Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105699, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301891

RESUMO

DEC205 (CD205) is one of the major endocytic receptors on dendritic cells and has been widely used as a receptor target in immune therapies. It has been shown that DEC205 can recognize dead cells through keratins in a pH-dependent manner. However, the mechanism underlying the interaction between DEC205 and keratins remains unclear. Here we determine the crystal structures of an N-terminal fragment of human DEC205 (CysR∼CTLD3). The structural data show that DEC205 shares similar overall features with the other mannose receptor family members such as the mannose receptor and Endo180, but the individual domains of DEC205 in the crystal structure exhibit distinct structural features that may lead to specific ligand binding properties of the molecule. Among them, CTLD3 of DEC205 adopts a unique fold of CTLD, which may correlate with the binding of keratins. Furthermore, we examine the interaction of DEC205 with keratins by mutagenesis and biochemical assays based on the structural information and identify an XGGGX motif on keratins that can be recognized by DEC205, thereby providing insights into the interaction between DEC205 and keratins. Overall, these findings not only improve the understanding of the diverse ligand specificities of the mannose receptor family members at the molecular level but may also give clues for the interactions of keratins with their binding partners in the corresponding pathways.


Assuntos
Queratinas , Lectinas Tipo C , Modelos Moleculares , Humanos , Células Dendríticas/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ligantes , Receptor de Manose/química , Mutagênese , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Domínios e Motivos de Interação entre Proteínas , Cristalografia por Raios X
2.
Front Immunol ; 14: 1227633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727784

RESUMO

Restoration of immunological tolerance to self antigens has been a major drive in understanding the mechanisms of, and developing new treatments for, autoimmune and autoinflammatory disease. Sessile dendritic cells (DC) are considered the main instruments underpinning immunological tolerance particularly the CD205+ (DEC205+) cDC1 subset in contrast to DCIR2+ cDC2 which mediate immunogenicity. Targeting DC using autoantigen peptide-antibody fusion proteins has been a well explored methodology for inducing tolerance. Here we show that subcutaneous (s.c.) inoculation of hen-egg lysozyme (HEL)-DEC205 Ig fusion prevents the development of spontaneous uveoretinitis (experimental autoimmune uveoretinitis, EAU) in a transgenic mouse model generated by crossing interphotoreceptor retinol binding protein (IRBP)-HEL (sTg HEL) with HEL specific TCR (sTg TCR) mice. Prolonged suppression of EAU required injections of HEL-DEC205 Ig once weekly, reflecting the half life of s.c. DC. Interestingly, HEL-DCIR2 Ig also had a suppressive effect on development of EAU but less so than DEC205 Ig while it had minimal effect on preventing the retinal atrophy associated with EAU. In addition, HEL-DEC205 Ig was only effective when administered s.c. rather than systemically and had no effect on EAU induced by adoptive transfer of HEL-activated T cells. These data demonstrate the importance of systemic (lymph node) rather than local (eye) antigen presentation in the development of EAU as well as suggest a potential therapeutic approach to controlling sight-threatening immune-mediated uveitis provided relevant antigen(s) can be identified.


Assuntos
Anticorpos , Autoantígenos , Animais , Camundongos , Transferência Adotiva , Células Dendríticas , Receptores de Antígenos de Linfócitos T
3.
J Fungi (Basel) ; 9(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37233259

RESUMO

Paracoccidioidomycosis (PCM) is a systemic mycosis caused by Paracoccidioides brasiliensis, a thermally dimorphic fungus, which is the most frequent endemic systemic mycosis in many Latin American countries, where ~10 million people are believed to be infected. In Brazil, it is ranked as the tenth most common cause of death among chronic infectious diseases. Hence, vaccines are in development to combat this insidious pathogen. It is likely that effective vaccines will need to elicit strong T cell-mediated immune responses composed of IFNγ secreting CD4+ helper and CD8+ cytolytic T lymphocytes. To induce such responses, it would be valuable to harness the dendritic cell (DC) system of antigen-presenting cells. To assess the potential of targeting P10, which is a peptide derived from gp43 secreted by the fungus, directly to DCs, we cloned the P10 sequence in fusion with a monoclonal antibody to the DEC205 receptor, an endocytic receptor that is abundant on DCs in lymphoid tissues. We verified that a single injection of the αDEC/P10 antibody caused DCs to produce a large amount of IFNγ. Administration of the chimeric antibody to mice resulted in a significant increase in the levels of IFN-γ and IL-4 in lung tissue relative to control animals. In therapeutic assays, mice pretreated with αDEC/P10 had significantly lower fungal burdens compared to control infected mice, and the architecture of the pulmonary tissues of αDEC/P10 chimera-treated mice was largely normal. Altogether, the results obtained so far indicate that targeting P10 through a αDEC/P10 chimeric antibody in the presence of polyriboinosinic: polyribocytidylic acid is a promising strategy in vaccination and therapeutic protocols to combat PCM.

