Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 426
Filtrar
1.
Poult Sci ; 103(10): 104058, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39094492

RESUMO

In chicken, primordial germ cells (PGC) are crucial for the preservation and manipulation of genetic resources in poultry production. The HiS and FAcs culture systems are two important methods for the in vitro cultivation of chicken PGCs. The purpose of this study was to compare and analyze the two cultivation systems for PGCs (His and FAcs culture systems) to assess their efficacy and applicability in supporting PGC growth, maintaining PGC characteristics, and lineage transmission ability. The study found that both HiS and FAcs culture systems could maintain the basic biological characteristics of chicken PGCs, including the simultaneous expression of pluripotency and reproductive marker genes, as well as the presence of abundant glycogen granules. Subsequently, we identified 2,145 differentially expressed genes (DEG) through RNA sequencing. GO and KEGG analysis revealed a large number of DEGs enriched in the cell adhesion and calcium ion binding pathways, and the analysis found that these genes maintained a higher level in HiS-PGCs. Further personalized analysis found that the regulatory genes for maintaining PGC pluripotency were highly expressed in HiS-PGCs, while germ cell-related genes showed similar expression in both systems. Additionally, through RNA sequencing data and cell proliferation ability, it was found that PGCs in the FAcs system had a higher proliferation rate and a faster cell cycle. Finally, it was discovered that the expression of cell migration-related genes was maintained at a higher level in HiS-PGCs, but the migration efficiency of HiS-PGCs did not show a significant difference compared to FAcs-PGCs. These results suggest that both HiS and FAcs culture systems can maintain the proliferation and basic characteristics of chicken PGCs, but differences exist in cell proliferation, pluripotency regulation, and cell adhesion. These findings provide new information for optimizing PGC cultivation systems and are important for the preservation and genetic improvement of chicken PGCs.

2.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126092

RESUMO

Sperm, a crucial gamete for reproduction in sexual reproduction, is generated through the proliferation, differentiation, and morphological transformations of spermatogonial stem cells within the specialized microenvironment of the testes. Replicating this environment artificially presents challenges. However, interdisciplinary advancements in physics, materials science, and cell engineering have facilitated the utilization of innovative materials, technologies, and structures for inducing in vitro sperm production. This article offers a comprehensive overview of research progress on inducing in vitro sperm production by categorizing techniques into two major systems based on matrix-based and non-matrix-based approaches, respectively. Detailed discussions are provided for both types of technology systems through comparisons of their similarities and differences, as well as research advancements. The aim is to provide researchers in this field with a comprehensive panoramic view while presenting our own perspectives and prospects.


Assuntos
Espermatogênese , Humanos , Masculino , Animais , Diferenciação Celular , Espermatozoides/fisiologia , Espermatozoides/citologia , Espermatozoides/metabolismo , Testículo/citologia
3.
Transl Oncol ; 49: 102097, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39173480

RESUMO

BACKGROUND: Synthetic lethality (SL) emerges as a novel concept being explored to combat cancer progression and resistance to conventional therapy. Despite the efficacy of chemotherapy in select cases of colorectal cancer (CRC), a substantial proportion of patients encounter challenges, leading to an adverse prognosis of CRC patients. CRC-related SL genes offer a potential avenue for identifying therapeutic targets. METHODS: CRC-related SL genes were obtained from the SynLethDB database. The bulk RNA sequencing data, mutation data, and clinical information for treated and untreated CRC patients were enrolled from the UCSC and GEO databases. The Tumor Immunology Single Cell Center database served as the repository for collecting and analyzing single-cell RNA sequencing data. The synergistic killing effect of SL genes and chemotherapeutic drugs on resistant cells was experimentally verified. RESULTS: In the present study, pivotal SL genes associated with chemoresistance identified by using WGCNA and CRC patients categorized into two groups based on these genes. Variations between the groups were most pronounced in pathways associated with extracellular matrix remodeling. Further by integrating mutation data, five potential SL genes were discerned, which were highly expressed in the presence of TP53 or KRAS mutations, leading to a severely poor prognosis. Subsequent time series analysis revealed that the expression of GTF2H5 was gradually elevated at different stages of the transition from sensitive to resistant in CRC cells. Finally, it was preliminarily verified by experiments that GTF2H5 may play a key role in driving the drug-resistant transition within CRC cells. CONCLUSIONS: The identification of SL genes that collaboratively interact with chemotherapeutic agents could provide new insights into solving the issue of chemotherapy resistance in CRC patients. And GTF2H5 wields a fundamental influence in inducing chemoresistance in CRC, which provided a potential therapeutic target for CRC.

