Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39005300

RESUMO

Background: Multiple studies point to the role of neuroinflammation in the pathophysiology of schizophrenia (SCZ), however, there have been few in vivo tools for imaging brain inflammation. Diffusion basis spectrum imaging (DBSI) is an advanced diffusion-based MRI method developed to quantitatively assess microstructural alternations relating to neuroinflammation, axonal fiber, and other white matter (WM) pathologies. Methods: We acquired one-hour-long high-directional diffusion MRI data from young control (CON, n = 27), schizophrenia (SCZ, n = 21), and bipolar disorder (BPD, n = 21) participants aged 18-30. We applied Tract-based Spatial Statistics (TBSS) to allow whole-brain WM analyses and compare DBSI-derived isotropic and anisotropic diffusion measures between groups. Clinical relationships of DBSI metrics with clinical symptoms were assessed across SCZ and control participants. Results: In SCZ participants, we found a generalized increase in DBSI-derived cellularity (a putative marker of neuroinflammation), a decrease in restricted fiber fraction (a putative marker of apparent axonal density), and an increase in extra-axonal water (a putative marker of vasogenic edema) across several WM tracts. There were only minimal WM abnormalities noted in BPD, mainly in regions of the corpus callosum (increase in DTI-derived RD and extra-axonal water). DBSI metrics showed significant partial correlations with psychosis and mood symptoms across groups. Conclusion: Our findings suggest that SCZ involves generalized white matter neuroinflammation, decreased fiber density, and demyelination, which is not seen in bipolar disorder. Larger studies are needed to identify medication-related effects. DBSI metrics could help identify high-risk groups requiring early interventions to prevent the onset of psychosis and improve outcomes.

2.
Brain Behav Immun Health ; 36: 100722, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38298902

RESUMO

COVID-19 remains a significant international public health concern. Yet, the mechanisms through which symptomatology emerges remain poorly understood. While SARS-CoV-2 infection may induce prolonged inflammation within the central nervous system, the evidence primarily stems from limited small-scale case investigations. To address this gap, our study capitalized on longitudinal UK Biobank neuroimaging data acquired prior to and following COVID-19 testing (N = 416 including n = 224 COVID-19 cases; Mage = 58.6). Putative neuroinflammation was assessed in gray matter structures and white matter tracts using non-invasive Diffusion Basis Spectrum Imaging (DBSI), which estimates inflammation-related cellularity (DBSI-restricted fraction; DBSI-RF) and vasogenic edema (DBSI-hindered fraction; DBSI-HF). We hypothesized that COVID-19 case status would be associated with increases in DBSI markers after accounting for potential confound (age, sex, race, body mass index, smoking frequency, and data acquisition interval) and multiple testing. COVID-19 case status was not significantly associated with DBSI-RF (|ß|'s < 0.28, pFDR >0.05), but with greater DBSI-HF in left pre- and post-central gyri and right middle frontal gyrus (ß's > 0.3, all pFDR = 0.03). Intriguingly, the brain areas exhibiting increased putative vasogenic edema had previously been linked to COVID-19-related functional and structural alterations, whereas brain regions displaying subtle differences in cellularity between COVID-19 cases and controls included regions within or functionally connected to the olfactory network, which has been implicated in COVID-19 psychopathology. Nevertheless, our study might not have captured acute and transitory neuroinflammatory effects linked to SARS-CoV-2 infection, possibly due to symptom resolution before the imaging scan. Future research is warranted to explore the potential time- and symptom-dependent neuroinflammatory relationship with COVID-19.

