Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; : e202400754, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39429047

RESUMO

DNA logic gates with dynamic nanostructures have made a profound impact on cancer diagnosis and treatment. Through programming the dynamic structure changes of DNA nanodevices, precise molecular recognition with signal amplification and smart therapeutic strategies have been reported. This enhances the specificity and sensitivity of cancer theranostics, and improves diagnosis precision and treatment outcomes. This review explores the basic components of dynamic DNA nanostructures and corresponding DNA logic gates, as well as their applications for cancer diagnosis and therapies. The dynamic DNA nanostructures would contribute to cancer early detection and personalized treatment.

2.
Nano Lett ; 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39470128

RESUMO

Fluorescence imaging of cell membrane glycoproteins based on metabolic labeling faces challenges including the sensitivity and spatial specificity and the use of a high concentration of unnatural sugars. To overcome these limitations, we developed a method for in situ imaging of cell membrane glycoproteins by operating Cas12a activity, and employing the ultrabright DNA nanostructure, FluoroCube (FC), as a signal reporter. Following Cas12a activation, we observed stable and intense fluorescence signals within 15 min. The combination of bright FC and Cas12a's amplification capability allows for effective imaging with only 5 µM of unnatural sugars and a brief 24-h incubation. Computational modeling demonstrates that Cas12a specifically cleaves FC in the 11-17 nm range of the glycosylation site, enabling spatially precise imaging. This approach successfully enabled fluorescence imaging of glycoproteins across various cell lines and the detection of changes in glycoprotein levels induced by drugs.

3.
Nano Lett ; 24(43): 13481-13486, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39432432

RESUMO

DNA nanopores appear to be a plausible alternative to the use of transmembrane proteins. The specificity and programmability of DNA interactions allow the design of synthetic channels that insert into lipid bilayers and can regulate the ionic transport across them. In this Communication, we investigate the dependence of insertion capabilities on the electrostatic properties of the nanopore and show that the presence of a permanent electric dipole is an important factor for the nanopore to insert into the membrane. On the contrary, in the absence of such a dipole, most DNA nanopores bind to the bilayer without channel formation. We also show that this modification does not hinder the possibility of triggering a measurable conformational change with a single short oligonucleotide.


Assuntos
DNA , Bicamadas Lipídicas , Nanoporos , DNA/química , Bicamadas Lipídicas/química , Eletricidade Estática , Conformação de Ácido Nucleico
4.
Angew Chem Int Ed Engl ; : e202411382, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39405000

RESUMO

High-affinity, specific, and sensitive probes are crucial for the specific recognition and identification of tumor cells from complex matrices. Multivalent binding is a powerful strategy, but the irrational spatial distribution of the functional moieties may reduce the probe performance. Here, we constructed a Janus DNA triangular prism nanostructure (3Zy1-JTP-3) for sensitive detection and specific isolation of tumor cells. Benefiting from spatial features of the triangular prism, the fluorescence intensity induced by 3Zy1-JTP-3 was almost 4 times that of the monovalent structure. Moreover, the DNA triangular prisms were connected to form hand-in-hand multivalent DNA triangular prism structures (Zy1-MTP), in which the fluorescence intensity and affinity were increased to 9-fold and 10-fold of 3Zy1-JTP-3, respectively. Furthermore, 3Zy1-JTP-3 and Zy1-MTP were combined with magnetic beads, and the latter showed higher capture efficiency (> 90%) in whole blood. This work provides a new strategy for the efficient capture of rare cells in complex biological samples.