4.
Int J Biol Macromol ; 278(Pt 3): 134941, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39173810

RESUMO

The potential antitumor function of polysaccharides is well accepted, it is unclear whether polysaccharides have immunoregulatory effect on CD8+ T lymphocyte cells to attack tumor cells. To evaluate the CD8+ T function enhancing role of polysaccharide compounds, the MC38-N4/OT-I co-culture system was established. The synergistic and complementary immune effect of α-glucopyranose-rich compound polysaccharides can be achieved by manipulating the antigen-specific T-cell expansion capacity and efficacy. This study was designed to investigate the antitumor-enhancement activity of a α-glucopyranose-rich compound polysaccharides by determining the activation of CD8+ T cells in a co-culture system. Compared to the control group (42.5 % ± 0.72 %), the specific α-glucopyranose-rich compound polysaccharides, comprising Agaricus blazei Murill, Grifola frondosa and Pericarpium Citri Reticulatae, demonstrated a significant decrease (20.4 % ± 1.23 %, p < 0.05) in the survival rate of MC38-N4 cells in the co-culture system. Additionally, the α-glucopyranose-rich compound polysaccharides resulted in a substantial increase (p < 0.01) in the proportion of CD8+ T cells and CD62L+ central memory T cells, which is a less differentiated T cell subset with high immune activity. Collectively, we reported that specific polysaccharide combination, which remodel the function of cytotoxic T cells and provided a basis for improving immune functions by using the specific types of polysaccharides.

6.
Methods Mol Biol ; 2833: 11-21, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38949696

RESUMO

In vitro biofilm models have allowed researchers to investigate the role biofilms play in the pathogenesis, virulence, and antimicrobial drug susceptibility of a wide range of bacterial pathogens. Rotary cell culture systems create three-dimensional cellular structures, primarily applied to eukaryotic organoids, that better capture characteristics of the cells in vivo. Here, we describe how to apply a low-shear, detergent-free rotary cell culture system to generate biofilms of Mycobacterium bovis BCG. The three-dimensional biofilm model forms mycobacterial cell aggregates in suspension as surface-detached biomass, without severe nutrient starvation or environmental stress, that can be harvested for downstream experiments. Mycobacterium bovis BCG derived from cell clusters display antimicrobial drug tolerance, presence of an extracellular matrix, and evidence of cell wall remodeling, all features of biofilm-associated bacteria that may be relevant to the treatment of tuberculosis.


Assuntos
Biofilmes , Mycobacterium bovis , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Mycobacterium bovis/crescimento & desenvolvimento , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium bovis/fisiologia , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células em Três Dimensões/métodos
7.
Bioresour Technol ; 407: 131125, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39025371

RESUMO

Photobioreactors (PBRs) are used to grow the light-requiring microalgae in diverse commercial processes. Often, they are operated as continuous culture over months period. However, with time, biofouling layer develops on the inner surfaces of their walls. The fouling layer formation deteriorates the PBR performance as foulants reduce light penetration in it. Light is essential for photosynthetic cultures, and a deterioration in lighting adversely impacts algae growth and biomass productivity. Fouling requires a frequent shutdown to clean the PBR and add to the environmental impact of the operation by generating many wastewaters contaminated with the cleaning chemicals. Antibiofouling coatings could be used to modify the surfaces of existing and future PBRs. Therefore, transparent and non-toxic fouling-release coatings, produced using hydrogel technology, could transform the existing PBRs into efficient and enduring microalgae culture systems, requiring only the application of the coating to the inner walls, without additional investments in new PBRs.


