Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Adv Res ; 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39369958

RESUMO

INTRODUCTION: Subtypes of the dipeptidyl peptidase (DPP) family, such as DPP4, are reportedly associated with memory impairment. DPP9 is widely distributed in cells throughout the body, including the brain. However, whether DPP9 regulates memory has not yet been elucidated. OBJECTIVES: This study aimed to elucidate the role of DPP9 in memory, as well as the underlying molecular mechanism. METHODS: We performed immunofluorescence on mouse brains to explore the distribution of DPP9 in different brain regions and used AAV vectors to construct knockdown and overexpression models. The effects of changing DPP9 expression on memory were demonstrated through behavioral experiments. Finally, we used electrophysiology, proteomics and affinity purification mass spectrometry (AP-MS) to study the molecular mechanism by which DPP9 affects memory. RESULTS: Here, we report that DPP9, which is found almost exclusively in neurons, is expressed and has enzyme activity in many brain regions, especially in the hippocampus. Hippocampal DPP9 expression increases after fear memory formation. Fear memory was impaired by DPP9 knockdown and enhanced by DPP9 protein overexpression in the hippocampus. According to subsequent hippocampal proteomics, multiple pathways, including the peptidase pathway, which can be bidirectionally regulated by DPP9. DPP9 directly interacts with its enzymatic substrate neuropeptide Y (NPY) in neurons. Hippocampal long-term potentiation (LTP) is also bidirectionally regulated by DPP9. Moreover, inhibiting DPP enzyme activity impaired both LTP and memory. In addition, AP-MS revealed that DPP9-interacting proteins are involved in the functions of dendritic spines and axons. By combining AP-MS and proteomics, DPP9 was shown to play a role in regulating actin functions. CONCLUSION: Taken together, our findings reveal that DPP9 affects the CNS not only through enzymatic activity but also through protein-protein interactions. This study provides new insights into the molecular mechanisms of memory and DPP family functions.

2.
Eur J Med Chem ; 279: 116834, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39265251

RESUMO

Various therapeutic targets and approaches are commonly employed in the management of Type 2 Diabetes. These encompass diverse groups of drugs that target different mechanisms involved in glucose regulation. Inhibition of the DPP-4 enzyme has been proven an excellent target for antidiabetic drug design. Our previous work on discovering multitarget antidiabetic drugs led to the identification of a gallic acid-thiazolidinedione hybrid as a potent DPP4 inhibitor (IC50 = 36 nM). In current research, our efforts resulted in a new dihydropyrimidine-based scaffold with enhanced DPP4 inhibition potential. After virtual evaluation, the designed molecules with excellent interaction patterns and binding energy values were synthesized in the wet laboratory. The inhibition potential of synthesized compounds was assessed against the DPP-4 enzyme. Compound 46 with single digit IC50 value 2 nM exhibited 4-fold and 18-fold higher activity than Sitagliptin and our previously reported hybrid respectively. Moreover, compounds 46, 47 and 50 have shown manyfold selectivity against DPP8 and DPP9. Further pretreatment with compounds 43, 45-47 and 50 (at doses of 10 and 20 mg/kg) in OGTT conducted on rats resulted in a significant decrease in the serum glucose levels compared to the control group. In the long-term STZ-induced diabetic rats, tested compound 50 performed similarly to the reference drug. Molecular dynamics simulations and in-silico molecular docking studies were employed to elucidate the time-dependent interactions of inhibitors within the active sites of DPP4. The compounds examined in this work might serve as a possible lead in the development of effective diabetic mellitus treatments.

3.
Redox Biol ; 75: 103292, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39094401

RESUMO

Chemotherapy has been the standard treatment for liver cancer. However, intrinsic or acquired drug resistance remains a major barrier to successful treatment. At present, the underlying molecular mechanisms of chemoresistance in liver cancer have not been elucidated. Dipeptidyl peptidase 9 (DPP9) is a member of the dipeptidyl peptidase IV family that has been found to be highly expressed in a variety of tumors, including liver cancer. It is unclear whether DPP9 affects chemoresistance in liver cancer. In this study, we find that DPP9 weakens the responses of liver cancer cells to chemotherapy drugs by up-regulating NQO1 and inhibiting intracellular ROS levels. In terms of mechanism, DPP9 inhibits ubiquitin-mediated degradation of NRF2 protein by binding to KEAP1, up-regulates NRF2 protein levels, promotes mRNA transcription of NQO1, and inhibits intracellular ROS levels. In addition, the NQO1 inhibitor dicoumarol can enhance the efficacy of chemotherapy drugs in liver cancer cells. Collectively, our findings suggest that inhibiting DPP9/NQO1 signaling can serve as a potential therapeutic strategy for liver cancer.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , NAD(P)H Desidrogenase (Quinona) , Fator 2 Relacionado a NF-E2 , Espécies Reativas de Oxigênio , Humanos , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Linhagem Celular Tumoral , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Antineoplásicos/farmacologia , Transdução de Sinais/efeitos dos fármacos
4.
medRxiv ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39040187