5.
ACS Appl Mater Interfaces ; 16(38): 50295-50304, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39265065

RESUMO

Cascade-enzyme reaction systems have emerged as promising tools for treating malignant tumors by efficiently converting nutrients into toxic substances. However, the challenges of poor localized retention capacity and utilization of highly active enzymes often result in extratumoral toxicity and reduced therapeutic efficacy. In this study, we introduced a cell membrane-DNA nanoanchor (DNANA) with a spatially confined cascade enzyme for in vivo tumor therapy. The DNANAs are constructed using a polyvalent cholesterol-labeled DNA triangular prism, ensuring high stability in cell membrane attachment. Glucose oxidase (GOx) and horseradish peroxidase (HRP), both modified with streptavidin, are precisely confined to biotin-labeled DNANAs. Upon intratumoral injection, DNANA enzymes efficiently colonize the tumor site through cellular membrane engineering strategies, significantly reducing off-target enzyme leakage and the associated risks of extratumoral toxicity. Furthermore, DNANA enzymes demonstrated effective cancer therapy in vitro and in vivo by depleting glucose and producing highly cytotoxic hydroxyl radicals in the vicinity of tumor cells. This membrane-engineered cascade-enzyme reaction system presents a conceptual approach to tumor treatment.


Assuntos
DNA , Glucose Oxidase , Peroxidase do Rábano Silvestre , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Animais , Humanos , DNA/química , DNA/metabolismo , Camundongos , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacologia , Membrana Celular/metabolismo , Colesterol/química
6.
ACS Appl Mater Interfaces ; 16(40): 54389-54400, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39322981

RESUMO

Nanozymes have been developed to overcome the inherent limitations of natural enzymes, such as their low stability and high cost. However, their efficacy has been hindered by their relatively low specificity and activity. Here, we demonstrate the self-assembly of individual copper nanoclusters (CuNCs) via a simple yet fast (10 min) DNA nanosheet (DNS)-templated method, enhancing the peroxidase-like activity and specificity of CuNCs. Furthermore, we demonstrate the successful assembly of CuNCs on different DNA nanostructures by atomic force microscopy (AFM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The resulting micron-scale ultrathin DNA nanosheet-templated CuNCs (DNS@CuNCs) exhibit exceptional catalytic activity, with a specific activity reaching 1.79 × 103 U mg-1. Investigation into the catalytic process reveals that the enhanced activity and specificity arise from disparities in active intermediate content before and after CuNCs assembly. Significantly, the DNS@CuNCs-based biosensor demonstrates remarkable anti-interference capabilities, enabling the detection of H2O2 in undiluted human serum for the first time with a detection limit of 0.99 µM.


Assuntos
Técnicas Biossensoriais , Cobre , DNA , Peróxido de Hidrogênio , Cobre/química , Humanos , DNA/química , Técnicas Biossensoriais/métodos , Peróxido de Hidrogênio/química , Catálise , Nanoestruturas/química , Nanopartículas Metálicas/química , Limite de Detecção
8.
Biotechnol Adv ; 76: 108436, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39209178

RESUMO

Research on self-assembled deoxyribonucleic acid (DNA) nanostructures with different shapes, sizes, and functions has recently made rapid progress owing to its biocompatibility, programmability, and stability. Among these, triangular unit-based DNA nanostructures, which are typically multi-arm DNA tiles, have been widely applied because of their unique structural rigidity, spatial flexibility, and cell permeability. Triangular unit-based DNA nanostructures are folded from multiple single-stranded DNA using the principle of complementary base pairing. Its shape and size can be determined using pre-set scaffold strands, segmented base complementary regions, and sequence lengths. The resulting DNA nanostructures retain the desired sequence length to serve as binding sites for other molecules and obtain satisfactory results in molecular recognition, spatial orientation, and target acquisition. Therefore, extensive research on triangular unit-based DNA nanostructures has shown that they can be used as powerful tools in the biosensing field to improve specificity, sensitivity, and accuracy. Over the past few decades, various design strategies and assembly techniques have been established to improve the stability, complexity, functionality, and practical applications of triangular unit-based DNA nanostructures in biosensing. In this review, we introduce the structural design strategies and principles of typical triangular unit-based DNA nanostructures, including triangular, tetrahedral, star, and net-shaped DNA. We then summarize the functional properties of triangular unit-based DNA nanostructures and their applications in biosensing. Finally, we critically discuss the existing challenges and future trends.


