Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
Plant J ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39374101

RESUMO

Carrot (Daucus carota) is one of the most popular and nutritious vegetable crops worldwide. However, significant yield losses occur every year due to leaf blight, a disease caused by a fungal pathogen (Alternaria dauci). Past research on resistance to leaf blight disease in carrots has been slow because of the low-quality genome assemblies of both carrot and the pathogen. Here, we report the greatly improved assemblies and annotations of telomere-to-telomere (T2T) reference genomes of carrot DH13M14 (451.04 Mb) and A. dauci A2016 (34.91 Mb). Compared with the previous carrot genome versions, our assembly featured notable improvements in genome size, continuity, and completeness of centromeres and telomeres. In addition, we generated a time course transcriptomic atlas during the infection of carrots by A. dauci and captured their dynamic gene expression reprogramming during the interaction process. During infection, A. dauci genes encoding effectors and enzymes responsible for the degradation of plant cell wall components, e.g., cellulose and pectin, were identified, which appeared to increase pathogenic ability through upregulation. In carrot, the coordinated gene expression of components of pattern- and effector-triggered immunity (PTI and ETI) in response to A. dauci attack was characterized. The biosynthesis or signal transduction of plant hormones, including JA, SA, and ethylene, was also involved in the carrot response to A. dauci. This work provides a foundation for understanding A. dauci pathogenic progression and carrot defense mechanisms to improve carrot resistance to leaf blight disease. The Carrot Database (CDB) developed also provides a useful resource for the carrot community.

2.
Plant Physiol Biochem ; 216: 109114, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39250846

RESUMO

Cadmium (Cd) is a significant heavy metal contaminant within the environment, carrying a notable level of toxicity that presents a substantial hazard to both plant and human. Carrot (Daucus carota), a significant root vegetable crop globally, have evolved multiple transcriptional regulatory mechanisms to cope with Cd stress, with a crucial involvement of the myeloblastosis (MYB) transcription factor. In this study, the DcMYB62 gene encoding 288 amino acids, localized in the nucleus and demonstrated transcription activation property, was isolated from carrot (cv. 'Kuroda'). There was a positive relationship observed between the levels of DcMYB62 expression and the accumulation patterns of carotenoids in two distinct carrot cultivars. Further investigation revealed that the expression of DcMYB62 improved Cd tolerance of Arabidopsis by increasing seed germination rate, root length, and overall survival rate. The levels of carotenoids in DcMYB62 transgenic Arabidopsis surpassed those in wild type, accompanied by elevated expression levels of 15-cis-phytoene desaturase, zeta-carotene desaturase, and carotenoid isomerase. Meanwhile, the heterologous expression of DcMYB62 promoted the biosynthesis of abscisic acid (ABA) and hydrogen sulfide (H2S), which in turn suppressed the formation of hydrogen peroxide and superoxide anion, while also stimulating stomatal closure. Furthermore, the heterologous expression of DcMYB62 increased the transcription of genes associated with heavy metal resistance in Arabidopsis, notably nicotianamine synthase. Overall, this study contributes to understanding how DcMYB62 promote Cd stress resistance of plants by regulating the biosynthesis pathways of carotenoids, ABA, and H2S, which offers valuable insights into the regulatory mechanism connecting DcMYBs with Cd stress response of carrot.