Assuntos
Incrustação Biológica , Microalgas , Fotobiorreatores , Microalgas/crescimento & desenvolvimento , Incrustação Biológica/prevenção & controle , Biomassa , Luz
8.
Sci Rep ; 14(1): 16129, 2024 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997397

RESUMO

The choroid, a vascularized tissue situated between the retina and the sclera, plays a crucial role in maintaining ocular homeostasis. Despite its significance, research on choroidal abnormalities and the establishment of effective in vitro models have been limited. In this study, we developed an in vitro choroid model through the co-culture of human induced pluripotent stem cells (hiPSC)-derived endothelial cells (ECs) and mouse choroidal fibroblasts (msCFs) with hiPSC-derived retinal pigment epithelial (RPE) cells via a permeable membrane. This model, inclusive of ECs, CFs, and RPE cells, exhibited similarities with in vivo choroidal vessels, as confirmed through immunohistochemistry of extracellular matrix markers and vascular-related markers, as well as choroid angiogenesis sprouting assay analysis. The effectiveness of our in vitro model was demonstrated in assessing vascular changes induced by drugs targeting vasoregulation. Our model offers a valuable tool for gaining insights into the pathological mechanisms underlying choroid development and the progression of choroidal vascular diseases.


Assuntos
Corioide , Técnicas de Cocultura , Células Endoteliais , Células-Tronco Pluripotentes Induzidas , Epitélio Pigmentado da Retina , Corioide/irrigação sanguínea , Corioide/metabolismo , Animais , Humanos , Camundongos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Endoteliais/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/citologia , Fibroblastos/metabolismo , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Células Cultivadas
9.
Foods ; 13(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063325

RESUMO

The conservation of agricultural heritage systems (AHSs) has played a pivotal role in fostering the sustainable development of agriculture and safeguarding farmers' livelihoods and food security worldwide. This significance is particularly evident in the case of tea AHSs, due to the economic and nutritional value of tea products. Taking the Anxi Tieguanyin Tea Culture System (ATTCS) and Fuding White Tea Culture System (FWTCS) in Fujian Province as examples, this study uses statistical analyses and a multinomial logistic regression model to assess and compare farmer livelihood and food security at the tea AHS sites. The main findings are as follows. First, as the tea industries are at different stages of development, compared with agricultural and non-agricultural part-time households, the welfare level of pure agricultural households is lowest in the ATTCS, while welfare is the highest in the FWTCS. Second, factors such as the area of tea gardens and the number of laborers significantly affect farmers' livelihood strategies transformation from pure agricultural households to agricultural part-time households in the ATTCS and FWTCS. Third, the high commodity rate of tea products, combined with compound cultivation in tea gardens, provides local people with essential sources of income, food, and nutrients, so as to improve food security in the ATTCS and FWTCS. These findings are essential for designing policies to ensure farmers' livelihoods and food security through AHSs and other sustainable agriculture.

10.
J Anim Sci Biotechnol ; 15(1): 81, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849927

RESUMO

Cellular agriculture is an innovative technology for manufacturing sustainable agricultural products as an alternative to traditional agriculture. While most cellular agriculture is predominantly centered on the production of cultured meat, there is a growing demand for an understanding of the production techniques involved in dairy products within cellular agriculture. This review focuses on the current status of cellular agriculture in the dairy sector and technical challenges for cell-cultured milk production. Cellular agriculture technology in the dairy sector has been classified into fermentation-based and animal cell culture-based cellular agriculture. Currently, various companies synthesize milk components through precision fermentation technology. Nevertheless, several startup companies are pursuing animal cell-based technology, driven by public concerns regarding genetically modified organisms in precision fermentation technology. Hence, this review offers an up-to-date exploration of animal cell-based cellular agriculture to produce milk components, specifically emphasizing the structural, functional, and productive aspects of mammary epithelial cells, providing new information for industry and academia.

11.
Mol Cells ; 47(7): 100087, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38936509

RESUMO

Genome editing has developed rapidly in various research fields for targeted genome modifications in many organisms, including cells, plants, viruses, and animals. The clustered regularly interspaced short palindromic repeats-associated protein 9 system stands as a potent tool in gene editing for generating cells and animal models with high precision. The clinical potential of clustered regularly interspaced short palindromic repeats-associated protein 9 has been extensively reported, with applications in genetic disease correction, inhibition of viral replication, and personalized or targeted therapeutics for various cancers. In this study, we provide a guide on single-guide RNA design, cloning single-guide RNA into plasmid vectors, single-cell isolation via transfection, and identification of knockout clones using next-generation sequencing. In addition, by providing the results of insertion into mammalian cell lines through next-generation sequencing, we offer useful information to those conducting research on human and animal cell lines.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Técnicas de Inativação de Genes , RNA Guia de Sistemas CRISPR-Cas , Humanos , Técnicas de Inativação de Genes/métodos , Edição de Genes/métodos , RNA Guia de Sistemas CRISPR-Cas/genética , Animais , Análise de Célula Única/métodos , Linhagem Celular , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala/métodos
12.
Biochem Biophys Res Commun ; 725: 150255, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897043