4.
Int J Biol Macromol ; 227: 576-589, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549613

RESUMO

Nanoparticles targeting the DEC-205 receptor were found to induce antigen-specific protective immune response. When the delivery system carries both antigens and immunomodulators, it can maximize the expected therapeutic effect of the drug and induce effective humoral and cellular immune responses to antigens.In this study, we encapsulated the Eucommia ulmoides Oliv. polysaccharides (EUPS) into PLGA nanoparticles (NPs) and conjugated it with anti-CD205 monoclonal Ab (MAb) to produce a DEC-205 receptor targeted PLGA nanoparticles (anti-DEC-205-EUPS-PLGA NPs). The physicochemical characteristics and adjuvant activity of the above NPs were evaluated in vitro and in vivo. In the in vitro setting, 200 µg·mL-1 anti-DEC-205-EUPS-PLGA could improve the proliferation of DCs and promote their antigen up-take activity. In the in vivo setting, anti-DEC-205-EUPS-PLGA NPs remarkably controlled the release of drug and antigen to induce sustained immune responses and up-regulated the levels of FMDV-specific IgG antibodies, promoted the cytotoxic activity of CTLs and NK cells, and improved the proliferation of splenocytes. Moreover, the anti-DEC-205-EUPS-PLGA NPs facilitated the maturation of DCs. The above data indicated that anti-DEC-205-EUPS-PLGA NPs employed as an targeted adjuvant induced the humoral and cellular immune activity by promoting the maturation of DCs. These findings may provide a new insight onto the development of vaccine adjuvants.


Assuntos
Eucommiaceae , Febre Aftosa , Nanopartículas , Vacinas , Animais , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Glicóis , Células Dendríticas , Antígenos , Imunidade Celular , Adjuvantes Imunológicos/farmacologia , Polissacarídeos/farmacologia
5.
Int J Biol Macromol ; 224: 998-1011, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306904

RESUMO

Potentilla anserina L polysaccharide (PAP) is known to regulate immunity. Poly(lactic-co-glycolicacid) (PLGA) is a type of drug carrier with biocompatibility and biodegradable USFDA approved polymer, which possesses the advantages of high safety and good sustained-release effect. The DEC205 receptor, a type I membrane protein, is widely distributed on the surface of macrophages and dendritic cells (DCs) and plays a key role in antigen recognition and presentation. In this study, we prepared Potentilla anserina L polysaccharide PLGA nanoparticles targeting DEC205 receptor (DEC205-PAPP) and characterized the nanoparticles with regards to their effects on immune activation in vitro and in vivo. In vitro, DEC205-PAPP promoted the uptake activity of macrophages and increased the secretion of NO and cytokines (IFN-γ, IL-4, IL-6, and GM-CSF), up-regulated the expression of CD80+, CD86+. In vivo, DEC205-PAPP elevated the immune organ index, induced DC maturation, promoted T lymphocyte proliferation and differentiation, and increased the levels of antigen-specific IgG antibody and cytokines (IFN-γ, IL-4), which prolonged the residence time of the OVA antigen in the immune organs and the lymph nodes. In conclusion, DEC205-PAPP had a slow-release effect, induced humoral and cellular immune responses, and could potentially be used as an effective antigen-targeted delivery system.