3.
Biochemistry (Mosc) ; 89(8): 1519-1530, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39245459

RESUMO

The lipoxygenase cascade in plants is a source of oxylipins (oxidized fatty acid derivatives), which play an important role in regulatory processes and formation of plant response to stress factors. Some of the most common enzymes of the lipoxygenase cascade are 13-specific hydroperoxide lyases (HPLs, also called hemiacetal synthases) of the CYP74B subfamily. In this work, we identified and cloned the CYP74B34 gene from carrot (Daucus carota L.) and described the biochemical properties of the corresponding recombinant enzyme. The CYP74B34 enzyme was active towards 9- and 13-hydroperoxides of linoleic (9-HPOD and 13-HPOD, respectively) and α-linolenic (9-HPOT and 13-HPOT, respectively) acids. CYP74B34 specifically converted 9-HPOT and 13-HPOT into aldo acids (HPL products). The transformation of 13-HPOD led to the formation of aldo acids and epoxyalcohols [products of epoxyalcohol synthase (EAS) activity] as major and minor products, respectively. At the same time, conversion of 9-HPOD resulted in the formation of epoxyalcohols as the main products and aldo acids as the minor ones. Therefore, CYP74B34 is the first enzyme with a double HPL/EAS activity described in carrot. The presence of these catalytic activities was confirmed by analysis of the oxylipin profiles for the roots from young seedlings and mature plants. In addition, we substituted amino acid residues in one of the catalytically essential sites of the CYP74B34 and CYP74B33 proteins and investigated the properties of the obtained mutant enzymes.


Assuntos
Aldeído Liases , Sistema Enzimático do Citocromo P-450 , Daucus carota , Proteínas de Plantas , Daucus carota/enzimologia , Daucus carota/genética , Daucus carota/metabolismo , Aldeído Liases/metabolismo , Aldeído Liases/genética , Aldeído Liases/química , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Peróxidos Lipídicos/metabolismo , Especificidade por Substrato , Sequência de Aminoácidos , Ácidos Linoleicos
4.
Food Sci Nutr ; 12(8): 5882-5889, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39139950

RESUMO

The current study focused on the valorization of carrot leaves, Daucus carota L. because of their high amount of ascorbic acid (AA), phenolic compounds, and the related antioxidant activity. In this study, the changes in carrot leaves caused by different drying techniques (freeze, vacuum, microwave-assisted infrared, oven) and different storage conditions (room temperature and refrigerator) were investigated. AA contents of fresh, dried, and stored carrot leaf samples were chromatographically determined. Additionally, analysis of TPA (total phenolic content), TAC (total antioxidant capacity), total chlorophyll, carotenoid, and color were carried out. Additionally, fresh leaves were analyzed to compare their results with the corresponding values of processed or stored samples. TPA, TAC, AA, total chlorophyll, and carotenoid values of the samples stored in the refrigerator were 889 ± 63 mg/100 g d.b., 504 mg/100 g d.b., 269 A.A./100 g d.b., 253 mg/100 g d.b., and 2497 mg/100 g d.b., respectively, while the values of the samples dried at room temperature 620 ± 35 mg/100 g d.b., 303 ± 15 mg/100 g d.b., 110 ± 21 mg A.A./100 g d.b., 44 ± 3 mg/100 g d.b., 641 ± 16 mg/100 g d.b., respectively. Consequently, fresh carrot leaves have a higher vitamin C content than many leafy vegetables and even its own family, parsley. Fresh samples stored at room temperature and in the refrigerator for 7 days provided high ascorbic acid retention. Dried leaves with the MW + IR combined system provided better protection than others in terms of bioactive components. However, OD treatment at 40°C provided better protection and was one step ahead in terms of AA content.

5.
Foods ; 13(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39200531

RESUMO

Liposomes coated with chitosan by ionic gelation with tripolyphosphate (TPP-chitosomes) are interesting particles for stabilizing active compounds. However, the encapsulation condition must be optimized. The aim of this study was to optimize the encapsulation of phenolics and carotenoids of carrot pomace in TPP-chitosomes by using a Central Composite Design 23 and response surface methodology. The independent variables were the phospholipid (0.8-4.2 mg/mL), chitosan (2.6-9.4 mg/mL), and carrot pomace (4-14 g/100 mL of ethanol) concentrations; the responses were the encapsulation efficiency in TPP-chitosomes (EE) of phenolics, a-carotene, and b-carotene and the particle size and zeta potential of the particles. The zeta potential ranged from +17 to +37 mV, indicating that the liposomes were coated with chitosan and that the particle sizes were in the nanometric to submicrometric scale. The optimized condition for encapsulating carotenoids was 2.5 mg/mL phospholipids, 6.0 mg/mL chitosan, and 12 g of carrot pomace/100 mL of ethanol. In this condition, the EE of phenolics and α- and ß-carotene was 95%, 98%, and 99%, respectively. Therefore, TPP-chitosomes containing encapsulated phenolics and carotenoids, which can be obtained from agro-industrial by-products, have potential application as natural pigments in food or cosmetics. TPP-chitosomes can also be used to encapsulate other types of natural pigments.