3.
bioRxiv ; 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-37502886

RESUMO

COVID-19 remains a significant international public health concern. Yet, the mechanisms through which symptomatology emerges remain poorly understood. While SARS-CoV-2 infection may induce prolonged inflammation within the central nervous system, the evidence primarily stems from limited small-scale case investigations. To address this gap, our study capitalized on longitudinal UK Biobank neuroimaging data acquired prior to and following COVID-19 testing (N=416 including n=224 COVID-19 cases; Mage=58.6). Putative neuroinflammation was assessed in gray matter structures and white matter tracts using non-invasive Diffusion Basis Spectrum Imaging (DBSI), which estimates inflammation-related cellularity (DBSI-restricted fraction; DBSI-RF) and vasogenic edema (DBSI-hindered fraction; DBSI-HF).We hypothesized that COVID-19 case status would be associated with increases in DBSI markers after accounting for potential confound (age, sex, race, body mass index, smoking frequency, and data acquisition interval) and multiple testing. COVID-19 case status was not significantly associated with DBSI-RF (|ß|'s<0.28, pFDR >0.05), but with greater DBSI-HF in left pre- and post-central gyri and right middle frontal gyrus (ß's>0.3, all pFDR=0.03). Intriguingly, the brain areas exhibiting increased putative vasogenic edema had previously been linked to COVID-19-related functional and structural alterations, whereas brain regions displaying subtle differences in cellularity between COVID-19 cases and controls included regions within or functionally connected to the olfactory network, which has been implicated in COVID-19 psychopathology. Nevertheless, our study might not have captured acute and transitory neuroinflammatory effects linked to SARS-CoV-2 infection, possibly due to symptom resolution before the imaging scan. Future research is warranted to explore the potential time- and symptom-dependent neuroinflammatory relationship with COVID-19.

4.
Neurotoxicology ; 97: 25-33, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37127223

RESUMO

OBJECTIVE: To evaluate in-vivo neuroinflammation and white matter (WM) microstructural integrity in occupational manganese (Mn) exposure. METHODS: We assessed brain inflammation using Diffusion Basis Spectrum Imaging (DBSI) in 26 Mn-exposed welders, 17 Mn-exposed workers, and 26 non-exposed participants. Cumulative Mn exposure was estimated from work histories and the Unified Parkinson's Disease Rating Scale motor subsection 3 (UPDRS3) scores were completed by a movement specialist. Tract-based Spatial Statistics allowed for whole-brain voxel-wise WM analyses to compare WM DBSI-derived measures between the Mn-exposed and non-exposed groups. Exploratory grey matter region of interest (ROI) analyses examined the presence of similar alterations in the basal ganglia. We used voxelwise general linear modeling and linear regression to evaluate the association between cumulative Mn exposure, WM or basal ganglia DBSI metrics, and UPDRS3 scores, while adjusting for age. RESULTS: Mn-exposed welders had higher DBSI-derived restricted fraction (DBSI-RF), higher DBSI-derived nonrestricted fraction (DBSI-NRF), and lower DBSI-derived fiber fraction (DBSI-FF) in multiple WM tracts (all p < 0.05) in comparison to less-exposed workers and non-exposed participants. Basal ganglia ROI analyses revealed higher average caudate DBSI-NRF and DBSI-derived radial diffusion (DBSI-RD) values in Mn-exposed welders relative to non-exposed participants (p < 0.05). Caudate DBSI-NRF was also associated with greater cumulative Mn exposure and higher UPRDS3 scores. CONCLUSIONS: Mn-exposed welders demonstrate greater DBSI-derived indicators of neuroinflammation-related cellularity (DBSI-RF), greater extracellular edema (DBSI-NRF), and lower apparent axonal density (DBSI-FF) in multiple WM tracts suggesting a neuroinflammatory component in the pathophysiology of Mn neurotoxicity. Caudate DBSI-NRF was positively associated with both cumulative Mn exposure and clinical parkinsonism, indicating a possible dose-dependent effect on extracellular edema with associated motor effects.


