were tested for irritation effects on animal skin for 15-day post-application. Results: Thirty-six compounds were identified through GC-MS, with citronellal (23.38%), δ-cadinene (12.25%), and geraniol (9.09%) being the most prevalent constituents. The bath bomb maintained its original physical properties after undergoing six freeze-thawing cycles and retained over 90% of its citronella essential oil. About 100%, 69.28%, and 65.58% mosquito repellency were displayed by the citronella essential oil bath bomb at 3 h, 6 h, and 8 h, respectively. None of the test animals exhibited skin irritation during the study. Conclusion: The citronella bath bomb effectively repelled C. quinquefasciatus in dogs without irritating their skin. The formulation's physical and chemical stability is demonstrated by the results of freeze-thaw stability testing. Further studies should be conducted to evaluate the repelling activity against other mosquito species.

10.
J Chem Ecol ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001967

RESUMO

Gravid culicine mosquitoes rely on olfactory cues for selecting breeding sites containing organic detritus. While this capacity of the mosquitoes is used for surveillance and control, the current methodology is unwieldy, unreliable and expensive in time and labour. This study evaluated the dose-dependent attraction and oviposition response of gravid Culex quinquefasciatus to alfalfa infusions. Through combined chemical and electrophysiological analyses, bioactive volatile organic compounds (VOCs) in the headspace of alfalfa infusions, eliciting attraction, were identified. While phenolic and indolic compounds were the most abundant bioactive VOCs, additional VOCs, including a monoterpene, were required to elicit a significant behavioural response to the synthetic odour blend of alfalfa infusions. Comparative analysis with the commercially available mosquito oviposition pheromone (MOP) was also conducted demonstrating that this standardised synthetic alfalfa infusion odour blend offers a promising lure for targeted surveillance and control of Culex mosquitoes, which may contribute to disease prevention and public health protection.

11.
Antibiotics (Basel) ; 13(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39061300

RESUMO

The emergence of antimicrobial resistance (AMR) in pathogens and their spillover into the environment have become a global public health menace. Insects can acquire these pathogens from the environment and would serve as mechanical and biological vectors. The current study assessed the ability of Culex quinquefasciatus mosquitoes to acquire methicillin-resistant Staphylococcus aureus (MRSA) through the exposure of the mosquitoes to the pathogen via rearing water, blood feed, or a feeding membrane under laboratory conditions. In addition, mosquito immatures collected from their habitat in the vicinity of hospitals, veterinary dispensaries, and butcher shops at 15 study sites in Puducherry were screened for MRSA infection. All samples were subjected to the culture-based isolation of S. aureus from the surface and homogenate. The presence of the S. aureus-specific nuc gene and the genes that confer resistance to methicillin (mecA and mecC) were screened using PCR tests. MRSA was not evident either on the external surface or in the homogenate of the mosquitoes emerging from the larvae reared in the MRSA-spiked water or those fed with MRSA through blood or smeared membranes. Furthermore, the presence of MRSA was not evident in any of the field-caught mosquitoes. Hence, we conclude that C. quinquefasciatus mosquitoes are impervious to MRSA colonization.

12.
Sci Rep ; 14(1): 16780, 2024 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039168

RESUMO

Lymphatic filariasis (LF) is a crippling and disfiguring parasitic condition. India accounts for 55% of the world's LF burden. The filarial parasite Wuchereria bancrofti is known to cause 99.4% of the cases while, Brugia malayi accounts for 0.6% of the issue occurring mainly in some pockets of Odisha and Kerala states. The Balasore (Baleswar) district of Odisha has been a known focus of B. malayi transmission. We employed molecular xenomonitoring to detect filarial parasite DNA in vectors. In six selected villages, Gravid traps were used to collect Culex mosquitoes and hand catch method using aspirators was followed for collection of mansonioides. A total of 2903 mosquitoes comprising of Cx. quinquefasciatus (n = 2611; 89.94%), Cx. tritaeniorhynchus (n = 100; 3.44%), Mansonia annuliferea (n = 139; 4.78%) and Mansonia uniformis (n = 53; 1.82%) were collected from six endemic villages. The species wise mosquitoes were made into 118 pools, each with a maximum of 25 mosquitoes, dried and transported to the laboratory at VCRC, Puducherry. The mosquito pools were subjected to parasite DNA extraction, followed by Real-time PCR using LDR and HhaI probes to detect W. bancrofti and B. malayi infections, respectively. Seven pools (6.66%) of Cx. quinquefasciatus, showed infection with only W. bancrofti while none of the pools of other mosquito species showed infection with either W. bancrofti or B. malayi. Although the study area is endemic to B. malayi, none of the vectors of B. malayi was found with parasite infection. This study highlights the ongoing transmission of bancroftian filariasis in the study villages of Balasore district of Odisha and its implications for evaluating LF elimination programme.