6.
Nutrients ; 16(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125387

RESUMO

The purple carrot cultivar 'Purple Sun' (Daucus carota L.) is characterized by a relevant content of phenolic compounds and anthocyanins, which may play an important role in reducing the risk of chronic diseases and in the treatment of metabolic syndrome. In the present study, the genetic diversity, phytochemical composition, and bioactivities of this outstanding variety were studied for the first time. Genetic analysis by molecular markers estimated the level of genetic purity of this carrot cultivar, whose purple-pigmented roots were used for obtaining the purple carrot ethanol extract (PCE). With the aim to identify specialized metabolites potentially responsible for the bioactivities, the analysis of the metabolite profile of PCE by LC-ESI/LTQ Orbitrap/MS/MS was carried out. LC-ESI/HRMS analysis allowed the assignment of twenty-eight compounds, putatively identified as isocitric acid (1), phenolic acid derivatives (2 and 6), hydroxycinnamic acid derivatives (9, 10, 12-14, 16, 17, 19, 22, and 23), anthocyanins (3-5, 7, 8, 11, and 18), flavanonols (15 and 21), flavonols (20 and 24), oxylipins (25, 26, and 28), and the sesquiterpene 11-acetyloxytorilolone (27); compound 26, corresponding to the primary metabolite trihydroxyoctanoic acid (TriHOME), was the most abundant compound in the LC-ESI/HRMS analysis of the PCE, and hydroxycinnamic acid derivatives followed by anthocyanins were the two most represented groups. The antioxidant activity of PCE, expressed in terms of reactive oxygen species (ROS) level and antioxidant enzymes activity, and its pro-metabolic effect were evaluated. Moreover, the antibacterial activity on Gram (-) and (+) bacterial strains was investigated. An increase in the activity of antioxidant enzymes (SOD, CAT, and GPx), reaching a maximum at 0.5 mg/mL of PCE with a plateau at higher PCE concentrations (1.25, 2.5, and 5.0 mg/mL), was observed. PCE induced an initial decrease in ROS levels at 0.1 and 0.25 mg/mL concentrations, reaching the ROS levels of control at 0.5 mg/mL of PCE with a plateau at higher PCE concentrations (1.25, 2.5, and 5.0 mg/mL). Moreover, significant antioxidant and pro-metabolic effects of PCE on myoblasts were shown by a reduction in ROS content and an increase in ATP production linked to the promotion of mitochondrial respiration. Finally, the bacteriostatic activity of PCE was shown on the different bacterial strains tested, while the bactericidal action of PCE was exclusively observed against the Gram (+) Staphylococcus aureus. The bioactivities of PCE were also investigated from cellular and molecular points of view in colon and hematological cancer cells. The results showed that PCE induces proliferative arrest and modulates the expression of important cell-cycle regulators. For all these health-promoting effects, also supported by initial computational predictions, 'Purple Sun' is a promising functional food and an optimal candidate for pharmaceutical and/or nutraceutical preparations.


Assuntos
Antioxidantes , Daucus carota , Compostos Fitoquímicos , Extratos Vegetais , Daucus carota/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia , Antioxidantes/análise , Antocianinas/farmacologia , Antocianinas/análise , Espectrometria de Massas em Tandem , Fenóis/análise , Fenóis/farmacologia , Raízes de Plantas/química
7.
BMC Plant Biol ; 24(1): 243, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575896