Assuntos
Exposição Ocupacional , Soldagem , Substância Branca , Humanos , Manganês/toxicidade , Substância Branca/diagnóstico por imagem , Doenças Neuroinflamatórias , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Edema
5.
Quant Imaging Med Surg ; 10(4): 824-834, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32355646

RESUMO

BACKGROUND: Multi-compartment diffusion models such as Neurite Orientation Dispersion and Density Imaging (NODDI) have been increasingly used for diffusion MRI (dMRI) data processing in biomedical research. However, those models usually require multiple HARDI shells that may increase scanning duration substantially, and their application can be hindered in uncooperative patients (like infants) accordingly. Also, it is highly expected that the same dataset can be explored with multiple diffusion models for retrieving complementary information. METHODS: Multiple gradient-encoding schemes which consisted of 4-6 shells, moderate b-values (bmax =1,500 or 2,000 s/mm2), and 32-80 gradient directions were explored. The corresponding time of acquisition (TA) for a single scan ranged from 3 to 8 minutes respectively. The dMRI protocols were tested on macaque monkeys using a 3T clinical setting. The data were analysed using both NODDI and diffusion basic spectrum imaging (DBSI) models. RESULTS: The maps of orientation dispersion index (ODI) and CSF were consistent across the 4-6 shell sampling schemes. However, the corresponding intra-cellular volume fraction (ICVF) maps showed reduced pixel counts [1,100±98 (80 directions) vs. 806±70 (32 directions), one slice] in white matter when fewer gradient directions or lower b-value was applied. The hindered diffusion and CSF ratio maps were comparable across these sampling schemes. The maps of restricted diffusion ratio varied across the schemes. However, its mean ratios (0.23±0.02 vs. 0.22±0.01) and pixel counts (1,540±70 vs. 1,510±38, one slice) between the schemes of 80 and 32 directions with b=2,000 s/mm2 were comparable. CONCLUSIONS: The present study reports a fast multi-shell dMRI data acquisition and processing strategy which allows for obtaining complementary information about microstructural alteration and inflammation from a single dMRI data set with both NODDI and DBSI models. The proposed approach may be particularly useful for characterizing the neurodegenerative disorders in uncooperative patients like children or acute stroke patients in which brain injury is associated with inflammation.

6.
Front Neurosci ; 14: 592063, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33551721

RESUMO

Optic neuritis is a frequent first symptom of multiple sclerosis (MS) for which corticosteroids are a widely employed treatment option. The Optic Neuritis Treatment Trial (ONTT) reported that corticosteroid treatment does not improve long-term visual acuity, although the evolution of underlying pathologies is unclear. In this study, we employed non-invasive diffusion basis spectrum imaging (DBSI)-derived fiber volume to quantify 11% axonal loss 2 months after corticosteroid treatment (vs. baseline) in experimental autoimmune encephalomyelitis mouse optic nerves affected by optic neuritis. Longitudinal DBSI was performed at baseline (before immunization), after a 2-week corticosteroid treatment period, and 1 and 2 months after treatment, followed by histological validation of neuropathology. Pathological metrics employed to assess the optic nerve revealed axonal protection and anti-inflammatory effects of dexamethasone treatment that were transient. Two months after treatment, axonal injury and loss were indistinguishable between PBS- and dexamethasone-treated optic nerves, similar to results of the human ONTT. Our findings in mice further support that corticosteroid treatment alone is not sufficient to prevent eventual axonal loss in ON, and strongly support the potential of DBSI as an in vivo imaging outcome measure to assess optic nerve pathology.