RESUMO

Most genetic variants identified through genome-wide association studies (GWAS) are suspected to be regulatory in nature, but only a small fraction colocalize with expression quantitative trait loci (eQTLs, variants associated with expression of a gene). Therefore, it is hypothesized but largely untested that integration of disease GWAS with context-specific eQTLs will reveal the underlying genes driving disease associations. We used colocalization and transcriptomic analyses to identify shared genetic variants and likely causal genes associated with critically ill COVID-19 and idiopathic pulmonary fibrosis. We first identified five genome-wide significant variants associated with both diseases. Four of the variants did not demonstrate clear colocalization between GWAS and healthy lung eQTL signals. Instead, two of the four variants colocalized only in cell-type and disease-specific eQTL datasets. These analyses pointed to higher ATP11A expression from the C allele of rs12585036, in monocytes and in lung tissue from primarily smokers, which increased risk of IPF and decreased risk of critically ill COVID-19. We also found lower DPP9 expression (and higher methylation at a specific CpG) from the G allele of rs12610495, acting in fibroblasts and in IPF lungs, and increased risk of IPF and critically ill COVID-19. We further found differential expression of the identified causal genes in diseased lungs when compared to non-diseased lungs, specifically in epithelial and immune cell types. These findings highlight the power of integrating GWAS, context-specific eQTLs, and transcriptomics of diseased tissue to harness human genetic variation to identify causal genes and where they function during multiple diseases.

5.
Front Cell Infect Microbiol ; 14: 1322882, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694517

RESUMO

COVID-19 has a broad clinical spectrum, ranging from asymptomatic-mild form to severe phenotype. The severity of COVID-19 is a complex trait influenced by various genetic and environmental factors. Ethnic differences have been observed in relation to COVID-19 severity during the pandemic. It is currently unknown whether genetic variations may contribute to the increased risk of severity observed in Latin-American individuals The aim of this study is to investigate the potential correlation between gene variants at CCL2, OAS1, and DPP9 genes and the severity of COVID-19 in a population from Quito, Ecuador. This observational case-control study was conducted at the Carrera de Biologia from the Universidad Central del Ecuador and the Hospital Quito Sur of the Instituto Ecuatoriano de Seguridad Social (Quito-SUR-IESS), Quito, Ecuador. Genotyping for gene variants at rs1024611 (A>G), rs10774671 (A>G), and rs10406145 (G>C) of CCL2, OAS1, and DPP9 genes was performed on 100 COVID-19 patients (43 with severe form and 57 asymptomatic-mild) using RFLP-PCR. The genotype distribution of all SNVs throughout the entire sample of 100 individuals showed Hardy Weinberg equilibrium (P=0.53, 0.35, and 0.4 for CCL2, OAS1, and DPP9, respectively). The HWE test did not find any statistically significant difference in genotype distribution between the study and control groups for any of the three SNVs. The multivariable logistic regression analysis showed that individuals with the GG of the CCL2 rs1024611 gene variant had an increased association with the severe COVID-19 phenotype in a recessive model (P = 0.0003, OR = 6.43, 95% CI 2.19-18.89) and for the OAS1 rs10774671 gene variant, the log-additive model showed a significant association with the severe phenotype of COVID-19 (P=0.0084, OR=3.85, 95% CI 1.33-11.12). Analysis of haplotype frequencies revealed that the coexistence of GAG at CCL2, OAS1, and DPP9 variants, respectively, in the same individual increased the presence of the severe COVID-19 phenotype (OR=2.273, 95% CI: 1.271-4.068, P=0.005305). The findings of the current study suggests that the ethnic background affects the allele and genotype frequencies of genes associated with the severity of COVID-19. The experience with COVID-19 has provided an opportunity to identify an ethnicity-based approach to recognize genetically high-risk individuals in different populations for emerging diseases.