RESUMO

BACKGROUND: Carrot is an important vegetable crop grown worldwide. The major economic problem in carrot cultivation is yellow disease caused by Bactericera trigonica, which induces biotic stress and has the greatest impact on crop productivity. Comprehensive studies on the mechanism of carrot defense response to biotic stress caused by B. trigonica infestation have yet to be conducted. METHODS: The changes in photosynthetic pigments, proline, TPC, H2O2 and MDA content, DPPH radical scavenging ability, and antioxidant enzyme activity of SOD, CAT, and POX in carrot leaves in response to insect sex (female and male), rapid response (during the first six hours), and long-term response to B. trigonica infestation were evaluated. RESULTS: The results of our study strongly suggest that B. trigonica infestation causes significant changes in primary and secondary metabolism and oxidative status of carrot leaves. Photosynthetic pigment content, TPC, and DPPH and CAT activities were significantly reduced in carrot leaves in response to insect infestation. On the other hand, proline, H2O2 content, and the activity of the antioxidant enzymes superoxide dismutase and peroxidase were increased in carrot leaves after B. trigonica infestation. The results indicate that B. trigonica attenuates and delays the oxidative stress responses of carrot, allowing long-term feeding without visible changes in the plant. Carrot responded to long-term B. trigonica infestation with an increase in SOD and POX activity, suggesting that these enzymes may play a key role in plant defense mechanisms. CONCLUSIONS: This is the first comprehensive study strongly suggesting that B. trigonica infestation causes significant changes in primary and secondary metabolism and an attenuated ROS defense response in carrot leaves that enables long-term insect feeding. The information provides new insights into the mechanisms of carrot protection against B. trigonica infestation.


Assuntos
Afídeos , Daucus carota , Hemípteros , Ftirápteros , Animais , Daucus carota/metabolismo , Afídeos/fisiologia , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Prolina/metabolismo , Ftirápteros/metabolismo
8.
Food Chem X ; 22: 101201, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38550883

RESUMO

Carrots as a representative type of delicious and healthy vegetables has become increasingly popular due to its unique flavors and nutritional value. Vast amount of research has been completed on chemical composition and aroma profile of fresh carrot. However, the knowledge of fresh carrot is only scattered. Therefore, a more comprehensive review to fresh carrot is requisite to be reported. This review first describes the botany of carrots; then, the chemical ingredients and their various functions are discussed. The volatile constituents and the effects of terpenoids on aroma profiles of fresh carrot are also discussed. Finally, sources of variation in the formation and development of carrot aroma through heat processing and dehydration are analyzed. This information will further help researchers to solve the problem of insufficient aroma of carrot products and standardize for each type of carrot through improving the production process.

9.
G3 (Bethesda) ; 14(4)2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38412554

RESUMO

This study investigated the genetic basis of carrot root shape traits using composite interval mapping in two biparental populations (n = 119 and n = 128). The roots of carrot F2:3 progenies were grown over 2 years and analyzed using a digital imaging pipeline to extract root phenotypes that compose market class. Broad-sense heritability on an entry-mean basis ranged from 0.46 to 0.80 for root traits. Reproducible quantitative trait loci (QTL) were identified on chromosomes 2 and 6 on both populations. Colocalization of QTLs for phenotypically correlated root traits was also observed and coincided with previously identified QTLs in published association and linkage mapping studies. Individual QTLs explained between 14 and 27% of total phenotypic variance across traits, while four QTLs for length-to-width ratio collectively accounted for up to 73% of variation. Predicted genes associated with the OFP-TRM (OVATE Family Proteins-TONNEAU1 Recruiting Motif) and IQD (IQ67 domain) pathway were identified within QTL support intervals. This observation raises the possibility of extending the current regulon model of fruit shape to include carrot storage roots. Nevertheless, the precise molecular mechanisms through which this pathway operates in roots characterized by secondary growth originating from cambium layers remain unknown.