Assuntos
Nanopartículas , Potentilla , Animais , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Interleucina-4/metabolismo , Antígenos , Imunidade Celular , Citocinas/metabolismo , Nanopartículas/química , Polissacarídeos/química , Células Dendríticas
6.
Cell Rep Med ; 3(5): 100621, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35584631

RESUMO

Modulation of immune function at the tumor site could improve patient outcomes. Here, we analyze patient samples of metastatic melanoma, a tumor responsive to T cell-based therapies, and find that tumor-infiltrating T cells are primarily juxtaposed to CD14+ monocytes/macrophages rather than melanoma cells. Using immunofluorescence-guided laser capture microdissection, we analyze transcriptomes of CD3+ T cells, CD14 + monocytes/macrophages, and melanoma cells in non-dissociated tissue. Stromal CD14+ cells display a specific transcriptional signature distinct from CD14+ cells within tumor nests. This signature contains LY75, a gene linked with antigen capture and regulation of tolerance and immunity in dendritic cells (DCs). When applied to TCGA cohorts, this gene set can distinguish patients with significantly prolonged survival in metastatic cutaneous melanoma and other cancers. Thus, the stromal CD14+ cell signature represents a candidate biomarker and suggests that reprogramming of stromal macrophages to acquire DC function may offer a therapeutic opportunity for metastatic cancers.


Assuntos
Melanoma , Segunda Neoplasia Primária , Neoplasias Cutâneas , Humanos , Macrófagos , Melanoma/genética , Fenótipo , Neoplasias Cutâneas/genética , Linfócitos T
7.
Cell Rep ; 39(5): 110763, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35508132

RESUMO

T follicular helper (TFH) cells promote expansion of germinal center (GC) B cells and plasma cell differentiation. Whether cognate peptide-MHCII (pMHCII) density instructs selection and cell fate decisions in a quantitative manner remains unclear. Using αDEC205-OVA to differentially deliver OVA peptides to GC B cells on the basis of DEC205 allelic copy number, we find DEC205+/+ B cells take up 2-fold more antigen than DEC205+/- cells, leading to proportional TFH cell help and B cell expansion. To validate these results, we establish a caged OVA peptide, which is readily detected by OVA-specific TFH cells after photo-uncaging. In situ uncaging of peptides leads to multiple serial B-T contacts and cell activation. Differential CD40 signaling, is both necessary and sufficient to mediate 2-fold differences in B cell expansion. While plasmablast numbers are increased, pMHCII density does not directly control the output or quality of plasma cells. Thus, we distinguish the roles TFH cells play in expansion versus differentiation.


Assuntos
Ligante de CD40 , Plasmócitos , Linfócitos B , Diferenciação Celular , Centro Germinativo , Linfócitos T Auxiliares-Indutores
8.
Vaccines (Basel) ; 10(5)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35632440

RESUMO

Dendritic cell (DC) targeting by DEC205+ cells effectively promotes the internalization of antigens that may trigger a specific immune response. In this study, we evaluated the ability of a recombinant antibody, anti-DEC205 (rAb ZH9F7), to trigger cellular endocytosis in subpopulations of DCs and targeted cells after intradermal injection and subsequent migration toward lymph nodes. Furthermore, the cellular immune response was evaluated in pigs after intradermal application of the antigenized rAb ZH9F7 combined with porcine circovirus type 2 cap antigen (rAb ZH9F7-Cap). We demonstrated that rAb ZH9F7 recognized conventional type 1 and 2 DCs from the blood and skin and monocytes. It promoted receptor-mediated endocytosis and migration of cDCs and moDCs toward regional lymph nodes. Intradermal application of rAb ZH9F7-Cap induced a higher frequency of IFN-γ-secreting CD4+CD8+ T lymphocytes and antibodies against Cap protein than that in the control group. In conclusion, the rAb ZH9F7-Cap system promoted the target of skin cDC1 and cDC2, provoking migration to the regional lymph nodes and inducing a Th1 response, as evidenced by the proliferation of double-positive CD4+CD8+ T cells, which correlates with an enhanced ability to target the cDC1 subset both in vitro and in vivo.