Assuntos
2',5'-Oligoadenilato Sintetase , COVID-19 , Quimiocina CCL2 , Polimorfismo de Nucleotídeo Único , SARS-CoV-2 , Índice de Gravidade de Doença , Humanos , Equador/epidemiologia , Feminino , Masculino , Estudos de Casos e Controles , Adulto , 2',5'-Oligoadenilato Sintetase/genética , COVID-19/genética , Pessoa de Meia-Idade , Quimiocina CCL2/genética , SARS-CoV-2/genética , Predisposição Genética para Doença , Genótipo , Frequência do Gene , Idoso , Adulto Jovem
6.
Artigo em Inglês | MEDLINE | ID: mdl-38660988

RESUMO

Understanding the complex mechanisms of the immune system in dealing with the COVID-19 infection, which is probably related to the polymorphism in cytokine and chemokine genes, can explain the pro-inflammatory condition of patients. Therefore, in this study, the relationship between the frequency of single nucleotide polymorphisms in the two pro-inflammatory genes dipeptidylpeptidase 9 (DPP9) and interferon alpha and beta receptor subunit 2 (IFNAR2) and the severity of COVID-19 was assessed. This study involved 954 COVID-19 patients, including 528 recovered and 426 deceased patients. To investigate the polymorphisms of IFNAR2 rs2236757 and DPP9 rs2109069, we used the polymerase chain reaction with the restriction fragment length polymorphism assay. The results showed that IFNAR2 rs2236757 A allele is related to the reduced severity of the disease, whereas the incidence of DPP9 rs2109069 A allele was higher among the deceased than recovered individuals. On the other hand, in people carrying the G allele in the DPP9 gene polymorphism and the allele A in the IFNR2 gene polymorphism, the improvement of the disease was significantly higher. In conclusion, the results showed that IFNAR2 rs2236757 A allele is related to the decrease in the severity of the disease, while the frequency of DPP9 rs2109069 A allele was higher in deceased people than in recovered people. This shows the important role of genes related to inflammatory responses as well as the role of genetic variants of these genes in the severity of COVID-19.

7.
Biochimie ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461970

RESUMO

Dipeptidyl peptidase 9 (DPP9) is an intracellular amino-dipeptidase with physiological roles in the immune system, DNA repair and mitochondria homeostasis, while its deregulation is linked to cancer progression and immune-associated defects. Through its rare ability to cleave a peptide bond following the imino-acid proline, DPP9 acts as a molecular switch that regulates key proteins, such as the tumor-suppressor BRCA2. In this review we will discuss key concepts underlying the outcomes of protein processing by DPP9, including substrate turn-over by the N-degron pathway. Additionally, we will review non-enzymatic roles and the regulation of DPP9 by discussing the interactome of this protease, which includes SUMO1, Filamin A, NLRP1 and CARD8.

8.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167133, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38531482

RESUMO

The cytosolic dipeptidyl-aminopeptidase 9 (DPP9) cleaves protein N-termini post-proline or -alanine. Our analysis of DPP9 mRNA expression from the TCGA 'breast cancer' data set revealed that low/intermediate DPP9 levels are associated with poor overall survival of breast cancer patients. To unravel the impact of DPP9 on breast cancer development and progression, the transgenic MMTV-PyMT mouse model of metastasizing breast cancer was used. In addition, tissue- and time-controlled genetic deletion of DPP9 by the Cre-loxP recombination system was done. Despite a delay of tumor onset, a higher number of lung metastases were measured in DPP9-deficient mice compared to controls. In human mammary epithelial cells with oncogenic RAS pathway activation, DPP9 deficiency delayed tumorigenic transformation and accelerated TGF-ß1 induced epithelial-to-mesenchymal transition (EMT) of spheroids. For further analysis of the mechanism, primary breast tumor cells were isolated from the MMTV-PyMT model. DPP9 deficiency in these cells caused cancer cell migration and invasion accompanied by EMT. In absence of DPP9, the EMT transcription factor ZEB1 was stabilized due to insufficient degradation by the proteasome. In summary, low expression of DPP9 appears to decelerate mammary tumorigenesis but favors EMT and metastasis, which establishes DPP9 as a novel dynamic regulator of breast cancer initiation and progression.