Assuntos
Brugia Malayi , Filariose Linfática , Wuchereria bancrofti , Animais , Wuchereria bancrofti/isolamento & purificação , Wuchereria bancrofti/genética , Índia/epidemiologia , Brugia Malayi/genética , Brugia Malayi/isolamento & purificação , Filariose Linfática/epidemiologia , Filariose Linfática/parasitologia , Filariose Linfática/transmissão , Humanos , Mosquitos Vetores/parasitologia , Culex/parasitologia , Doenças Endêmicas , Feminino , DNA de Helmintos/genética , DNA de Helmintos/análise , Filariose/epidemiologia , Filariose/parasitologia , Filariose/transmissão
13.
Molecules ; 29(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38893531

RESUMO

In this study, the chemical composition, repellent, and oviposition deterrent effects of five plant essential oils (EOs) extracted from Lantana camara (Verbenaceae), Schinus terebinthifolia (Anacardiaceae), Callistemon viminalis (Myrtaceae), Helichrysum odoratissimum (Asteraceae), and Hyptis suaveolens (Lamiaceae) were evaluated against Aedes aegypti, Anopheles gambiae, and Culex quinquefasciatus. When tested at 33.3 µg/cm2, L. camara, S. terebinthifolia, C. viminalis, and H. odoratissimum were effective repellents against Ae. aegypti (89%, 91%, 90%, and 51% repellency, respectively), but they were less repellent against An. gambiae (66%, 86%, 59%, and 49% repellency, respectively). Interestingly, L. camara, S. terebinthifolia, C. viminalis, and H. odoratissimum exhibited 100% repellency against Cx. quinquefasciatus at 33.3 µg/cm2. In time-span bioassays performed at 333 µg/cm2, the EO of L. camara exhibited 100% repellence against Ae. aegypti and An. gambiae for up to 15 min and against Cx. quinquefasciatus for 75 min. The oviposition bioassays revealed that L. camara exhibited the highest activity, showing 85%, 59%, and 89% oviposition deterrence against Ae. aegypti, An. gambiae, and Cx. quinquefasciatus, respectively. The major compounds of L. camara, S. terebinthifolia, and C. viminalis were trans-ß-caryophyllene (16.7%), α-pinene (15.5%), and 1,8-cineole (38.1%), respectively. In conclusion, the L. camara and S. terebinthifolia EOs have the potential to be natural mosquito repellents.


Assuntos
Aedes , Repelentes de Insetos , Óleos Voláteis , Oviposição , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Repelentes de Insetos/farmacologia , Repelentes de Insetos/química , Oviposição/efeitos dos fármacos , Aedes/efeitos dos fármacos , Culex/efeitos dos fármacos , Anopheles/efeitos dos fármacos , Anopheles/fisiologia , Culicidae/efeitos dos fármacos , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Lantana/química , Anacardiaceae/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Feminino
14.
Pest Manag Sci ; 80(10): 5200-5211, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38873906