9.
Front Immunol ; 13: 791799, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401532

RESUMO

Yersinia pestis, the cause of plague, is a newly evolved Gram-negative bacterium. Through the acquisition of the plasminogen activator (Pla), Y. pestis gained the means to rapidly disseminate throughout its mammalian hosts. It was suggested that Y. pestis utilizes Pla to interact with the DEC-205 (CD205) receptor on antigen-presenting cells (APCs) to initiate host dissemination and infection. However, the evolutionary origin of Pla has not been fully elucidated. The PgtE enzyme of Salmonella enterica, involved in host dissemination, shows sequence similarity with the Y. pestis Pla. In this study, we demonstrated that both Escherichia coli K-12 and Y. pestis bacteria expressing the PgtE-protein were able to interact with primary alveolar macrophages and DEC-205-transfected CHO cells. The interaction between PgtE-expressing bacteria and DEC-205-expressing transfectants could be inhibited by the application of an anti-DEC-205 antibody. Moreover, PgtE-expressing Y. pestis partially re-gained the ability to promote host dissemination and infection. In conclusion, the DEC-205-PgtE interaction plays a role in promoting the dissemination and infection of Y. pestis, suggesting that Pla and the PgtE of S. enterica might share a common evolutionary origin.


Assuntos
Escherichia coli K12 , Salmonella enterica , Yersinia pestis , Animais , Proteínas de Bactérias/genética , Cricetinae , Cricetulus , Ativadores de Plasminogênio
10.
Int J Biol Sci ; 17(11): 2944-2956, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34345218

RESUMO

The generation of successful anticancer vaccines relies on the ability to induce efficient and long-lasting immune responses to tumor antigens. In this scenario, dendritic cells (DCs) are essential cellular components in the generation of antitumor immune responses. Thus, delivery of tumor antigens to specific DC populations represents a promising approach to enhance the efficiency of antitumor immunotherapies. In the present study, we employed antibody-antigen conjugates targeting a specific DC C-type lectin receptor. For that purpose, we genetically fused the anti-DEC205 monoclonal antibody to the type 16 human papillomavirus (HPV-16) E7 oncoprotein to create a therapeutic vaccine to treat HPV-associated tumors in syngeneic mouse tumor models. The therapeutic efficacy of the αDEC205-E7 mAb was investigated in three distinct anatomical tumor models (subcutaneous, lingual and intravaginal). The immunization regimen comprised two doses of the αDEC205-E7 mAb coadministered with a DC maturation stimulus (Polyinosinic:polycytidylic acid, poly (I:C)) as an adjuvant. The combined immunotherapy produced robust antitumor effects on both the subcutaneous and orthotopic tumor models, stimulating rapid tumor regression and long-term survival. These outcomes were related to the activation of tumor antigen-specific CD8+ T cells in both systemic compartments and lymphoid tissues. The αDEC205-E7 antibody plus poly (I:C) administration induced long-lasting immunity and controlled tumor relapses. Our results highlight that the delivery of HPV tumor antigens to DCs, particularly via the DEC205 surface receptor, is a promising therapeutic approach, providing new opportunities for the development of alternative immunotherapies for patients with HPV-associated tumors at different anatomical sites.


Assuntos
Antígenos CD/imunologia , Vacinas Anticâncer/administração & dosagem , Células Dendríticas/imunologia , Lectinas Tipo C/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Neoplasias Experimentais/prevenção & controle , Proteínas E7 de Papillomavirus/imunologia , Infecções por Papillomavirus/prevenção & controle , Receptores de Superfície Celular/imunologia , Adjuvantes Imunológicos , Animais , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Feminino , Humanos , Memória Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/virologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Poli I-C/administração & dosagem
11.
Mol Biotechnol ; 63(10): 973-982, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34146324

RESUMO

Rotavirus is the most common cause of severe diarrhea in infants and children worldwide and is responsible for about 215,000 deaths annually. Over 85% of these deaths originate in low-income/developing countries in Asia and Africa. Therefore, it is necessary to explore the development of vaccines that avoid the use of "living" viruses and furthermore, vaccines that have viral antigens capable of generating powerful heterotypic responses. Our strategy is based on the expression of the fusion of the anti-DEC205 single-chain variable fragment (scFv) coupled by an OLLAS tag to a viral protein (VP6) of Rotavirus in Nicotiana plants. It was possible to express transiently in N. benthamiana and N. sylvestris a recombinant protein consisting of the single chain variable fragment linked by an OLLAS tag to the VP6 protein. The presence of the recombinant protein, which had a molecular weight of approximately 75 kDa, was confirmed by immunodetection, in both plant species and in both cellular compartments (cytoplasm and apoplast) where it was expressed. In addition, the recombinant protein was modeled, and it was observed that some epitopes of interest are exposed on the surface, which could favor their immunogenic response.