Assuntos
Neoplasias da Mama , Dipeptidil Peptidases e Tripeptidil Peptidases , Transição Epitelial-Mesenquimal , Animais , Humanos , Feminino , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Camundongos , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/metabolismo , Metástase Neoplásica , Regulação Neoplásica da Expressão Gênica , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Linhagem Celular Tumoral , Camundongos Knockout , Camundongos Transgênicos
9.
J Allergy Clin Immunol ; 152(5): 1336-1344.e5, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37544411

RESUMO

BACKGROUND: Genetic defects in components of inflammasomes can cause autoinflammation. Biallelic loss-of-function mutations in dipeptidyl peptidase 9 (DPP9), a negative regulator of the NLRP1 and CARD8 inflammasomes, have recently been shown to cause an inborn error of immunity characterized by pancytopenia, skin manifestations, and increased susceptibility to infections. OBJECTIVE: We sought to study the molecular basis of autoinflammation in a patient with severe infancy-onset hyperinflammation associated with signs of fulminant hemophagocytic lymphohistiocytosis. METHODS: Using heterologous cell models as well as patient cells, we performed genetic, immunologic, and molecular investigations to identify the genetic cause and to assess the impact of the identified mutation on inflammasome activation. RESULTS: The patient exhibited pancytopenia with decreased neutrophils and T, B, and natural killer cells, and markedly elevated levels of lactate dehydrogenase, ferritin, soluble IL-2 receptor, and triglycerides. In addition, serum levels of IL-1ß and IL-18 were massively increased, consistent with inflammasome activation. Genetic analysis revealed a previously undescribed de novo mutation in DPP9 (c.755G>C, p.Arg252Pro) affecting a highly conserved amino acid residue. The mutation led to destabilization of the DPP9 protein as shown in transiently transfected HEK293T cells and in patient-derived induced pluripotent stem cells. Using functional inflammasome assays in HEK293T cells, we demonstrated that mutant DPP9 failed to restrain the NLRP1 and CARD8 inflammasomes, resulting in constitutive inflammasome activation. These findings suggest that the Arg252Pro DPP9 mutation acts in a dominant-negative manner. CONCLUSIONS: A de novo mutation in DPP9 leads to severe infancy-onset autoinflammation because of unleashed inflammasome activation.


Assuntos
Linfo-Histiocitose Hemofagocítica , Pancitopenia , Humanos , Proteínas Adaptadoras de Sinalização CARD/genética , Inflamassomos/genética , Inflamassomos/metabolismo , Linfo-Histiocitose Hemofagocítica/genética , Células HEK293 , Proteínas Reguladoras de Apoptose/genética , Mutação , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Proteínas de Neoplasias/genética
10.
Cells ; 12(16)2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37626841

RESUMO

The cytosolic dipeptidyl-aminopeptidases 8 (DPP8) and 9 (DPP9) belong to the DPPIV serine proteases with the unique characteristic of cleaving off a dipeptide post-proline from the N-termini of substrates. To study the role of DPP8 and DPP9 in breast cancer, MCF-7 cells (luminal A-type breast cancer) and MDA.MB-231 cells (basal-like breast cancer) were used. The inhibition of DPP8/9 by 1G244 increased the number of lysosomes in both cell lines. This phenotype was more pronounced in MCF-7 cells, in which we observed a separation of autophagosomes and lysosomes in the cytosol upon DPP8/9 inhibition. Likewise, the shRNA-mediated knockdown of either DPP8 or DPP9 induced autophagy and increased lysosomes. DPP8/9 inhibition as well as the knockdown of the DPPs reduced the cell survival and proliferation of MCF-7 cells. Additional treatment of MCF-7 cells with tamoxifen, a selective estrogen receptor modulator (SERM) used to treat patients with luminal breast tumors, further decreased survival and proliferation, as well as increased cell death. In summary, both DPP8 and DPP9 activities confine macroautophagy in breast cancer cells. Thus, their inhibition or knockdown reduces cell viability and sensitizes luminal breast cancer cells to tamoxifen treatment.