RESUMO

Human epidermal growth factor receptor 2 (HER2) aberrations are observed in various cancers. In non-small cell lung cancer, genetic alterations activating HER2, mostly exon 20 insertion mutations, occur in approximately 2-4% of cases. Trastuzumab deruxtecan (T-DXd), a HER2-targeted antibody-drug conjugate has been approved as the first HER2-targeted drug for HER2-mutant lung cancer. However, some cases are not responsive to T-DXd and the primary resistant mechanism remains unclear. In this study, we assessed sensitivity to T-DXd in JFCR-007, a patient-derived HER2-mutant lung cancer cell line. Although JFCR-007 was sensitive to HER2 tyrosine kinase inhibitors, it showed resistance to T-DXd in attachment or spheroid conditions. Accordingly, we established a three-dimensional (3D) layered co-culture model of JFCR-007, where it exhibited a lumen-like structure and became sensitive to T-DXd. In addition, an in-house inhibitor library screening revealed that G007-LK, a tankyrase inhibitor, was effective when combined with T-DXd. G007-LK increased the cytotoxicity of topoisomerase-I inhibitor, DXd, a payload of T-DXd and SN-38. This combined effect was also observed in H2170, an HER2-amplified lung cancer cell line. These results suggest that the proposed 3D co-culture system may help in evaluating the efficacy of T-DXd and may recapitulate the tumor microenvironment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Técnicas de Cocultura , Imunoconjugados , Neoplasias Pulmonares , Receptor ErbB-2 , Trastuzumab , Humanos , Trastuzumab/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Linhagem Celular Tumoral , Imunoconjugados/farmacologia , Receptor ErbB-2/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Éteres de Coroa/farmacologia , Antineoplásicos Imunológicos/farmacologia , Camptotecina/análogos & derivados
13.
Curr Res Toxicol ; 6: 100174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841651

RESUMO

Gold complexes can be a useful system in the fight against cancer. Although many studies have been carried out on in vitro 2D cell culture models embryotoxic assays are particularly lacking. Embryotoxicity and DNA damage are critical concerns in drug development. In this study, the effects of a new N-Heterocyclic carbene (NHC)-Au compound (Bromo[1,3-di-4-methoxybenzyl-4,5-bis(4-methoxyphenyl)imidazol-2-ylidene]gold(I)) at different concentrations were explored using multifaceted approach, encompassing 2D cancer cell cultures, in vivo zebrafish and in vitro bovine models, and compared with a consolidated similar complex (Bromo[1,3-diethyl-4,5-bis(4-methoxyphenyl)imidazol-2-ylidene]gold(I)). The results obtained from 2D cancer cell cultures revealed concentration-dependent effects of the gold compounds by estimating the cytotoxicity with MTT assay and cellular damage as indicated by LDH release. Selected concentrations of gold complexes demonstrated no adverse effects on zebrafish embryo development. However, in bovine embryos, these same concentrations led to significant impairments in the early developmental stages, triggering cell apoptosis and reducing blastocyst competence. These findings underscore the importance of evaluating drug effects across different model systems to comprehensively assess their safety and potential impact on embryonic development.