Assuntos
Daucus carota , Daucus carota/genética , Mapeamento Cromossômico , Locos de Características Quantitativas , Fenótipo , Frutas/genética , Ligação Genética
10.
Heliyon ; 10(2): e24285, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312630

RESUMO

This study is based on an investigation of the transport phenomenon, specifically the quantification of arsenic diffusion in carrots within a temperature range of 89 °C-99 °C using a thin plate model. Studying the diffusion of arsenic in carrots is important due to its toxicity, as it can concentrate during cooking. The World Health Organization considers arsenic as one of the ten chemical substances of public health concern. In this study, biennial hybrid carrots of the Nantesa variety were cooked whole with their epidermis in an aqueous solution containing diarsenic trioxide with an As concentration of 5 mgL-1 at 89 °C, 94 °C, and 99 °C. The cooking times of the carrots at different temperatures were based on a specific degree of tenderness, with a value of ≤3 kg m-2. The evaluated data showed consistency with increasing temperature. The calculated effective diffusion coefficients at temperatures of 89 °C, 94 °C, and 99 °C were 5.84E-09 m2s-1, 1.08E-08 m2s-1, and 2.51E-08 m2s-1 for the flesh (DL), and 1.601E-11 m2s-1, 2.15E-11 m2s-1, and 4.39E-11 m2s-1 for the epidermis (DE), respectively. The activation energy for diffusion was determined to be 159.54 kJmol-1 for the and 110.68 kJmol-1 for the epidermis. Similar behaviours were observed in different radial positions of the carrot, where the arsenic content decreased from the periphery to the centre, consistent with studies on diffusion phenomena with other solutes in food. The novelty was the detailed quantification of arsenic diffusion in the Nantes-type hybrid carrot matrix. This study is limited to a specific concentration of 5 mgL-1 of arsenic solution. The findings of this study may have significant implications for public health and food safety.

11.
Plant Physiol Biochem ; 207: 108383, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38286092

RESUMO

Underground vegetables are sensitive and vulnerable to salt stress. The vegetables are the main source of vitamins, nutrients and minerals in human diet. Also contain healthy carbohydrates, antioxidant and resistant starch which are beneficial for human health. Salinity influences water balance, morphological appearance and cellular interference of crop plants. It also caused disproportion of nutrients which usually affects the physiochemical processes in plant. Salt stress also affect biochemical attributes and hampers the growth of underground organs, due to which yield of crop decreased. The nanoparticles had been potentially used for better crop yield, in the recent. In our research study, we elaborate the positive response of magnesium oxide nanoparticles (MgO-NPs) on the morphological and biochemical parameters as well as anti-oxidant enzymes action on two accessions of carrot (Daucus carota L.) under salt stress of 40 mM and 80 mM. In a pilot experiment, various levels (0, 50, 100, 150, 200 and 250 mg/L) of MgO-NPs were tested through foliar application on carrot plants. Foliar application of MgO-NPs at concentration of 150 mg/L was most effective treatment and ameliorate the salt stress in both carrot accessions (DC-03 and DC-90). The MgO-NPs significantly enhanced the morphological and biochemical parameters. The yield was significantly increased with the exposure of MgO-NPs. Our results thus confirmed the potential of MgO-NPs to endorse the plant development and growth under salinity. However, further research study is needed to explore effectiveness of MgO-NPs in various other plants for the ameliorant of salinity.


Assuntos
Daucus carota , Nanopartículas , Humanos , Magnésio/farmacologia , Óxido de Magnésio/farmacologia , Antioxidantes/farmacologia , Estresse Salino
12.
Foods ; 12(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38137193

RESUMO

Sensory parameters as well as the volatile and non-volatile compound profiles of sixteen carrot cultivars were recorded to obtain insight into consumer preference decisions. The sensory test was carried out with a consumer panel of 88 untrained testers allowing a clear acceptance-based differentiation of the cultivars. Five individual sensory characters (sweetness, overall aroma, bitterness, astringency and off-flavor) supported this discrimination. Chemical analyses of volatile organic compounds, polyacetylenes, phenylpropanoids and sugars enabled us to correlate the influence of these ingredients on sensory perception. Higher concentrations of α-pinene, hexanal, styrene and acetophenone correlated with a better acceptance, as well as sweetness and overall aroma perception. In contrast, a low acceptance as well as a stronger perception of bitterness, astringency and off-flavor correlated with enhanced concentrations of camphene, bornylacetate, borneol, myristicine, falcarindiol, falcarindiol-3-acetate, laserin and epilaserin. The present study should support the development of new breeding strategies for carrot cultivars that better satisfy consumer demands.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38035540