RESUMO

BACKGROUND: Vector mosquito control is important for preventing and controlling mosquito-borne infectious diseases. This study designed and developed a mosquito killer (MK) with a specific light wavelength, simulated human body temperature, human odor, and a photocatalyst to stimulate CO2 based on the physiological characteristics and ecological habits of mosquitoes. We tested the trapping effect of individual and multiple mosquito-trapping elements of the MK through two-way selection experiments and compared them with several commercial mosquito traps. RESULTS: The 365 nm wavelength MK was significantly more effective than the 395 nm (Cx. quinquefasciatus: 62.00% vs. 34.25%; Ae. albopictus: 50.75% vs 45.00%, An. sinensis: 49.75% vs 39.00%). Mosquitoes captured by the MK with heaters at 365 nm were significantly more than those captured by the MK without heaters at 365 nm. A trap with a 365 nm wavelength, heating element, and lure showed significantly better capture effectiveness than MK with a 365 nm wavelength, heating element, but without lure (Cx. quinquefasciatus: 67.00% vs. 29.75%, Ae. albopictus: 60.25% vs 36.25%, An. sinensis: 49.75% vs 39.75%). The coated photocatalyst trap with a 365 nm wavelength, heating element, and lure showed significantly better capture effectiveness than the trap without coating (Cx. quinquefasciatus: 54.25% vs. 42.50%; Ae. albopictus: 53.50% vs 44.00%, An. sinensis: 50.00% vs 41.25%). This trap demonstrated a significantly better capture advantage for Cx. quinquefasciatus and Ae. albopictus compared to the three commercial products. CONCLUSION: The developed mosquito trap with multiple attractant factors significantly enhanced the capture effectiveness of common mosquitoes. © 2024 Society of Chemical Industry.


Assuntos
Controle de Mosquitos , Animais , Controle de Mosquitos/métodos , Controle de Mosquitos/instrumentação , Aedes/fisiologia , Culex , Odorantes/análise , Luz , Feminino , Humanos
15.
Nat Prod Res ; : 1-6, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38779992

RESUMO

Mosquito-borne diseases are a major public-health concern worldwide. The development of resistance in mosquitoes to the existing larvicides and the associated-risks necessitates the exploration of novel molecules to control vector-borne pathogens. This study demonstrates that N-alkylamides [2E,4E-N-isobutyl-undeca-2,4-diene-8,10-diynamide (1) and 2E,4E,8Z,10E-N-isobutyl-dodeca-2,4,8,10-tetraenamide (2)] of Acmella ciliata exhibit biocidal action against Aedes aegypti and Culex quinquefasciatus larvae. The LC50 for 1 and 2 were 44.19 and 18.28 ppm against Aedes larvae, and 30.89 and 11.75 ppm against Culex larvae, respectively. We further observed that the chain length, degree of unsaturation, and terminal methylation influence the larvicidal efficacy of N-alkylamides. HPLC-assisted quantification revealed that the content of both 1 (19.01 mg/g) and 2 (68.55 mg/g) was maximum in the flowers of A. ciliata. Thus, this study concludes that N-alkylamides are promising alternatives to control mosquito larvae and can be used as standard for quantitation in test samples.

16.
Acta Trop ; 255: 107226, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697451

RESUMO

Mosquito-borne disease pandemics, such as the Zika virus and chikungunya, have escalated cognizance of how critical it is to implement proficient mosquito vector control measures. The prevention of Culicidae is becoming more difficult these days because of the expeditious imminence of synthetic pesticide resistance and the universal expansion of tremendously invasive mosquito vectors. The present study highlights the insecticidal and larvicidal efficacy of the prospective novel actinobacterium derived from the marine Streptomyces sp. RD06 secondary metabolites against Culex quinquefasciatus mosquito. The pupicidal activity of Streptomyces sp. RD06 showed LC50=199.22 ± 11.54 and LC90= 591.84 ± 55.41 against the pupa. The purified bioactive metabolites 1, 2-Benzenedicarboxylic acid, diheptyl ester from Streptomyces sp. RD06 exhibited an LC50 value of 154.13 ± 10.50 and an LC90 value of 642.84 ± 74.61 tested against Cx. quinquefasciatus larvae. The Streptomyces sp. RD06 secondary metabolites exhibited 100 % non-hatchability at 62.5 ppm, and 82 % of hatchability was observed at 250 ppm. In addition, media optimization showed that the highest biomass production was attained at a temperature of 41.44 °C, pH 9.23, nitrogen source 11.43 mg/ml, and carbon source 150 mg/ml. Compared to control larvae, the histology and confocal microscopy results showed destruction to the anal gill, lumen content, and epithelial layer residues in the treated larvae. Utilizing an eco-friendly method, these alternative inventive insecticidal derivatives from Streptomyces sp. RD06 eradicates Culex quinquefasciatus. This study highlights the promising potential of these Streptomyces sp. RD06 secondary metabolites to develop affordable and efficacious mosquito larvicides to replace synthetic insecticides in the future.