14.
World J Microbiol Biotechnol ; 40(7): 225, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822208

RESUMO

Ganoderma lucidum is known for its bioactive compounds, such as polysaccharides and triterpenoids, which are crucial in food and medicine. However, liquid fermentation encounters challenges in terms of strain differentiation and stability. In this research, we employed atmospheric room temperature plasma mutation and a microbial microdroplet culture system to identify strains with enhanced biomass and triterpenoid production. The three mutant strains, YB05, YB09, and YB18, exhibited accelerated growth rates and antagonized the initial strain G0023 more effectively than the controls. Notably, YB18 displayed the fastest growth, with a 17.25% increase in colony radius. Shake flask cultivation demonstrated that, compared with the initial strain, YB05 and YB18 had 26.33% and 17.85% greater biomass, respectively. Moreover, the triterpenoid production of YB05 and YB18 surpassed that of the control by 32.10% and 15.72%, respectively, as confirmed by colorimetric detection. Importantly, these mutant strains remained stable for five generations. This study revealed a comprehensive screening system utilizing atmospheric pressure, room temperature plasma mutation technology and microbial droplet cultivation. This innovative approach offers a promising pathway for obtaining advantageous Ganoderma strains for liquid fermentation. The methodology of atmospheric room temperature plasma mutation and microbial microdroplet culture systems is detailed for better comprehension.


Assuntos
Fermentação , Mutação , Reishi , Triterpenos , Reishi/crescimento & desenvolvimento , Reishi/metabolismo , Reishi/genética , Triterpenos/metabolismo , Biomassa , Temperatura , Gases em Plasma/farmacologia
15.
Biomaterials ; 309: 122616, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38776592

RESUMO

The gel microsphere culture system (GMCS) showed various advantages for mesenchymal stem cell (MSC) expansion and delivery, such as high specific surface area, small and regular shape, extensive adjustability, and biomimetic properties. Although various technologies and materials have been developed to promote the development of gel microspheres, the differences in the biological status of MSCs between the GMCS and the traditional Petri dish culture system (PDCS) are still unknown, hindering gel microspheres from becoming a culture system as widely used as petri dishes. In the previous study, an excellent "all-in-one" GMCS has been established for the expansion of human adipose-derived MSCs (hADSCs), which showed convenient cell culture operation. Here, we performed transcriptome and proteome sequencing on hADSCs cultured on the "all-in-one" GMCS and the PDCS. We found that hADSCs cultured in the GMCS kept in an undifferentiation status with a high stemness index, whose transcriptome profile is closer to the adipose progenitor cells (APCs) in vivo than those cultured in the PDCS. Further, the high stemness status of hADSCs in the GMCS was maintained through regulating cell-ECM interaction. For application, bilayer scaffolds were constructed by osteo- and chondro-differentiation of hADSCs cultured in the GMCS and the PDCS. The effect of osteochondral regeneration of the bilayer scaffolds in the GMCS group was better than that in the PDCS group. This study revealed the high stemness and excellent functionality of MSCs cultured in the GMCS, which promoted the application of gel microspheres in cell culture and tissue regeneration.


Assuntos
Tecido Adiposo , Diferenciação Celular , Células-Tronco Mesenquimais , Microesferas , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo/citologia , Animais , Matriz Extracelular/metabolismo , Células Cultivadas , Alicerces Teciduais/química , Géis/química , Condrogênese , Osteogênese , Técnicas de Cultura de Células/métodos
16.
Front Cell Neurosci ; 18: 1347535, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650656

RESUMO

Astrocytes represent the most abundant cell type in the brain, where they play critical roles in synaptic transmission, cognition, and behavior. Recent discoveries show astrocytes are involved in synaptic dysfunction during Alzheimer's disease (AD). AD patients have imbalanced cholesterol metabolism, demonstrated by high levels of side-chain oxidized cholesterol known as 27-hydroxycholesterol (27-OH). Evidence from our laboratory has shown that elevated 27-OH can abolish synaptic connectivity during neuromaturation, but its effect on astrocyte function is currently unclear. Our results suggest that elevated 27-OH decreases the astrocyte function in vivo in Cyp27Tg, a mouse model of brain oxysterol imbalance. Here, we report a downregulation of glutamate transporters in the hippocampus of CYP27Tg mice together with increased GFAP. GLT-1 downregulation was also observed when WT mice were fed with high-cholesterol diets. To study the relationship between astrocytes and neurons, we have developed a 3D co-culture system that allows all the cell types from mice embryos to differentiate in vitro. We report that our 3D co-cultures reproduce the effects of 27-OH observed in 2D neurons and in vivo. Moreover, we found novel degenerative effects in astrocytes that do not appear in 2D cultures, together with the downregulation of glutamate transporters GLT-1 and GLAST. We propose that this transporter dysregulation leads to neuronal hyperexcitability and synaptic dysfunction based on the effects of 27-OH on astrocytes. Taken together, these results report a new mechanism linking oxysterol imbalance in the brain and synaptic dysfunction through effects on astrocyte function.