Assuntos
Antígenos Virais/genética , Proteínas do Capsídeo/genética , Nicotiana/crescimento & desenvolvimento , Rotavirus/metabolismo , Anticorpos de Cadeia Única/genética , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Antígenos Virais/química , Antígenos Virais/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Modelos Moleculares , Peso Molecular , Engenharia de Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/metabolismo , Rotavirus/genética , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
12.
Front Immunol ; 12: 593161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717073

RESUMO

HPV E5 is an oncoprotein mainly expressed in premalignant lesions, which makes it an important target for a vaccine to prevent or cure cervical cancer (CC). In this study, we evaluated whether E5 targeted to DEC-205, present in dendritic cells (DCs), could induce a therapeutic protection against HPV16-induced tumor cells in a mouse model. The HPV-16 E5 (16E5) protein was cross-linked to a monoclonal antibody (mAb) specific to mouse DEC-205 (anti-DEC-205:16E5) or to an isotype control mAb (isotype:16E5). Rotavirus VP6 was cross-linked to the mouse anti-DEC-205 mAb (anti-DEC-205:VP6) as a non-specific antigen control. BALB/c mice were inoculated subcutaneously (s.c.) with the 16E5-expressing BMK-16/myc tumor cells, and 7 and 14 days later the mice were immunized s.c. with the conjugates, free 16E5 or PBS in the presence of adjuvant. Tumor growth was monitored to evaluate protection. A strong protective immune response against the tumor cells was induced when the mice were inoculated with the anti-DEC-205:16E5 conjugate, since 70% of the mice controlled the tumor growth and survived, whereas the remaining 30% developed tumors and died by day 72. In contrast, 100% of the mice in the control groups died by day 30. The anti-DEC-205:16E5 conjugate was found to induce 16E5-specific memory T cells, with a Th1/Th17 profile. Both CD4+ and CD8+ T cells contributed to the observed protection. Finally, treating mice that had developed tumors with an anti-PD-1 mAb, delayed the tumor growth for more than 20 days. These results show that targeting 16E5 to DEC-205, alone or combined with an immune checkpoint blockade, could be a promising protocol for the treatment of the early stages of HPV-associated cancer.


Assuntos
Células Dendríticas/imunologia , Papillomavirus Humano 16/imunologia , Neoplasias/etiologia , Neoplasias/terapia , Proteínas Oncogênicas Virais/imunologia , Infecções por Papillomavirus/complicações , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Biomarcadores Tumorais , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Imunização , Memória Imunológica , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Neoplasias/diagnóstico , Infecções por Papillomavirus/virologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
13.
J Immunol Methods ; 489: 112911, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33186587

RESUMO

Recombinant hybrid antibodies are commonly used in antigen-targeting assays to reduce the immunogenic potential associated with using classic mouse antibodies in other species. The DEC205 receptor has become an attractive target due to its effectiveness in activating the immune response and is considered a promising vaccination target. The aim of this study was to produce a fully chimeric mouse x pig anti-porcine DEC205 recombinant antibody (rAb). Based on a mouse anti-porcine DEC205 monoclonal antibody (mAb), we designed and expressed a chimeric mouse x pig rAb using the Expi293f system. The resulting rAb maintained the recognition capacity of the native mouse mAb toward the porcine DEC205 receptor, as evidenced by western blot analysis. By using flow cytometry, we evaluated the ability of the rAb to recognize DEC205+ dendritic cells. In conclusion, the chimeric mouse x pig anti-DEC205 rAb can be used in antigen-targeting assays as a vaccination strategy in pigs.