7.
J Neuroinflammation ; 14(1): 78, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28388913

RESUMO

BACKGROUND: Magnetic resonance imaging markers have been widely used to detect and quantify white matter pathologies in multiple sclerosis. We have recently developed a diffusion basis spectrum imaging (DBSI) to distinguish and quantify co-existing axonal injury, demyelination, and inflammation in multiple sclerosis patients and animal models. It could serve as a longitudinal marker for axonal loss, a primary cause of permanent neurological impairments and disease progression. METHODS: Eight 10-week-old female C57BL/6 mice underwent optic nerve DBSI, followed by a week-long recuperation prior to active immunization for experimental autoimmune encephalomyelitis (EAE). Visual acuity of all mice was assessed daily. Longitudinal DBSI was performed in mouse optic nerves at baseline (naïve, before immunization), before, during, and after the onset of optic neuritis. Tissues were perfusion fixed after final in vivo scans. The correlation between DBSI detected pathologies and corresponding immunohistochemistry markers was quantitatively assessed. RESULTS: In this cohort of EAE mice, monocular vision impairment occurred in all animals. In vivo DBSI detected, differentiated, and quantified optic nerve inflammation, demyelination, and axonal injury/loss, correlating nerve pathologies with visual acuity at different time points of acute optic neuritis. DBSI quantified, in the presence of optic nerve swelling, ~15% axonal loss at the onset of optic neuritis in EAE mice. CONCLUSIONS: Our findings support the notion that axonal loss could occur early in EAE mice. DBSI detected pathologies in the posterior visual pathway unreachable by optical coherence tomography and without confounding inflammation induced optic nerve swelling. DBSI could thus decipher the interrelationship among various pathological components and the role each plays in disease progression. Quantification of the rate of axonal loss could potentially serve as the biomarker to predict treatment outcome and to determine when progressive disease starts.


Assuntos
Axônios/patologia , Imagem de Difusão por Ressonância Magnética/tendências , Nervo Óptico/diagnóstico por imagem , Neurite Óptica/diagnóstico por imagem , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Nervo Óptico/patologia , Neurite Óptica/patologia
8.
NMR Biomed ; 27(7): 843-52, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24816651

RESUMO

Clinicopathological paradox has hampered significantly the effective assessment of the efficacy of therapeutic intervention for multiple sclerosis. Neuroimaging biomarkers of tissue injury could guide more effective treatment by accurately reflecting the underlying subclinical pathologies. Diffusion tensor imaging-derived directional diffusivity and anisotropy indices have been applied to characterize white matter disorders. However, these biomarkers are sometimes confounded by the complex pathologies seen in multiple sclerosis and its animal models. Recently, a novel technique of diffusion basis spectrum imaging has been developed to quantitatively assess axonal injury, demyelination and inflammation in a mouse model of inflammatory demyelination. Lenaldekar, which inhibits T-cell expansion in a non-cytolytic manner, has been shown to suppress relapses and preserve white matter integrity in mice with experimental autoimmune encephalomyelitis. In this study, relapsing-remitting experimental autoimmune encephalomyelitis was induced through active immunization of SJL/J mice with a myelin proteolipid protein peptide. The therapeutic efficacy of Lenaldekar treatment was evaluated via daily clinical score, cross-sectional ex vivo diffusion basis spectrum imaging examination and histological analysis. Lenaldekar greatly reduced relapse severity and protected white matter integrity in these experimental autoimmune encephalomyelitis mice. Diffusion basis spectrum imaging-derived axial diffusivity, radial diffusivity and restricted diffusion tensor fraction accurately reflected axonal injury, myelin integrity and inflammation-associated cellularity change, respectively. These results support the potential use of diffusion basis spectrum imaging as an effective outcome measure for preclinical drug evaluation.


Assuntos
Axônios/patologia , Doenças Desmielinizantes/diagnóstico , Imagem de Tensor de Difusão , Encefalomielite Autoimune Experimental/diagnóstico , Inflamação/diagnóstico , Animais , Biomarcadores/metabolismo , Doenças Desmielinizantes/complicações , Doenças Desmielinizantes/patologia , Encefalomielite Autoimune Experimental/complicações , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Feminino , Hidrazonas/uso terapêutico , Indóis/metabolismo , Inflamação/complicações , Inflamação/patologia , Camundongos , Proteína Básica da Mielina/metabolismo , Quinolinas/uso terapêutico , Recidiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...