Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Genet Med ; : 101273, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39306721

RESUMO

PURPOSE: FLVCR1 encodes a solute carrier (SLC) protein implicated in heme, choline, and ethanolamine transport. While Flvcr1-/- mice exhibit skeletal malformations and defective erythropoiesis reminiscent of Diamond-Blackfan anemia (DBA), biallelic FLVCR1 variants in humans have previously only been linked to childhood or adult-onset ataxia, sensory neuropathy, and retinitis pigmentosa. METHODS: We identified individuals with undiagnosed neurodevelopmental disorders and biallelic FLVCR1 variants through international data sharing and characterized the functional consequences of their FLVCR1 variants. RESULTS: We ascertained 30 patients from 23 unrelated families with biallelic FLVCR1 variants and characterized a novel FLVCR1-related phenotype: severe developmental disorders with profound developmental delay, microcephaly (Z-score -2.5 to -10.5), brain malformations, epilepsy, spasticity, and premature death. Brain malformations ranged from mild brain volume reduction to hydranencephaly. Severely affected patients share traits including macrocytic anemia and skeletal malformations with Flvcr1-/- mice and DBA. FLVCR1 variants significantly reduce choline and ethanolamine transport and/or disrupt mRNA splicing. CONCLUSION: These data demonstrate a broad FLVCR1-related phenotypic spectrum ranging from severe multiorgan developmental disorders resembling DBA to adult-onset neurodegeneration. Our study expands our understanding of Mendelian choline and ethanolamine disorders and illustrates the importance of anticipating a wide phenotypic spectrum for known disease genes and incorporating model organism data into genome analysis to maximize genetic testing yield.

2.
Genet Med ; 26(12): 101266, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39268718

RESUMO

PURPOSE: Diamond-Blackfan anemia syndrome (DBS) is a rare congenital disorder originally characterized by bone marrow failure with or without various congenital anomalies. At least 24 genes are implicated, the vast majority encoding for ribosomal proteins. RPL26 (ribosomal protein L26) is an emerging candidate (DBA11, MIM#614900). We aim to further delineate this rare condition. METHODS: Patients carrying heterozygous RPL26 variants were recruited. In one of them, erythroid proliferation and differentiation from peripheral blood CD34+ cells were studied by flow cytometry, and RPL26 expression by quantitative reverse transcription polymerase chain reaction and immunoblotting. RESULTS: We report on 8 affected patients from 4 families. Detailed phenotyping reveals that RPL26 is mainly associated with multiple congenital anomalies (particularly radial ray anomalies), albeit with variable expression. Mandibulofacial dysostosis and neural tube defects are potential features in DBA11, expanding the growing list of DBS abnormalities. In 1 individual, we showed that RPL26 haploinsufficiency was responsible for subclinical impairment in erythroid proliferation and enucleation. The absence of hematological involvement in 4 adults from this series contributes to the mounting evidence that bone marrow failure is not universally central to all DBS genes. CONCLUSION: We confirm RPL26 as a DBS gene and expand the phenotypic spectrum of the gene and the disease.

3.
Cancers (Basel) ; 16(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39001453

RESUMO

Ribosomopathies are defined as inherited diseases in which ribosomal factors are mutated. In general, they present multiorgan symptoms. In spite of the fact that in cellular models, ribosomal insufficiency leads to a reduced rate of oncogenic transformation, patients affected by ribosomopathies present a paradoxical increase in cancer incidence. Several hypotheses that explain this paradox have been formulated, mostly on the assumption that altered ribosomes in a stem cell induce compensatory changes that lead to a cancer cell. For instance, the lack of a specific ribosomal protein can lead to the generation of an abnormal ribosome, an oncoribosome, that itself leads to altered translation and increased tumorigenesis. Alternatively, the presence of ribosomal stress may induce compensatory proliferation that in turns selects the loss of tumor suppressors such as p53. However, modern views on cancer have shifted the focus from the cancer cell to the tumor microenvironment. In particular, it is evident that human lymphocytes are able to eliminate mutant cells and contribute to the maintenance of cancer-free tissues. Indeed, many tumors develop in conditions of reduced immune surveillance. In this review, we summarize the current evidence and attempt to explain cancer and ribosomopathies from the perspective of the microenvironment.