Assuntos
Anticorpos Monoclonais/biossíntese , Antígenos CD/imunologia , Lectinas Tipo C/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Receptores de Superfície Celular/imunologia , Animais , Anticorpos Monoclonais/imunologia , Camundongos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Suínos
14.
Mol Ther Oncolytics ; 19: 240-252, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33209979

RESUMO

Prime-boost vaccination employing heterologous viral vectors encoding an antigen is an effective strategy to maximize the antigen-specific immune response. Replication-deficient adenovirus serotype 5 (Ad5) is currently being evaluated clinically in North America as a prime in conjunction with oncolytic rhabdovirus Maraba virus (MG1) as a boost. The use of an oncolytic rhabdovirus encoding a tumor antigen elicits a robust anti-cancer immune response and extends survival in murine models of cancer. Given the prevalence of pre-existing immunity to Ad5 globally, we explored the potential use of DEC205-targeted antibodies as an alternative agent to prime antigen-specific responses ahead of boosting with an oncolytic rhabdovirus expressing the same antigen. We found that a prime-boost vaccination strategy, consisting of an anti-DEC205 antibody fused to the model antigen ovalbumin (OVA) as a prime and oncolytic rhabdovirus-OVA as a boost, led to the formation of a robust antigen-specific immune response and improved survival in a B16-OVA tumor model. Overall, our study shows that anti-DEC205 antibodies fused to cancer antigens are effective to prime oncolytic rhabdovirus-boosted cancer antigen responses and may provide an alternative for patients with pre-existing immunity to Ad5 in humans.

15.
Drug Deliv ; 27(1): 1581-1596, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33169636

RESUMO

DEC-205 receptor-mediated dendritic cells (DC) targeting nanoliposomes is a promising delivery system in eliciting an immune response against pathogens. When this delivery system carries both antigen and immunomodulator, it can effectively regulate the DC function as well as the initial T cell response. To maximize the desired therapeutic effects of Eucommia ulmoides Oliv. polysaccharides (EUPS), and induce an efficient humoral and cellular immune response against an antigen, we encapsulated the OVA and EUPS in long-circling nanoliposomes and conjugated it with anti-DEC-205 receptor antibody to obtain a DEC-205-targeted nanoliposomes (anti-DEC-205-EUPS-OVA-LPSM). The physicochemical properties and immune-modulating effects were investigated in vitro and in vivo by a series of the experiment to evaluate the targeting efficiency of anti-DEC-205-EUPS-OVA-LPSM. In vitro, anti-DEC-205-EUPS-OVA-LPSM (160 µg mL-1) could enhance DCs proliferation and increase their phagocytic efficiency. In vivo anti-DEC-205-EUPS-OVA-LPSM remarkably promoted the OVA-specific IgG and IgG isotypes levels, enhanced the splenocyte proliferation, and induced the NK cell and CTL cytotoxicity. Besides, the anti-DEC-205-EUPS-OVA-LPSM enhanced the maturation of DCs. These findings suggest that the DEC-205 receptor antibody-conjugated EUPS nanoliposome can act as an efficient antigen delivery system to enhance the cellular and humoral immune response by promoting DC maturation. This indicates that the anti-DEC-205-EUPS-OVA-LPSM has significant potential as an immune-enhancing agent and antigen delivery system.


Assuntos
Antígenos CD/metabolismo , Antígenos/administração & dosagem , Células Dendríticas/efeitos dos fármacos , Eucommiaceae/química , Imunidade/efeitos dos fármacos , Lectinas Tipo C/metabolismo , Lipossomos/administração & dosagem , Antígenos de Histocompatibilidade Menor/metabolismo , Nanopartículas/administração & dosagem , Polissacarídeos/administração & dosagem , Receptores de Superfície Celular/metabolismo , Animais , Células Cultivadas , Feminino , Fatores Imunológicos/imunologia , Camundongos , Camundongos Endogâmicos ICR
16.
Vaccines (Basel) ; 8(4)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019498