Assuntos
Técnicas Biossensoriais , DNA , Nanoestruturas , Nanoestruturas/química , Técnicas Biossensoriais/métodos , DNA/química , Nanotecnologia/métodos , Conformação de Ácido Nucleico
9.
Foods ; 13(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39123601

RESUMO

Aflatoxin B1 (AFB1), a widespread contaminant in food and feeds, poses a threat to the health of animals and humans. Consequently, it is significant to develop a rapid, precise and highly sensitive analytical method for the detection of AFB1. Herein, we developed an immunochromatographic strip (ICS) based on a tetrahedral DNA (TDN) immunoprobe for AFB1 determination in rice bran oil. Three sizes of TDN immunoprobes (AuNP-TDN13bp-mAb, AuNP-TDN17bp-mAb, AuNP-TDN26bp-mAb) were constructed, and the performance of these three immunoprobes, including the effective antibody labeling density and immunoaffinity, was measured and compared with that of the immunoprobe (AuNP-mAb) developed using the physical adsorption method. Subsequently, the optimal TDN immunoprobe, namely AuNP-TDN13bp-mAb, was selected to prepare the immunochromatographic strip (ICS) for the qualitative and quantitative detection of AFB1 in rice bran oil. The visual limits of detection (vLODs) of the ICS based on AuNP-TDN13bp-mAb and AuNP-mAb were 0.2 ng/mL and 2 ng/mL, with scanning quantitative limits (sLOQs) of 0.13 ng/mL and 1.4 ng/mL, respectively. The ICS demonstrated a wide linear range from 0.02 ng/mL to 0.5 ng/mL, with good specificity, accuracy, precision, repeatability, and stability. Moreover, a high consistency was observed between the constructed ICS and ultra-high-performance liquid chromatography (UPLC) in the quantification of AFB1. The results indicated that the introduction of TDN was beneficial for promoting efficient antibody labeling, protecting the bioactivity of immunoprobes, and increasing the sensitivity of detection, which would provide new perspectives for the achievement of the highly sensitive detection of mycotoxins.

10.
Anal Chim Acta ; 1319: 342951, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39122270

RESUMO

BACKGROUND: Circular ribonucleic acids (circRNAs) are a type of covalently closed noncoding RNA with disease-relevant expressions, making them promising biomarkers for diagnosis and prognosis. Accurate quantification of circRNA in biological samples is a necessity for their clinical application. So far, methods developed for detecting circRNAs include northern blotting, reverse transcription quantitative polymerase chain reaction (RT-qPCR), microarray analysis, and RNA sequencing. These methods generally suffer from disadvantages such as large sample consumption, cumbersome process, low selectivity, leading to inaccurate quantification of circRNA. It was thought that the above drawbacks could be eliminated by the construction of a microfluidic sensor. RESULTS: Herein, for the first time, a microfluidic sensor was constructed for circRNA analysis by using tetrahedral DNA nanostructure (TDN) as the skeleton for recognition probes and target-initiated hybridization chain reaction (HCR) as the signal amplification strategy. In the presence of circRNA, the recognition probe targets the circRNA-specific backsplice junction (BSJ). The captured circRNA then triggers the HCR by reacting with two hairpin species whose ends were labeled with 6-FAM, producing long DNA strands with abundant fluorescent labels. By using circ_0061276 as a model circRNA, this method has proven to be able to detect circRNA of attomolar concentration. It also eliminated the interference of linear RNA counterpart, showing high selectivity towards circRNA. The detection process can be implemented isothermally and does not require expensive complicated instruments. Moreover, this biosensor exhibited good performance in analyzing circRNA targets in total RNA extracted from cancer cells. SIGNIFICANCE: This represents the first microfluidic system for detection of circRNA. The biosensor showed merits such as ease of use, low-cost, small sample consumption, high sensitivity and specificity, and good reliability in complex biological matrix, providing a facile tool for circRNA analysis and related disease diagnosis in point-of care application scenes.