4.
Cells ; 13(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38891052

RESUMO

Diamond-Blackfan anemia (DBA) is a rare genetic disorder affecting the bone marrow's ability to produce red blood cells, leading to severe anemia and various physical abnormalities. Approximately 75% of DBA cases involve heterozygous mutations in ribosomal protein (RP) genes, classifying it as a ribosomopathy, with RPS19 being the most frequently mutated gene. Non-RP mutations, such as in GATA1, have also been identified. Current treatments include glucocorticosteroids, blood transfusions, and hematopoietic stem cell transplantation (HSCT), with HSCT being the only curative option, albeit with challenges like donor availability and immunological complications. Gene therapy, particularly using lentiviral vectors and CRISPR/Cas9 technology, emerges as a promising alternative. This review explores the potential of gene therapy, focusing on lentiviral vectors and CRISPR/Cas9 technology in combination with non-integrating lentiviral vectors, as a curative solution for DBA. It highlights the transformative advancements in the treatment landscape of DBA, offering hope for individuals affected by this condition.


Assuntos
Anemia de Diamond-Blackfan , Terapia Genética , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/terapia , Terapia Genética/métodos , Humanos , Sistemas CRISPR-Cas/genética , Vetores Genéticos , Lentivirus/genética , Animais , Proteínas Ribossômicas/genética , Mutação/genética , Edição de Genes/métodos
5.
medRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38405817

RESUMO

FLVCR1 encodes Feline leukemia virus subgroup C receptor 1 (FLVCR1), a solute carrier (SLC) transporter within the Major Facilitator Superfamily. FLVCR1 is a widely expressed transmembrane protein with plasma membrane and mitochondrial isoforms implicated in heme, choline, and ethanolamine transport. While Flvcr1 knockout mice die in utero with skeletal malformations and defective erythropoiesis reminiscent of Diamond-Blackfan anemia, rare biallelic pathogenic FLVCR1 variants are linked to childhood or adult-onset neurodegeneration of the retina, spinal cord, and peripheral nervous system. We ascertained from research and clinical exome sequencing 27 individuals from 20 unrelated families with biallelic ultra-rare missense and predicted loss-of-function (pLoF) FLVCR1 variant alleles. We characterize an expansive FLVCR1 phenotypic spectrum ranging from adult-onset retinitis pigmentosa to severe developmental disorders with microcephaly, reduced brain volume, epilepsy, spasticity, and premature death. The most severely affected individuals, including three individuals with homozygous pLoF variants, share traits with Flvcr1 knockout mice and Diamond-Blackfan anemia including macrocytic anemia and congenital skeletal malformations. Pathogenic FLVCR1 missense variants primarily lie within transmembrane domains and reduce choline and ethanolamine transport activity compared with wild-type FLVCR1 with minimal impact on FLVCR1 stability or subcellular localization. Several variants disrupt splicing in a mini-gene assay which may contribute to genotype-phenotype correlations. Taken together, these data support an allele-specific gene dosage model in which phenotypic severity reflects residual FLVCR1 activity. This study expands our understanding of Mendelian disorders of choline and ethanolamine transport and demonstrates the importance of choline and ethanolamine in neurodevelopment and neuronal homeostasis.

6.
Blood Cells Mol Dis ; 106: 102838, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38413287

RESUMO

Diamond-Blackfan anemia (DBA) was the first ribosomopathy described in humans. DBA is a congenital hypoplastic anemia, characterized by macrocytic aregenerative anemia, manifesting by differentiation blockage between the BFU-e/CFU-e developmental erythroid progenitor stages. In 50 % of the DBA cases, various malformations are noted. Strikingly, for a hematological disease with a relative erythroid tropism, DBA is due to ribosomal haploinsufficiency in 24 different ribosomal protein (RP) genes. A few other genes have been described in DBA-like disorders, but they do not fit into the classical DBA phenotype (Sankaran et al., 2012; van Dooijeweert et al., 2022; Toki et al., 2018; Kim et al., 2017 [1-4]). Haploinsufficiency in a RP gene leads to defective ribosomal RNA (rRNA) maturation, which is a hallmark of DBA. However, the mechanistic understandings of the erythroid tropism defect in DBA are still to be fully defined. Erythroid defect in DBA has been recently been linked in a non-exclusive manner to a number of mechanisms that include: 1) a defect in translation, in particular for the GATA1 erythroid gene; 2) a deficit of HSP70, the GATA1 chaperone, and 3) free heme toxicity. In addition, p53 activation in response to ribosomal stress is involved in DBA pathophysiology. The DBA phenotype may thus result from the combined contributions of various actors, which may explain the heterogenous phenotypes observed in DBA patients, even within the same family.