RESUMO

Carotenoids, such as lycopene and ß-carotene, have been widely recognized for their antioxidant properties and potential health benefits. Accurate quantification of carotenoids in plant extracts is essential for nutritional assessment, quality control, and research investigations. This study introduces an innovative method for quantifying lycopene and ß-carotene, in plant extracts and aims to bridge the gap between complex and expensive carotenoid quantification techniques and the need for accessible methods that can be widely adopted. The primary difference between HPLC and HPTLC lies in the medium used for separation. HPLC employs a liquid phase within columns, while HPTLC utilizes a thin layer of adsorbent on a plate. This distinction impacts factors like equipment, cost, and analysis time. The VisionCats software, combined with the CAMAG Visualizer-2, allows the semi-quantification of metabolites using an image-based evaluation method enabling the simultaneous assessment of qualitative and semi-quantitative information from the HPTLC images. Sample preparation involves washing and drying the vegetal material, followed by dichloromethane extraction. HPTLC analysis is performed using the CAMAG Advanced Herbal System, and the validation studies include establishing calibration curves and determining the detection threshold and minimum quantification threshold for lycopene and ß-carotene. Specificity and precision were evaluated to ensure accurate identification and repeatability of the method. Data analysis involves selecting the regression method based on the nature of the data and assessing the goodness of fit using the R2 value. The results showed distinct peaks corresponding to lycopene and ß-carotene in the chromatograms of the plant extract samples. The visualizer-based method demonstrates good specificity and precision, with no interfering peaks observed and low relative standard deviation. The method shows promising results regarding specificity, precision, and reliability. It has the potential for broader implementation in carotenoid research and rapid monitoring of carotenoid content in various agricultural and food products, particularly in resource-limited settings. Further optimization and validation on a wider range of samples would enhance the applicability of this method in carotenoid research. Sample preparation involves washing and drying the vegetal material, followed by dichloromethane extraction. HPTLC analysis is performed using the CAMAG Advanced Herbal System, and the validation studies include establishing calibration curves and determining the detection threshold and minimum quantification threshold for lycopene and ß-carotene. Specificity and precision were evaluated to ensure accurate identification and repeatability of the method. Data analysis involves selecting the regression method based on the nature of the data and assessing the goodness of fit using the R2 value. The results showed distinct peaks corresponding to lycopene and ß-carotene in the chromatograms of the plant extract samples. The visualizer-based method demonstrates good specificity and precision, with no interfering peaks observed and low relative standard deviation. The method shows promising results regarding specificity, precision, and reliability. It has the potential for broader implementation in carotenoid research and for rapid screening and monitoring of carotenoid content in various agricultural and food products, particularly in resource-limited settings. Further optimization and validation on a wider range of samples would enhance the applicability of this method in carotenoid research.


Assuntos
Solanum lycopersicum , beta Caroteno , Licopeno , beta Caroteno/análise , Reprodutibilidade dos Testes , Cloreto de Metileno/análise , Carotenoides , Extratos Vegetais
14.
Plant Methods ; 19(1): 104, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805561