Assuntos
Culex , Inseticidas , Larva , Mosquitos Vetores , Streptomyces , Animais , Streptomyces/química , Streptomyces/metabolismo , Culex/efeitos dos fármacos , Larva/efeitos dos fármacos , Inseticidas/farmacologia , Inseticidas/química , Mosquitos Vetores/efeitos dos fármacos , Metabolismo Secundário , Controle de Mosquitos/métodos , Filariose/prevenção & controle , Pupa/efeitos dos fármacos
17.
Exp Parasitol ; 261: 108766, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677581

RESUMO

Control of mosquito vectors, which have caused a global disease burden, has employed various methods. However, the challenges posed by current physical and chemical methods have raised concerns about vector control programs, leading to the search for alternative methods that are less toxic, eco-friendly, and cost-effective. This study investigated the larvicidal potential of aqueous, methanol, and ethylacetate extracts of Guava (Psidium guajava) against Aedes aegypti and Culex quinquefasciatus larvae. Functional group and phytochemical characterization were performed using Fourier-Transform Infrared Spectroscopy (FTIR) and GC-MS analysis to identify the bioactive compounds in the extracts. Larval bioassays were conducted using WHO standard procedures at concentrations of 12.5, 25, 50, 125, and 250 mg/L, and mortality was recorded after 24, 48, and 72 h. Additionally, antioxidant enzyme profiles in the larvae were studied. All of the solvent extracts showed larvicidal activity, with the methanol extract exhibiting the highest mortality against Ae. aegypti and Cx. quinquefasciatus larvae, followed by aqueous and ethylacetate extracts. FTIR spectroscopic analysis revealed the presence of OH, C-H of methyl and methylene, CO and CC. The GC-MS analysis indicated that the methanol, aqueous, and ethylacetate extracts all had 27, 34, and 43 phytoactive compounds that were effective at causing larvicidal effects, respectively. Different concentrations of each extract significantly modulated the levels of superoxide dismutase, catalase, glutathione peroxidase, and reduced glutathione in larvae. This study's findings indicate the potential for developing environmentally friendly vector control products using the bioactive components of extracts from P. guajava leaves.


Assuntos
Aedes , Antioxidantes , Culex , Cromatografia Gasosa-Espectrometria de Massas , Larva , Mosquitos Vetores , Extratos Vegetais , Psidium , Animais , Psidium/química , Aedes/efeitos dos fármacos , Aedes/enzimologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Larva/efeitos dos fármacos , Culex/efeitos dos fármacos , Culex/enzimologia , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/química , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/enzimologia , Espectroscopia de Infravermelho com Transformada de Fourier , Filariose Linfática/prevenção & controle , Inseticidas/farmacologia , Catalase/metabolismo , Folhas de Planta/química , Superóxido Dismutase/metabolismo , Controle de Mosquitos , Dengue/prevenção & controle , Dengue/transmissão , Bioensaio , Glutationa Peroxidase/metabolismo , Insetos Vetores/efeitos dos fármacos
18.
Toxicon ; 243: 107737, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38677379

RESUMO

Botanical essential oils are natural insecticides derived from plants, offering eco-friendly alternatives to synthetic chemicals for pest control. In this study, the essential oils were extracted from Acacia nilotica seed cotyledons, and their toxicity was tested against insect pests. Furthermore, the chemical components of the essential oils were identified through gas chromatography-mass spectrometry (GC-MS) analysis. The essential oil extracted from A. nilotica seeds exhibited the highest mortality rates of 60% and 98% in Culex quinquefasciatus, and 60% and 96.66% mortality in Plutella xylostella at 24 and 48 h after treatment, respectively. The essential oils resulted in a lower LC50 of 159.263 ppm/mL, and LC90 of 320.930 ppm/mL within 24 h. In 48 h, the LC50 was 52.070 ppm/mL and the LC90 was 195.123 ppm/mL for C. quinquefasciatus. In the essential oil treatment of P. xylostella, the lower LC50 was 165.900 ppm/mL, and the LC90 was 343.840 ppm/mL 24 h after the treatment. At 48 h post-treatment, the LC50 decreased to 62.965 ppm/mL, and the LC90 decreased to 236.795 ppm/mL in P. xylostella. The study investigated the impact of essential oils on insect enzymes 24 h after treatment. The study revealed significant changes in the levels of insect enzymes, including a decrease in acetylcholinesterase enzymes and an increase in glutathione S-transferase compared to the control group. Essential oils had minimal effects, resulting in mortality rates of 30.66% and 46% at 24 and 48 h after treatment on Artemia salina. After 48 h, minimal toxic effects of essential oils were observed on E. eugeniae, with a mortality rate of 11.33%. The GC-MS analysis of A. nilotica seed-derived essential oils revealed ten major chemical constituents, including 6-hydroxymellein, phthalic acid, trichloroacetic acid, hexadecane, acetamide, heptacosane, eicosane, pentadecane, 1,3,4-eugenol, and chrodrimanin B. Among these constituents, Heptacosane is the major chemical component, and this molecule has a high potential for involvement in insecticidal activity.