Assuntos
Neoplasias , Tamoxifeno , Humanos , Tamoxifeno/farmacologia , Autofagia , Macroautofagia , Células MCF-7 , Aminopeptidases
11.
Methods Enzymol ; 684: 289-323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37230592

RESUMO

Proline residues highly impact protein stability when present either in the first or second N-terminal position. While the human genome encodes for more than 500 proteases, only few proteases are capable of hydrolyzing a proline-containing peptide bond. The two intra-cellular amino-dipeptidyl peptidases DPP8 and DPP9 are exceptional as they possess the rare ability to cleave post-proline. By removing N-terminal Xaa-Pro dipeptides, DPP8 and DPP9 expose a neo N-terminus of their substates, which can consequently alter inter- or intra-molecular interactions of the modified protein. Both DPP8 and DPP9 play key roles in the immune response and are linked to cancer progression, emerging as attractive drug targets. DPP9 is more abundant than DPP8 and is rate limiting for cleavage of cytosolic proline-containing peptides. Only few DPP9 substrates have been characterized; these include Syk, a central kinase for B-cell receptor mediated signaling; Adenylate Kinase 2 (AK2) which is important for cellular energy homeostasis; and the tumor suppressor Breast cancer type 2 susceptibility protein (BRCA2) that is critical for repair of DNA double strand breaks. N-terminal processing of these proteins by DPP9 triggers their rapid turn-over by the proteasome, highlighting a role for DPP9 as upstream components of the N-degron pathway. Whether N-terminal processing by DPP9 leads to substrate-degradation in all cases, or whether additional outcomes are possible, remains to be tested. In this chapter we will describe methods for purification of DPP8 and DPP9 as well as protocols for biochemical and enzymatic characterization of these proteases.


Assuntos
Dipeptidases , Dipeptidil Peptidases e Tripeptidil Peptidases , Humanos , Peptídeos , Endopeptidases , Ensaios Enzimáticos , Dipeptidases/genética , Dipeptidases/química , Dipeptidases/metabolismo
12.
J Virol ; 97(6): e0058923, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37255428

RESUMO

The inflammasome pathway is a critical early response mechanism of the host that detects pathogens, initiates the production of inflammatory cytokines, and recruits effector cells to the infection site. Nonetheless, the mechanism of inflammasome activation in coronavirus infection and its biological functions in host defense remain unclear. Transmissible gastroenteritis virus (TGEV), a member of the genus Alphacoronavirus, is a significant pathogen that mainly infects piglets and causes intestinal inflammation and inflammatory cell infiltration. Here, we investigated the mechanism of inflammasome activation in intestinal epithelial cells (IECs) infected with TGEV. We observed a substantial increase in interleukin 1ß (IL-1ß) and IL-18 levels in both IECs and TGEV-infected porcine intestinal tissues. Furthermore, TGEV infection resulted in increased activation of caspase-1 and the NLRP1 (NOD-like receptor [NLR]-containing pyrin domain [PYD]) inflammasome. Our findings revealed that TGEV infection impeded the interaction between porcine NLRP1 (pNLRP1) and porcine dipeptidyl peptidases 9 (pDPP9), yet it did not reduce the expression of pDPP9. Importantly, the ZU5 domain, not the function-to-find domain (FIIND) reported in human NLRP1, was identified as the minimal domain of pNLRP1 for pDPP9 binding. In addition, the robust type I IFN expression induced by TGEV infection also upregulated pNLRP1 expression and pNLRP1 itself acts as an interferon-stimulated gene to counteract TGEV infection. Our data demonstrate that pNLRP1 has antiviral capabilities against coronavirus infection, which highlights its potential as a novel therapeutic target for coronavirus antiviral therapy. IMPORTANCE Coronavirus primarily targets the epithelial cells of the respiratory and gastrointestinal tracts, leading to damage in both humans and animals. NLRP1 is a direct sensor for RNA virus infection which is highly expressed in epithelial barrier tissues. However, until recently, the precise molecular mechanisms underlying its activation in coronavirus infection and subsequent downstream events remained unclear. In this study, we demonstrate that the alphacoronavirus TGEV induces the production of IL-1ß and IL-18 and upregulates the expression of pNLRP1. Furthermore, we found that pNLRP1 can serve as an interferon-stimulated gene (ISG) to inhibit the infection of enterovirus TGEV. Our research highlights the crucial role of NLRP1 as a regulator of innate immunity in TGEV infection and shows that it may serve as a potential therapeutic target for the treatment of coronavirus infection.