RESUMO

BACKGROUND: Since its discovery, somatic hybridization has been used to overcome the sexual barriers between cultivated and wild species. A combination of two somatic cells might provide a novel set of features, often of agronomical importance. Here, we report a successful approach for production and selection of interspecific somatic hybrid plants between cultivated and wild carrot using dual-labelling of protoplasts and an early selection of fused cells via micromanipulator. Both subspecies used in this study are characterised by a very high regenerative ability in protoplast cultures. Thus, a precise and effective method of hybrid selection is essential to assure the development and regeneration of much less numerous heterokaryons in the post-fusion cell mixture. RESULTS: Electrofusion parameters, such as alternating current and direct current, were optimised for an efficient alignment of protoplasts and reversible membrane breakdown followed by a cell fusion. Four hundred twenty-nine cells emitting green-red fluorescence, identified as hybrids, were obtained. Co-culture with donor-derived protoplasts in the alginate feeder layer system stimulated re-synthesis of the cell wall and promoted cell divisions of fusants. Somatic embryogenesis occurred in hybrid-derived microcalli cultures, followed by plant regeneration. Regenerated hybrids produced yellowish storage roots and leaves of an intermediate shape between cultivated and wild subspecies. The intron length polymorphism analysis revealed that 123 of 124 regenerated plants were hybrids. CONCLUSIONS: The developed protocol for protoplast fusion and an early selection of hybrids may serve as an alternative to combining genomes and transferring nuclear or cytoplasmatic traits from wild Daucus species to cultivated carrot.

15.
Molecules ; 28(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37894640

RESUMO

Plants are a valuable source of drugs for cancer treatment. Daucus carota has been investigated for its health properties. In particular, Daucus carota L. subsp. Sativus, the common edible carrot root, has been found to be rich in bioactive compounds such as carotenoids and dietary fiber and contains many other functional components with significant health-promoting features, while Daucus carota L. subsp. Carrot (Apiacae), also known as wild carrot, has been usually used for gastric ulcer therapy, diabetes, and muscle pain in Lebanon. Here, we review the chemical composition of Daucus carota L. and the functional properties of both edible and wild carrot subspecies. Then, we focus on compounds with anticancer characteristics identified in both Daucus carota subspecies, and we discuss their potential use in the development of novel anticancer therapeutic strategies.


Assuntos
Daucus carota , Daucus carota/química , Líbano
16.
Am J Bot ; 110(11): e16242, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37681637

RESUMO

PREMISE: Cultivated species and their wild relatives often hybridize in the wild, and the hybrids can survive and reproduce in some environments. However, it is unclear whether cultivar alleles are permanently incorporated into the wild genomes or whether they are purged by natural selection. This question is key to accurately assessing the risk of escape and spread of cultivar genes into wild populations. METHODS: We used genomic data and population genomic methods to study hybridization and introgression between cultivated and wild carrot (Daucus carota) in the United States. We used single nucleotide polymorphisms (SNPs) obtained via genotyping by sequencing for 450 wild individuals from 29 wild georeferenced populations in seven states and 144 cultivars from the United States, Europe, and Asia. RESULTS: Cultivated and wild carrot formed two genetically differentiated groups, and evidence of crop-wild admixture was detected in several but not all wild carrot populations in the United States. Two regions were identified where cultivar alleles were present in wild carrots: California and Nantucket Island (Massachusetts). Surprisingly, there was no evidence of introgression in some populations with a long-known history of sympatry with the crop, suggesting that post-hybridization barriers might prevent introgression in some areas. CONCLUSIONS: Our results provide support for the introgression and long-term persistence of cultivar alleles in wild carrots populations. We thus anticipate that the release of genetically engineered (GE) cultivars would lead to the introduction and spread of GE alleles in wild carrot populations.


Assuntos
Daucus carota , Humanos , Estados Unidos , Daucus carota/genética , Alelos , Polimorfismo de Nucleotídeo Único/genética , Hibridização Genética , Massachusetts
17.
Ultrason Sonochem ; 99: 106592, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37696212