Assuntos
DNA , Nanoestruturas , RNA Circular , RNA Circular/genética , RNA Circular/análise , DNA/química , Humanos , Nanoestruturas/química , Dispositivos Lab-On-A-Chip , Hibridização de Ácido Nucleico , Técnicas Biossensoriais/métodos , Técnicas Analíticas Microfluídicas/instrumentação
11.
Biosens Bioelectron ; 263: 116601, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39053148

RESUMO

Compared to conventional nucleic acid detection methods, label-free single nucleotide polymorphism (SNP) detection presents challenging due to the necessity of discerning single base mismatches, especially in the field of enzyme-free detection. In this study, we introduce a novel bulged-type DNA duplex probe designed to significantly amplify single-base differences. This probe is integrated with programmable DNA-based nanostructures to develop a sensitive, label-free biosensor for nonenzymatic SNP detection. The duplex probe with one bulge could selectively identify wild-typed DNA (WT) and mutant-type DNA (MT) based on a competitive strand displacement reaction mechanism. The hyperbranched HCR (HHCR) by incorporating of hairpin DNA into the DNA tetrahedron and surface-tethering on the portable screen printing electrode (SPCE) significantly favor the formation of negatively charged DNA nanostructure. We harnessed strong repulsion of DNA nanostructure towards the electroactive [Fe(CN)6]³â»/4⁻ in combination with electrochemical technique to create a label-free biosensor. This simple, enzyme-free and label-free biosensor could detect MT with a detection limit of 56 aM, even in multiple sequence backgrounds. The study served as the proof-of-concept for the integration of enzyme-free competitive mechanism and label-free strategy, which can be extended as a powerful tool to various fields.


Assuntos
Técnicas Biossensoriais , DNA , Técnicas Eletroquímicas , Polimorfismo de Nucleotídeo Único , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , DNA/genética , DNA/química , Limite de Detecção , Nanoestruturas/química , Humanos , Sondas de DNA/química , Sondas de DNA/genética
12.
Int J Biol Macromol ; 276(Pt 2): 133930, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39025185

RESUMO

DNA has been employed as building blocks for the construction of nanomaterials due to their programmability and wide range applications. The functional branched DNA (bDNA) nanostructure is largely dependent on the sequence and structural symmetry. Despite the discovery of different structures, the synthesis of bDNA nanostructures from optimal number of oligonucleotides is yet to be explored. In the current study, for the first time we demonstrate the designing of stable monomeric bDNA structures using two or three oligonucleotides. Furthermore, the stability of bDNA nanostructures was thoroughly investigated in presence of different pH, cations, fetal bovine serum and DNase I. The thermodynamic parameters indicated that hydrogen bonding and van der Waals interactions played a major role during self-assembly of bDNA nanostructures. From the gel retardation assay, we confirmed the binding of complementary oligonucleotides to the bDNA nanostructures, thus can be explored for target specific transcript regulation. In conclusion, the self-assembled DNA nanostructures developed from optimal oligonucleotides are stable in physiological environment and can be used for biomedical applications.


Assuntos
DNA , Nanoestruturas , Conformação de Ácido Nucleico , Oligonucleotídeos , Nanoestruturas/química , DNA/química , Oligonucleotídeos/química , Termodinâmica , Concentração de Íons de Hidrogênio , Ligação de Hidrogênio
13.
J Hazard Mater ; 476: 135115, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38976962

RESUMO

A label-free fluorescent sensing strategy for the rapid and highly sensitive detection of Pb2+ was developed by integrating Pb2+ DNAzyme-specific cleavage activity and a tetrahedral DNA nanostructure (TDN)-enhanced hyperbranched hybridization chain reaction (hHCR). This strategy provides accelerated reaction rates because of the highly effective collision probability and enriched local concentrations from the spatial confinement of the TDN, thus showing a higher detection sensitivity and a more rapid detection process. Moreover, a hairpin probe based on a G-triplex instead of a G-quadruplex or chemical modification makes hybridization chain reaction more controlled and flexible, greatly improving signal amplification capacities and eliminating labeled DNA probes. The enhanced reaction rates and improved signal amplification efficiency endowed the biosensors with high sensitivity and a rapid response. The label-free detection of Pb2+ based on G-triplex combined with thioflavin T can be achieved with a detection limit as low as 1.8 pM in 25 min. The proposed Pb2+-sensing platform was also demonstrated to be applicable for Pb2+ detection in tap water, river water, shrimp, rice, and soil samples, thus showing great potential for food safety and environmental monitoring.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Chumbo , Limite de Detecção , Hibridização de Ácido Nucleico , Chumbo/análise , Chumbo/química , DNA Catalítico/química , Técnicas Biossensoriais/métodos , Nanoestruturas/química , Poluentes Químicos da Água/análise , DNA/química , DNA/análise , Animais , Monitoramento Ambiental/métodos , Oryza/química , Poluentes Ambientais/análise
14.
Biosens Bioelectron ; 261: 116500, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38896979