Assuntos
Gastroenterite Suína Transmissível , Inflamassomos , Proteínas NLR , Vírus da Gastroenterite Transmissível , Animais , Inflamassomos/imunologia , Interferon Tipo I , Interleucina-18 , Proteínas NLR/imunologia , Suínos , Gastroenterite Suína Transmissível/imunologia , Gastroenterite Suína Transmissível/transmissão
13.
J Biol Chem ; 298(12): 102645, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36309085

RESUMO

The inflammasome sensor NLRP1 (nucleotide-binding oligomerization domain-like receptor containing a pyrin domain 1) detects a variety of pathogen-derived molecular patterns to induce an inflammatory immune response by triggering pyroptosis and cytokine release. A number of mutations and polymorphisms of NLRP1 are known to cause autoinflammatory diseases, the functional characterization of which contributes to a better understanding of NLRP1 regulation. Here, we assessed the effect of the common NLRP1 variant M1184V, associated with asthma, inflammatory bowel disease, and diabetes, on the protein level. Our size-exclusion chromatography experiments show that M1184V stabilizes the "function-to-find" domain (FIIND) in a monomeric conformation. This effect is independent of autoproteolysis. In addition, molecular dynamics simulations reveal that the methionine residue increases flexibility within the ZU5 domain, whereas valine decreases flexibility, potentially indirectly stabilizing the catalytic triad responsible for autocleavage. By keeping the FIIND domain monomeric, formation of a multimer of full-length NLRP1 is promoted. We found that the stabilizing effect of the valine further leads to improved dipeptidyl peptidase 9 (DPP9)-binding capacities for the FIIND domain as well as the full-length protein as determined by surface plasmon resonance. Moreover, our immunoprecipitation experiments confirmed increased DPP9 binding for the M1184V protein in cells, consistent with improved formation of an autoinhibited complex with DPP9 in activity assays. Collectively, our study establishes a molecular rationale for the dichotomous involvement of the NLRP1 variant M1184V in autoimmune syndromes.


Assuntos
Doenças Autoimunes , Dipeptidil Peptidases e Tripeptidil Peptidases , Inflamassomos , Proteínas NLR , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Inflamassomos/metabolismo , Proteínas NLR/metabolismo , Humanos , Doenças Autoimunes/metabolismo
14.
Front Pharmacol ; 13: 1002871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172198

RESUMO

Dipeptidyl peptidase 8 (DPP8) and 9 (DPP9) are widely expressed in mammals including humans, mainly locate in the cytoplasm. The DPP8 and DPP9 (DPP8/9) belong to serine proteolytic enzymes, they can recognize and cleave N-terminal dipeptides of specific substrates if proline is at the penultimate position. Because the localization of DPP8/9 is different from that of DPP4 and the substrates for DPP8/9 are not yet completely clear, their physiological and pathological roles are still being further explored. In this article, we will review the recent research advances focusing on the expression, regulation, and functions of DPP8/9 in physiology and pathology status. Emerging research results have shown that DPP8/9 is involved in various biological processes such as cell behavior, energy metabolism, and immune regulation, which plays an essential role in maintaining normal development and physiological functions of the body. DPP8/9 is also involved in pathological processes such as tumorigenesis, inflammation, and organ fibrosis. In recent years, related research on immune cell pyroptosis has made DPP8/9 a new potential target for the treatment of hematological diseases. In addition, DPP8/9 inhibitors also have great potential in the treatment of tumors and chronic kidney disease.

15.
EMBO Rep ; 23(10): e54136, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35912982

RESUMO

N-terminal sequences are important sites for post-translational modifications that alter protein localization, activity, and stability. Dipeptidyl peptidase 9 (DPP9) is a serine aminopeptidase with the rare ability to cleave off N-terminal dipeptides with imino acid proline in the second position. Here, we identify the tumor-suppressor BRCA2 as a DPP9 substrate and show this interaction to be induced by DNA damage. We present crystallographic structures documenting intracrystalline enzymatic activity of DPP9, with the N-terminal Met1-Pro2 of a BRCA21-40 peptide captured in its active site. Intriguingly, DPP9-depleted cells are hypersensitive to genotoxic agents and are impaired in the repair of DNA double-strand breaks by homologous recombination. Mechanistically, DPP9 targets BRCA2 for degradation and promotes the formation of RAD51 foci, the downstream function of BRCA2. N-terminal truncation mutants of BRCA2 that mimic a DPP9 product phenocopy reduced BRCA2 stability and rescue RAD51 foci formation in DPP9-deficient cells. Taken together, we present DPP9 as a regulator of BRCA2 stability and propose that by fine-tuning the cellular concentrations of BRCA2, DPP9 alters the BRCA2 interactome, providing a possible explanation for DPP9's role in cancer.