RESUMO

Targeting dendritic cells (DCs) by means of monoclonal antibodies (mAbs) capable of binding their surface receptors (DEC205 and DCIR2) has previously been shown to enhance the immunogenicity of genetically fused antigens. This approach has been repeatedly demonstrated to enhance the induced immune responses to passenger antigens and thus represents a promising therapeutic and/or prophylactic strategy against different infectious diseases. Additionally, under experimental conditions, chimeric αDEC205 or αDCIR2 mAbs are usually administered via an intraperitoneal (i.p.) route, which is not reproducible in clinical settings. In this study, we characterized the delivery of chimeric αDEC205 or αDCIR2 mAbs via an intradermal (i.d.) route, compared the elicited humoral immune responses, and evaluated the safety of this potential immunization strategy under preclinical conditions. As a model antigen, we used type 2 dengue virus (DENV2) nonstructural protein 1 (NS1). The results show that the administration of chimeric DC-targeting mAbs via the i.d. route induced humoral immune responses to the passenger antigen equivalent or superior to those elicited by i.p. immunization with no toxic effects to the animals. Collectively, these results clearly indicate that i.d. administration of DC-targeting chimeric mAbs presents promising approaches for the development of subunit vaccines, particularly against DENV and other flaviviruses.

17.
Eur J Immunol ; 50(12): 1895-1911, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32673408

RESUMO

Conventional dendritic cells (cDCs) are specialized in antigen presentation. In the mouse spleen, cDCs are classified in cDC1s and cDC2s, and express DEC205 and DCIR2 endocytic receptors, respectively. Monoclonal antibodies (mAbs) αDEC205 (αDEC) and αDCIR2 have been fused to different antigens to deliver them to cDC1s or cDC2s. We immunized mice with αDEC and αDCIR2 fused to an antigen using Poly(I:C) as adjuvant. The initial immune response was analyzed from days 3 to 6 after the immunization. We also studied the influence of a booster dose. Our results showed that antigen targeting to cDC1s promoted a pro-inflammatory TH 1 cell response. Antigen targeting to cDC2s induced TFH cells, GCs, and plasma cell differentiation. After boost, antigen targeting to cDC1s improved the TH 1 cell response and induced TH 1-like TFH cells that led to an increase in specific antibody titers and IgG class switch. Additionally, a population of regulatory T cells was also observed. Antigen targeting to cDC2s did not improve the specific antibody response after boost. Our results add new information on the immune response induced after the administration of a booster dose with αDEC and αDCIR2 fusion mAbs. These results may be useful for vaccine design using recombinant mAbs.


Assuntos
Células Dendríticas/imunologia , Receptores de Superfície Celular/imunologia , Células T Auxiliares Foliculares/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Animais , Anticorpos Monoclonais/imunologia , Formação de Anticorpos/imunologia , Apresentação de Antígeno/imunologia , Feminino , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poli I-C/imunologia
18.
Viruses ; 11(12)2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817510

RESUMO

The two human oncogenic -herpesviruses, Epstein Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV), are prototypic pathogens that are controlled by T cell responses. Despite their ubiquitous distribution, persistent infections and transforming potential, most carriers' immune systems control them for life. Therefore, they serve as paradigms of how near-perfect cell-mediated immune control can be initiated and maintained for decades. Interestingly, EBV especially quite efficiently avoids dendritic cell (DC) activation, and little evidence exists that these most potent antigen-presenting cells of the human body are involved in the priming of immune control against this tumor virus. However, DCs can be harnessed therapeutically to expand virus-specific T cells for adoptive transfer therapy of patients with virus-associated malignancies and are also currently explored for vaccinations. Unfortunately, despite 55 and 25 years of research on EBV and KSHV, respectively, the priming of their immune control that belongs to the most robust and durable immune responses in humans still remains unclear.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Gammaherpesvirinae/imunologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/prevenção & controle , Interações Hospedeiro-Patógeno/imunologia , Vacinação , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Infecções por Herpesviridae/terapia , Humanos , Imunoterapia , Linfócitos T/imunologia , Linfócitos T/metabolismo
19.
Viruses ; 11(11)2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683569