RESUMO

Many unit operations in the food industry are diffusional driven. These processes are usually very slow and difficult to handle for specific groups of raw materials. Vacuum impregnation (VI) is one example. Impregnating low-porous or densely-structured materials is problematic and often requires low pressure, which can negatively affect product quality and be expensive in energy consumption. This research aimed to evaluate ultrasound (US) as a factor in intensifying mass transfer and enhancing its effectiveness in the VI process. Experiments on impregnation enhanced with ultrasound applied at different stages of the process were carried out. Carrot, a difficult-to-process raw material, was impregnated with ascorbic acid as a mass transfer marker. The process's effectiveness and selected quality parameters were then analyzed. Ultrasound was found to have a positive influence on mass transfer during VI. The effects of ultrasound enhancement were different for particular processes, and depended on the stage of the application and duration of US exposure. The greatest increase in the tissue's ascorbic acid content (60% compared to the non-ultrasound-assisted process) was observed when ultrasound was applied continuously throughout the process. Applying ultrasound only during the relaxation (at atmospheric pressure) or aeration periods resulted in a similar effect - c.a. 20% increase in the marker's content. The smallest increase (10%) was observed when ultrasound was applied only during the vacuum period. Applying US did not result in any unfavorable color change. In most cases, pH decreased, which is favorable for the semi-product's stability. The carotenoid and phenolic compounds' content did not decrease. The results unequivocally indicate that ultrasound has great potential for use as a mass transfer accelerator in the VI process for low porosity materials. The effectiveness of the US is influenced not only by pressure but also by exposure duration. The synergistic effect observed using ultrasound-enhanced impregnation throughout the process confirmed this hypothesis.


Assuntos
Daucus carota , Vácuo , Ultrassonografia , Ácido Ascórbico , Carotenoides
19.
Toxics ; 11(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37505549

RESUMO

Three garden vegetables-radish, carrot and lettuce-were cultivated in a pot experiment using two soils from the Príbram area polluted mainly by cadmium (Cd), zinc (Zn), lead (Pb) and chromium (Cr). The soils of the Príbram district, Czech Republic, are heavily polluted as a result of the atmospheric deposition of toxic elements originating from historic lead-silver mining and smelting activities. The results showed that lettuce absorbed the highest amounts of toxic elements (Cd 28 and 30, Cr 12 and 13, Zn 92 and 205 mg·kg-1 DW), except Pb, which was higher in radish (30 and 49 mg·kg-1 DW). Changes in macronutrient contents in edible parts were not found, except for sulfur. A higher total free amino acids (fAAs) accumulation was shown in all vegetables in more contaminated soil, with the highest fAA content being in radish. A group of essential fAAs reached 7-24% of total fAAs in vegetables. The risk to human health was characterized using the target hazard quotient and total hazard index (HI). The cumulative effect of the consumption of vegetables with HI > 1 showed possible non-carcinogenic health effects for lettuce and carrot. HI decreased in the order Cd > Pb > Cr > Zn. The carcinogenic risk of toxic elements decreased in the order Cd > Cr > Pb (0.00054, 0.00026, 0.00003). These values showed a carcinogenic risk from the consumption of lettuce and carrot and confirmed that the adult population of the studied area is at high risk if lettuce and carrot cultivated in this area are consumed daily.

20.
Planta ; 258(3): 50, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488440

RESUMO

MAIN CONCLUSION: DcMYB11, an R2R3 MYB gene associated with petiole anthocyanin pigmentation in carrot, was functionally characterized. A putative enhancer sequence is able to increase DcMYB11 activity. The accumulation of anthocyanin pigments can exhibit different patterns across plant tissues and crop varieties. This variability allowed the investigation of the molecular mechanisms behind the biosynthesis of these pigments in several plant species. Among crops, carrots have a well-defined anthocyanin pigmentation pattern depending on the genic background. In this work, we report on the discovery of DNA structural differences affecting the activity of an R2R3 MYB (encoded by DcMYB11) involved in anthocyanin regulation in carrot petiole. To this end, we first verified the function of DcMYB11 using heterologous systems and identified three different alleles which may explain differences in petiole pigmentation. Characterization of the DcMYB11 alleles at the 5' upstream sequence unveiled a sequence that functions as a putative enhancer. In conclusion, this study provides novel insight into the molecular mechanisms controlling anthocyanin accumulation in carrot. By these outcomes, we expanded our knowledge on the cis-regulatory sequences in plants.


Assuntos
Daucus carota , Antocianinas , Pigmentação , Alelos , Produtos Agrícolas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...