RESUMO

In this work, we present an electrochemical sensor for fast, low-cost, and easy detection of the SARS-CoV-2 spike protein in infected patients. The sensor is based on a selected combination of nanomaterials with a specific purpose. A bioconjugate formed by Few-layer bismuthene nanosheets (FLB) and tetrahedral DNA nanostructures (TDNs) is immobilized on Carbon Screen-Printed Electrodes (CSPE). The TDNs contain on the top vertex an aptamer that specifically binds to the SARS-CoV-2 spike protein, and a thiol group at the three basal vertices to anchor to the FLB. The TDNs are also marked with a redox indicator, Azure A (AA), which allows the direct detection of SARS-CoV-2 spike protein through changes in the current intensity of its electrolysis before and after the biorecognition reaction. The developed sensor can detect SARS-CoV-2 spike protein with a detection limit of 1.74 fg mL-1 directly in nasopharyngeal swab human samples. Therefore, this study offers a new strategy for rapid virus detection since it is versatile enough for different viruses and pathogens.


Assuntos
Técnicas Biossensoriais , COVID-19 , Limite de Detecção , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/isolamento & purificação , Técnicas Biossensoriais/métodos , Humanos , Glicoproteína da Espícula de Coronavírus/análise , Glicoproteína da Espícula de Coronavírus/química , COVID-19/virologia , COVID-19/diagnóstico , Técnicas Eletroquímicas/métodos , Nanoestruturas/química , DNA/química , Aptâmeros de Nucleotídeos/química
15.
Talanta ; 276: 126193, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38735244

RESUMO

Di(2-ethylhexyl)phthalate (DEHP) is commonly released from plastics in aqueous environment, which can disrupt endocrine system and cause adverse effects on public health. There is a pressing need to highly sensitive detect DEHP. Herein, a near-infrared (NIR) light-driven lab-on-paper cathodic photoelectrochemical aptasensing platform integrated with AgInS2/Cu2O/FeOOH photocathode and "Y"-like ternary conjugated DNA nanostructure-mediated "ON-OFF" catalytic switching of hemin monomer-to-dimer was established for ultrasensitive DEHP detection. Profiting from the collaborative roles of the effective photosensitization of NIR-response AgInS2 and the fast hole extraction of FeOOH, the NIR light-activated AgInS2/Cu2O/FeOOH photocathode generated a markedly enhanced photocathodic signal. The dual hemin-labelled "Y"-like ternary conjugated DNA nanostructures made the hemin monomers separated in space and they maintained highly active to catalyze in situ generation of electron acceptors (O2). The hemin monomers were relocated in close proximity with the help of target-induced allosteric change of DNA nanostructures, which could spontaneously dimerize into catalytically inactive hemin dimers and fail to mediate electron acceptors generation, resulting in a decreased photocathodic signal. Therefore, the ultrasensitive DEHP detection was realized with a linear response range of 1 pM-500 nM and a detection limit of 0.39 pM. This work rendered a promising prototype to construct powerful paper-based photocathodic aptasensing system for sensitive and accurate screening of DEHP in aqueous environment.