RESUMO

Conventional dendritic cells (cDCs) cannot be infected by porcine reproductive and respiratory syndrome virus (PRRSV) but respond to infection via cytokine production, indicating a possible role in initiation/regulation of the immune response against PRRSV. In this work, we evaluated the responses of splenic and blood cDCs, with DEC205+CADM1+CD172a+/- phenotype, as well as those of CD163+ cells against PRRSV and porcine epidemic diarrhea virus (PEDV). Both populations were incubated in the presence of PRRSV or PEDV with and without naïve CD3+ T cells, and cytokine responses were evaluated by qPCR and ELISA. Our results showed that cDCs, but not CD163+ cells, produced IL-12 in response to PRRSV. PEDV did not induce IL-12 production. Cocultures of cDCs and autologous naïve CD3+ cells resulted in decreased IL-12 production and low expression of IFN-γ transcripts in response to PRRSV. Interestingly, cDCs increased the proliferation of naïve T cells in the presence of PRRSV compared with that achieved with monocytes and peripheral blood mononuclear cells (PBMCs). Cocultures of CD163+ cells induced IL-10 and IL-4 expression in the presence of PRRSV and PEDV, respectively. In conclusion, cDCs can selectively produce IL-12 in response to PRRSV but poorly participate in the activation of naïve T cells.


Assuntos
Infecções por Coronavirus/veterinária , Células Dendríticas/imunologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Linfócitos T , Animais , Antígenos CD/sangue , Antígenos de Diferenciação Mielomonocítica/sangue , Molécula 1 de Adesão Celular/sangue , Infecções por Coronavirus/imunologia , Citocinas/sangue , Células Dendríticas/virologia , Interleucina-10/sangue , Interleucina-12/sangue , Interleucina-4/sangue , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Monócitos/imunologia , Monócitos/virologia , Vírus da Diarreia Epidêmica Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Cultura Primária de Células , Receptores de Superfície Celular/sangue , Baço/citologia , Baço/imunologia , Baço/virologia , Suínos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/virologia , Linfócitos T/imunologia , Linfócitos T/virologia
20.
Vaccine ; 37(35): 4963-4974, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31320219

RESUMO

Vaccination is the most efficient strategy to protect from infectious diseases and the induction of a protective immune response not only depends on the nature of the antigen, but is also influenced by the vaccination strategy and the co-administration of adjuvants. Therefore, the precise monitoring of adjuvant candidates and their immune modulatory properties is a crucial step in vaccine development. Here, one central aspect is the induction of appropriate humoral and cellular effector mechanisms. In our study we performed a direct comparison of two promising candidates in adjuvant development, the STING activator bis-(3,5)-cyclic dimeric adenosine monophosphate (c-di-AMP) and the Toll-like receptor ligand formulation poly(I:C)/CpG. These were evaluated in C57BL/6 mice using the model antigen ovalbumin (OVA) in subcutaneous vaccination with soluble protein as well as in a dendritic cell (DC) targeting approach (αDEC-OVA). Strikingly, c-di-AMP as compared to poly(I:C)/CpG resulted in significantly higher antigen-specific IgG antibody levels when used in immunization with soluble OVA as well as in antigen targeting to DC. In vaccination with soluble OVA, c-di-AMP induced a significantly stronger CTL, Th1 and IFNγ-producing CD8+ memory T cell response than poly(I:C)/CpG. The response was CTL and Th1 cell dominated, a profile shared by both adjuvants. In the context of targeting OVA to DC, c-di-AMP induced significantly increased Th1 and Th2 cell responses as compared to poly(I:C)/CpG. Interestingly, the Th1 response dominated the overall T cell response only when c-di-AMP was used, indicating a distinct modulatory property of c-di-AMP when the DC targeting immunization approach was exploited. Taken together, we describe superior properties of c-di-AMP as compared to poly(I:C)/CpG in subcutaneous vaccination with soluble antigen as well as antigen targeting to DC. This indicates exceptionally effective adjuvant properties for c-di-AMP and provides compelling evidence of its potential for further adjuvant development, especially also when using DC targeting approaches.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Antígenos CD/imunologia , Células Dendríticas/imunologia , Fosfatos de Dinucleosídeos/imunologia , Lectinas Tipo C/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Receptores de Superfície Celular/imunologia , Animais , Vacinas Anticâncer , Fosfatos de Dinucleosídeos/administração & dosagem , Feminino , Imunoglobulina G/imunologia , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/imunologia , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Poli I-C/administração & dosagem , Poli I-C/imunologia , Organismos Livres de Patógenos Específicos , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...