17.
MethodsX ; 12: 102714, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660027

RESUMO

At present, the numbers of cultured erythroid cells obtained from culture systems are not on a scale that can be used for therapeutics since the cultured erythroid cells have limited proliferation capacity. Stromal cells are believed to play important roles during erythropoiesis. Our previous study shows that factors secreted by stromal cells enhance the proliferation capacity of adult erythroid cells in the culture system. Among the identified factors, angiotensinogen is one of the most abundant proteins secreted by the stromal cells. This study aims to investigate the effect of angiotensin II, an angiotensinogen derivative, on the proliferation of erythroid cells. •The receptor for angiotensin II was first checked by PCR analysis. It was expressed in erythroblasts at all stages during differentiation.•To study the effect of angiotensin II, CD34+ hematopoietic stem cells were cultured in a 3-stage erythroid culture system with and without angiotensin II. The addition of angiotensin II to the culture media, from day 0 to 8, significantly increases the numbers of cultured erythroid cells, whereas no difference in enucleation is observed.

18.
Methods Mol Biol ; 2782: 189-193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38622403

RESUMO

Monocytes play important and diverse roles in both homeostatic and inflammatory immune responses. The CRISPR-Cas9 system in lentiviral vectors has been widely used to manipulate specific genes of immortal monocyte cell lines to study monocyte functions. However, human primary monocytes are refractory to this method with low gene knockout (KO) efficiency. In this chapter, we developed an in vitro gene-editing procedure for primary human monocytes with a consistent and high-gene KO efficiency via a ribonucleoprotein (RNP) complex consisting of Cas9 protein and single-guide RNA (sgRNA). This method can be adapted to study the functions of targeted signaling molecules involved in modulating monocyte polarization in primary human monocytes.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Monócitos/metabolismo , Proteína 9 Associada à CRISPR/genética
19.
Anim Reprod ; 21(1): e20230039, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510565

RESUMO

In vitro cell culture is a well-established technique present in numerous laboratories in diverse areas. In reproduction, gametes, embryos, and reproductive tissues, such as the ovary and endometrium, can be cultured. These cultures are essential for embryo development studies, understanding signaling pathways, developing drugs for reproductive diseases, and in vitro embryo production (IVP). Although many culture systems are successful, they still have limitations to overcome. Three-dimensional (3D) culture systems can be close to physiological conditions, allowing greater interaction between cells and cells with the surrounding environment, maintenance of the cells' natural morphology, and expression of genes and proteins such as in vivo. Additionally, three-dimensional culture systems can stimulated extracellular matrix generating responses due to the mechanical force produced. Different techniques can be used to perform 3D culture systems, such as hydrogel matrix, hanging drop, low attachment surface, scaffold, levitation, liquid marble, and 3D printing. These systems demonstrate satisfactory results in follicle culture, allowing the culture from the pre-antral to antral phase, maintaining the follicular morphology, and increasing the development rates of embryos. Here, we review some of the different techniques of 3D culture systems and their applications to the culture of follicles and embryos, bringing new possibilities to the future of assisted reproduction.

20.
Food Chem ; 447: 138942, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38484542

RESUMO

The development of a sustainable and efficient bioconversion strategy is crucial for the full-component utilization of naringin. In this study, an engineering Pichia pastoris co-culture system was developed to produce L-rhamnose and 2S/2R-naringenin. By optimizing transformation conditions, the co-culture system could completely convert naringin while fully consuming glucose. The production of 2S/2R-naringenin reached 59.5 mM with a molar conversion of 99.2%, and L-rhamnose reached 59.1 mM with a molar conversion of 98.5%. In addition, an engineering Escherichia coli co-culture system was developed to produce 2R-naringenin and kaempferol from 2S/2R-naringenin. Maximal kaempferol production reached 1050 mg/L with a corresponding molar conversion of 99.0%, and 996 mg/L 2R-naringenin was accumulated. Finally, a total of 17.4 g 2R-naringenin, 18.0 g kaempferol, and 26.1 g L-rhamnose were prepared from 100 g naringin. Thus, this study provides a novel strategy for the production of value-added compounds from naringin with an environmentally safe process.


Assuntos
Flavanonas , Ramnose , Quempferóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...