Assuntos
Reparo do DNA , Dipeptidil Peptidases e Tripeptidil Peptidases , Aminopeptidases , DNA , Dano ao DNA , Dipeptídeos , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Prolina , Rad51 Recombinase/genética , Serina
16.
Immunobiology ; 227(2): 152184, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35131543

RESUMO

INTRODUCTION: Hyper-inflammatory reactions play a crucial role in the pathogenesis of the severe forms of COVID-19. However, clarification of the molecular basis of the inflammatory-related factors needs more consideration. The aim was to evaluate the gene expression of two fundamental molecules contributing to the induction of inflammatory like CCR2 and DPP9 in cells from peripheral blood samples from patients with various patterns of COVID-19. METHODS: Peripheral blood samples were collected from 470 patients (235 male and 235 female) with RT-qPCR-confirmed COVID-19 test exhibiting moderate, severe, and critical symptoms based on WHO criteria. 100 healthy subjects (50 male and 50 female) were also enrolled in the study as a control group. The gene expression of DPP-9 and CCR-2 was assessed in the blood samples using real-time PCR method. RESULTS: The COVID-19 patients in severe stage expressed higher levels of CCR2 and DPP9 compared with healthy controls. In male and female patients, the levels of CCR2 and DDP9 expression significantly differed between moderate, severe, and critical patterns (p < 0.0001) as well as between each COVID-19 form and control group (p < 0.0001). The male patients with severe COVID-19 expressed greater levels of CCR2 and DPP-9 than female with same disease form. The female patients with moderate and critical COVID-19 expressed greater levels of CCR2 and DPP-9 than male patients with same disease stage. CONCLUSION: We demonstrated that the expression of DPP-9 and CCR-2 was substantially increased in COVID-19 patients with different forms of disease. Considerable differences were also demonstrated between male and female with different patterns of disease. Therefore, we suggest to consider the gender of patients and disease severity for management of COVID-19.


Assuntos
COVID-19 , Dipeptidil Peptidases e Tripeptidil Peptidases , Receptores CCR2 , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Feminino , Humanos , Inflamação , Masculino , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores de Quimiocinas , SARS-CoV-2 , Índice de Gravidade de Doença
17.
World J Virol ; 10(4): 137-155, 2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-34367930

RESUMO

Genome-wide association analysis allows the identification of potential candidate genes involved in the development of severe coronavirus disease 2019 (COVID-19). Hence, it seems that genetics matters here, as well. Nevertheless, the virus's nature, including its RNA structure, determines the rate of mutations leading to new viral strains with all epidemiological and clinical consequences. Given these observations, we herein comment on the current hypotheses about the possible role of the genes in association with COVID-19 severity. We discuss some of the major candidate genes that have been identified as potential genetic factors associated with the COVID-19 severity and infection susceptibility: HLA, ABO, ACE2, TLR7, ApoE, TYK2, OAS, DPP9, IFNAR2, CCR2, etc. Further study of genes and genetic variants will be of great benefit for the prevention and assessment of the individual risk and disease severity in different populations. These scientific data will serve as a basis for the development of clinically applicable diagnostic and prognostic tests for patients at high risk of COVID-19.

18.
Immunity ; 54(7): 1392-1404.e10, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34019797

RESUMO

CARD8 detects intracellular danger signals and forms a caspase-1 activating inflammasome. Like the related inflammasome sensor NLRP1, CARD8 autoprocesses into noncovalently associated N-terminal (NT) and C-terminal (CT) fragments and binds the cellular dipeptidyl peptidases DPP8 and 9 (DPP8/9). Certain danger-associated signals, including the DPP8/9 inhibitor Val-boroPro (VbP) and HIV protease, induce proteasome-mediated NT degradation and thereby liberate the inflammasome-forming CT. Here, we report cryoelectron microscopy (cryo-EM) structures of CARD8 bound to DPP9, revealing a repressive ternary complex consisting of DPP9, full-length CARD8, and CARD8-CT. Unlike NLRP1-CT, CARD8-CT does not interact with the DPP8/9 active site and is not directly displaced by VbP. However, larger DPP8/9 active-site probes can directly weaken this complex in vitro, and VbP itself nevertheless appears to disrupt this complex, perhaps indirectly, in cells. Thus, DPP8/9 inhibitors can activate the CARD8 inflammasome by promoting CARD8 NT degradation and by weakening ternary complex stability.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Inflamassomos/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Caspase 1/metabolismo , Domínio Catalítico/fisiologia , Linhagem Celular , Microscopia Crioeletrônica/métodos , Células HEK293 , Humanos , Proteólise , Células Sf9
19.
Pharmacol Res ; 169: 105630, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33932609