Assuntos
Cobre , Dietilexilftalato , Técnicas Eletroquímicas , Eletrodos , Raios Infravermelhos , Processos Fotoquímicos , Cobre/química , Técnicas Eletroquímicas/métodos , Dietilexilftalato/química , Dietilexilftalato/análise , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Papel , Prata/química , Limite de Detecção , Índio/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
16.
Biophys Physicobiol ; 21(1): e210010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803334

RESUMO

Recent studies have revealed that liquid-liquid phase separation (LLPS) plays crucial roles in various cellular functions. Droplets formed via LLPS within cells, often referred to as membraneless organelles, serve to concentrate specific molecules, thus enhancing biochemical reactions. Artificial LLPS systems have been utilized to construct synthetic cell models, employing a range of synthetic molecules. LLPS systems based on DNA nanotechnology are particularly notable for their designable characteristics in droplet formation, dynamics, properties, and functionalities. This review surveys recent advancements in DNA-based LLPS systems, underscoring the programmability afforded by DNA's base-pair specific interactions. We discuss the fundamentals of DNA droplet formation, including temperature-dependence and physical properties, along with the precise control achievable through sequence design. Attention is given to the phase separation of DNA nanostructures on two-dimensional closed interfaces, which results in spatial pattern formation at the interface. Furthermore, we spotlight the potential of DNA droplet computing for cancer diagnostics through specific microRNA pattern recognition. We envision that DNA-based LLPS presents a versatile platform for the exploration of cellular mimicry and opens innovative ways for the development of functional synthetic cells.

17.
Anal Chim Acta ; 1311: 342743, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38816160

RESUMO

BACKGROUND: MicroRNA (miRNA) emerges as important cancer biomarker, accurate detection of miRNA plays an essential role in clinical sample analysis and disease diagnosis. However, it remains challenging to realize highly sensitive detection of low-abundance miRNA. Traditional detection methods including northern blot and real-time PCR have realized quantitative miRNA detection. However, these detection methods are involved in sophisticated operation and expensive instruments. Therefore, the development of novel sensing platform with high sensitivity and specificity for miRNA detection is urgently demanded for disease diagnosis. RESULTS: In this work, a novel electrochemical biosensor was constructed for miRNA detection based on target-driven cascade amplified assembly of electroactive covalent organic frameworks (COFs) on tetrahedral DNA nanostructure with multiplex recognition domains (m-TDN). COFs were employed as nanocarriers of electroactive prussian blue (PB) molecules by the "freeze-drying-reduction" method without the use of DNA as gatekeeper, which was simple, mild and efficient. The target-triggered catalytic hairpin assembly (CHA) and glutathione reduction could convert low-abundance miRNA into a large amount of Mn2+. Without the addition of exogenous Mn2+, the dynamically-generated Mn2+-powered DNAzyme cleavage process induced abundant PB-COFs probe assembled on the four recognition domains of m-TDN, resulting in significantly signal output. Using miRNA-182-5p as the model target, the proposed electrochemical biosensor achieved ultrasensitive detection of miRNA-182-5p in the range of 10 fM-100 nM with a detection limit of 2.5 fM. SIGNIFICANCE AND NOVELTY: Taking advantages of PB-COFs probe as the enhanced signal labels, the integration of CHA, Mn2+-powered DNAzyme and m-TDN amplification strategy significantly improved the sensitivity and specificity of the biosensor. The designed sensing platform was capable of miRNA detection in complex samples, which provided a new idea for biomarker detection, holding promising potential in clinical diagnosis and disease screening.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , DNA , Técnicas Eletroquímicas , Estruturas Metalorgânicas , MicroRNAs , Nanoestruturas , MicroRNAs/análise , Estruturas Metalorgânicas/química , Técnicas Biossensoriais/métodos , Nanoestruturas/química , DNA/química , Humanos , DNA Catalítico/química , DNA Catalítico/metabolismo , Limite de Detecção , Ferrocianetos/química
18.
Biotechnol J ; 19(4): e2300308, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38651249

RESUMO

It was previously demonstrated that polypod-like nanostructured DNA (polypodna) comprising three or more oligodeoxynucleotides (ODNs) were useful for the delivery of ODNs containing cytosine-phosphate-guanine (CpG) motifs, or CpG ODNs, to immune cells. Although the immunostimulatory activity of single-stranded CpG ODNs is highly dependent on CpG motif sequence and position, little is known about how the position of the motif affects the immunostimulatory activity of CpG motif-containing nanostructured DNAs. In the present study, four series of polypodna were designed, each comprising a CpG ODN with one potent CpG motif at varying positions and 2-5 CpG-free ODNs, and investigated their immunostimulatory activity using Toll-like receptor-9 (TLR9)-positive murine macrophage-like RAW264.7 cells. Polypodnas with the CpG motif in the 5'-overhang induced more tumor necrosis factor-α release than those with the motif in the double-stranded region, even though their cellular uptake were similar. Importantly, the rank order of the immunostimulatory activity of single-stranded CpG ODNs changed after their incorporation into polypodna. These results indicate that the CpG ODN sequence as well as the motif location in nanostructured DNAs should be considered for designing the CpG motif-containing nanostructured DNAs for immune stimulation.