Assuntos
Acacia , Inseticidas , Simulação de Acoplamento Molecular , Óleos Voláteis , Animais , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Acacia/química , Inseticidas/química , Inseticidas/toxicidade , Culex/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Mariposas/efeitos dos fármacos , Sementes/química
19.
Acta Trop ; 254: 107205, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579960

RESUMO

Lumpy skin disease virus (LSDV) is a transboundary viral disease in cattle and water buffaloes. Although this Poxvirus is supposedly transmitted by mechanical vectors, only a few studies have investigated the role of local vectors in the transmission of LSDV. This study examined the infection, dissemination, and transmission rates of LSDV in Aedes aegypti, Culex tritaeniorhynchus, and Culex quinquefasciatus following artificial membrane feeding of 102.7, 103.7, 104.7 TCID50/mL LSDV in sheep blood. The results demonstrated that these mosquito species were susceptible to LSDV, with Cx tritaeniorhynchus exhibiting significantly different characteristics from Ae. aegypti and Cx. quinquefasciatus. These three mosquito species were susceptible to LSDV. Ae. aegypti showed it as early as 2 days post-infection (dpi), indicating swift dissemination in this particular species. The extrinsic incubation period (EIP) of LSDV in Cx. tritaeniorhynchus and Cx. quinquefasciatus was 8 and 14 dpi, respectively. Ingestion of different viral titers in blood did not affect the infection, dissemination, or transmission rates of Cx. tritaeniorhynchus and Cx. quinquefasciatus. All rates remained consistently high at 8-14 dpi for Cx. tritaeniorhynchus. In all three species, LSDV remained detectable until 14 dpi. The present findings indicate that, Ae. aegypti, Cx. tritaeniorhynchus, and Cx. quinquefasciatus may act as vectors during the LSDV outbreak; their involvement may extend beyond being solely mechanical vectors.


Assuntos
Aedes , Culex , Vírus da Doença Nodular Cutânea , Animais , Culex/virologia , Aedes/virologia , Vírus da Doença Nodular Cutânea/isolamento & purificação , Vírus da Doença Nodular Cutânea/fisiologia , Ovinos , Doença Nodular Cutânea/transmissão , Doença Nodular Cutânea/virologia , Mosquitos Vetores/virologia , Feminino
20.
Virol Sin ; 39(2): 228-234, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461965

RESUMO

Guaico Culex virus (GCXV) is a newly identified segmented Jingmenvirus from Culex spp. mosquitoes in Central and South America. The genome of GCXV is composed of four or five single-stranded positive RNA segments. However, the infection kinetics and transmission capability of GCXV in mosquitoes remain unknown. In this study, we used reverse genetics to rescue two GCXVs (4S and 5S) that contained four and five RNA segments, respectively, in C6/36 â€‹cells. Further in vitro characterization revealed that the two GCXVs exhibited comparable replication kinetics, protein expression and viral titers. Importantly, GCXV RNAs were detected in the bodies, salivary glands, midguts and ovaries of Culex quinquefasciatus at 4-10 days after oral infection. In addition, two GCXVs can colonize Cx. quinquefasciatus eggs, resulting in positive rates of 15%-35% for the second gonotrophic cycle. In conclusion, our results demonstrated that GCXVs with four or five RNA segments can be detected in Cx. quinquefasciatus eggs during the first and second gonotrophic cycles after oral infection.


Assuntos
Culex , Mosquitos Vetores , RNA Viral , Replicação Viral , Animais , Culex/virologia , Mosquitos Vetores/virologia , RNA Viral/genética , Feminino , Linhagem Celular , Flavivirus/genética , Flavivirus/fisiologia , Flavivirus/isolamento & purificação , Cinética , Carga Viral , Genoma Viral , Glândulas Salivares/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...