RESUMO

BACKGROUND: DPP8 and DPP9 have been demonstrated to play important roles in multiple diseases. Evidence for increased gene expression of DPP8 and DPP9 in tubulointerstitium was found to be associated with the decline of kidney function in chronic kidney disease (CKD) patients, which was observed in the Nephroseq human database. To examine the role of DPP8 and DPP9 in the tubulointerstitial injury, we determined the efficacy of DPP8 and DPP9 on epithelial-to-mesenchymal transition (EMT) and tubulointerstitial fibrosis (TIF) as well as the underlying mechanisms. METHODS: We conducted the immunofluorescence of DPP8 and DPP9 in kidney biopsy specimens of CKD patients, established unilateral ureteral obstruction (UUO) animal model, treated with TC-E5007 (a specific inhibitor of both DPP8 and DPP9) or Saxagliptin (positive control) or saline, and HK-2 cells model. RESULTS: We observed the significantly increased expression of DPP8 and DPP9 in the renal proximal tubule epithelial cells of CKD patients compared to the healthy control subjects. DPP8/DPP9 inhibitor TC-E5007 could significantly attenuate the EMT and extracellular matrix (ECM) synthesis in UUO mice, all these effects were mediated via interfering with the TGF-ß1/Smad signaling. TC-E5007 treatment also presented reduced renal inflammation and improved renal function in the UUO mice compared to the placebo-treated UUO group. Furthermore, the siRNA for DPP8 and DPP9, and TC-E5007 treatment decreased EMT- and ECM-related proteins in TGF-ß1-treated HK-2 cells respectively, which could be reversed significantly by transduction with lentivirus-DPP8 and lentivirus-DPP9. CONCLUSION: These data obtained provide evidence that the DPP8 and DPP9 could be potential therapeutic targets against TIF.


Assuntos
Dipeptidases/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Túbulos Renais Proximais/metabolismo , Adamantano/análogos & derivados , Adamantano/farmacologia , Animais , Western Blotting , Estudos de Casos e Controles , Linhagem Celular , Dipeptidases/antagonistas & inibidores , Dipeptídeos/farmacologia , Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Transição Epitelial-Mesenquimal , Fibrose , Imunofluorescência , Humanos , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia
20.
Mol Cell ; 81(11): 2388-2402.e8, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33852894

RESUMO

Small RNA pathways defend the germlines of animals against selfish genetic elements, yet pathway activities need to be contained to prevent silencing of self genes. Here, we reveal a proteolytic mechanism that controls endogenous small interfering (22G) RNA activity in the Caenorhabditis elegans germline to protect genome integrity and maintain fertility. We find that DPF-3, a P-granule-localized N-terminal dipeptidase orthologous to mammalian dipeptidyl peptidase (DPP) 8/9, processes the unusually proline-rich N termini of WAGO-1 and WAGO-3 Argonaute (Ago) proteins. Without DPF-3 activity, these WAGO proteins lose their proper complement of 22G RNAs. Desilencing of repeat-containing and transposon-derived transcripts, DNA damage, and acute sterility ensue. These phenotypes are recapitulated when WAGO-1 and WAGO-3 are rendered resistant to DPF-3-mediated processing, identifying them as critical substrates of DPF-3. We conclude that N-terminal processing of Ago proteins regulates their activity and promotes silencing of selfish genetic elements by ensuring Ago association with appropriate small RNAs.


Assuntos
Proteínas Argonautas/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Processamento de Proteína Pós-Traducional , RNA de Helmintos/genética , Animais , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Fertilidade/genética , Proteólise , RNA de Helmintos/antagonistas & inibidores , RNA de Helmintos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...