Assuntos
DNA , Nanoestruturas , Oligodesoxirribonucleotídeos , Receptor Toll-Like 9 , Camundongos , Nanoestruturas/química , Animais , Células RAW 264.7 , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/farmacologia , DNA/química , DNA/imunologia , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Ilhas de CpG , Fator de Necrose Tumoral alfa/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos
19.
Anal Chim Acta ; 1305: 342587, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38677841

RESUMO

Tetrahedral DNA nanostructure (TDN) is highly promising in developing electrochemical aptamer-based (E-AB) sensors for biomolecular detection, owing to its inherit programmability, spatial orientation and structural robustness. However, current interrogation strategies applied for TDN-based E-AB sensors, including enzyme-based amperometry, voltammetry, and electrochemical impedance spectroscopy, either require complicated probe design or suffer from limited applicability or selectivity. In this study, a TDN pendulum-empowered E-AB sensor interrogated by chronoamperometry for reagent-free and continuous monitoring of a blood clotting enzyme, thrombin, was developed. TDN pendulums with extended aptamer sequences at three vertices were immobilized on a gold electrode via a thiolated double-stranded DNA (dsDNA) at the fourth vertex, and their motion is modulated by the bonding of target thrombin to aptamers. We observed a significantly amplified signalling output on our sensor based on the TDN pendulum compared to E-AB sensors modified with linear pendulums. Moreover, our sensor achieved highly selective and rapidly responsive measurement of thrombin in both PBS and artificial urine, with a wide dynamic range from 1 pM to 10 nM. This study shows chronoamperometry-enabled continuous biomarker monitoring on a sub-second timescale with a drift-free baseline, demonstrating a novel approach to accurately detect molecular dynamics in real time.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA , Técnicas Eletroquímicas , Nanoestruturas , Trombina , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos , Nanoestruturas/química , Trombina/análise , Técnicas Biossensoriais/métodos , DNA/química , Biomarcadores/urina , Biomarcadores/análise , Biomarcadores/sangue , Humanos , Ouro/química , Eletrodos , Limite de Detecção
20.
Small ; 20(30): e2310039, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38431928

RESUMO

Lysosome-targeting chimera (LYTAC) links proteins of interest (POIs) with lysosome-targeting receptors (LTRs) to achieve membrane protein degradation, which is becoming a promising therapeutic modality. However, cancer cell-selective membrane protein degradation remains a big challenge considering expressions of POIs in both cancer cells and normal cells, as well as broad tissue distribution of LTRs. Here a logic-identification system is designed, termed Logic-TAC, based on cell membrane-guided DNA calculations to secure LYTAC selectively for cancer cells. Logic-TAC is designed as a duplex DNA structure, with both POI and LTR recognition regions sealed to avoid systematic toxicity during administration. MCF-7 and MCF-10A are chosen as sample cancer cell and normal cell respectively. As input 1 for logic-identification, membrane proteins EpCAM, which is highly expressed by MCF-7 but barely by MCF-10A, reacts with Logic-TAC to expose POI recognition region. As input 2 for logic-identification, Logic-TAC binds to POI, membrane protein MUC1, to expose LTR recognition region. As output, MUC1 is connected to LTR and degraded via lysosome pathway selectively for cancer cell MCF-7 with little side effect on normal cell MCF-10A. The logic-identification system also demonstrated satisfactory in vivo therapeutic results, indicating its promising potential in precise targeted therapy.


Assuntos
Lisossomos , Proteínas de Membrana , Humanos , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Células MCF-7 , Proteólise , Animais , Mucina-1/metabolismo , Lógica , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...