Assuntos
Anemia de Diamond-Blackfan , Anemia Diseritropoética Congênita , Anemia Macrocítica , Humanos , Anemia de Diamond-Blackfan/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Células Precursoras Eritroides/metabolismo , Mutação
7.
Am J Med Genet A ; 194(3): e63454, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37897121

RESUMO

A 26-year-old female proband with a clinical diagnosis and consistent phenotype of Diamond-Blackfan anemia (DBA, OMIM 105650) without an identified genotype was referred to the Undiagnosed Diseases Network. DBA is classically associated with monoallelic variants that have an autosomal-dominant or -recessive mode of inheritance. Intriguingly, her case was solved by a detection of a digenic interaction between non-allelic RPS19 and RPL27 variants. This was confirmed with a machine learning structural model, co-segregation analysis, and RNA sequencing. This is the first report of DBA caused by a digenic effect of two non-allelic variants demonstrated by machine learning structural model. This case suggests that atypical phenotypic presentations of DBA may be caused by digenic inheritance in some individuals. We also conclude that a machine learning structural model can be useful in detecting digenic models of possible interactions between products encoded by alleles of different genes inherited from non-affected carrier parents that can result in DBA with an unrealized 25% recurrence risk.


Assuntos
Anemia de Diamond-Blackfan , Humanos , Feminino , Adulto , Anemia de Diamond-Blackfan/diagnóstico , Anemia de Diamond-Blackfan/genética , Proteínas Ribossômicas/genética , Genótipo , Alelos , Fenótipo , Sequência de Bases , Mutação
8.
Pediatr Blood Cancer ; 71(3): e30834, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38149846

RESUMO

Diamond-Blackfan anemia (DBA) is a congenital anemia with erythroid cell aplasia. Most of the causative genes are ribosomal proteins. GATA1, a hematopoietic master transcription factor required for erythropoiesis, also causes DBA. GATA1 is located on Xp11.23; therefore, DBA develops only in males in an X-linked inheritance pattern. Here, we report a case of transient erythroblastopenia and moderate anemia in a female newborn infant with a de novo GATA1 variant. In this patient, increased methylation of the GATA1 wild-type allele was observed in erythroid cells. Skewed lyonization of GATA1 may cause mild transient erythroblastopenia in a female patient.


Assuntos
Anemia Aplástica , Anemia de Diamond-Blackfan , Anemia Hemolítica Congênita , Masculino , Lactente , Recém-Nascido , Humanos , Feminino , Proteínas Ribossômicas/genética , Anemia de Diamond-Blackfan/genética , Eritropoese , Fator de Transcrição GATA1/genética
9.
Medicina (Kaunas) ; 59(11)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-38004002

RESUMO

Diamond-Blackfan anemia (DBA) is a congenital bone marrow failure syndrome associated with malformations. DBA is related to defective ribosome biogenesis, which impairs erythropoiesis, causing hyporegenerative macrocytic anemia. The disease has an autosomal dominant inheritance and is commonly diagnosed in the first year of life, requiring continuous treatment. We present the case of a young woman who, at the age of 21, developed severe symptomatic anemia. Although, due to malformations, a congenital syndrome had been suspected since birth, a confirmation diagnosis was not made until the patient was referred to our center for an evaluation of her anemia. In her neonatal medical history, she presented with anemia that required red blood cell transfusions, but afterwards remained with a stable, mild, asymptomatic anemia throughout her childhood and adolescence. Her family history was otherwise unremarkable. To explain the symptomatic anemia, vitamin deficiencies, autoimmune diseases, bleeding causes, and myeloid and lymphoid neoplasms were investigated and ruled out. A molecular investigation showed the RPL5 gene variant c.392dup, p.(Asn131Lysfs*6), confirming the diagnosis of DBA. All family members have normal blood values and none harbored the mutation. Here, we will discuss the unusual evolution of this case and revisit the literature.


Assuntos
Anemia de Diamond-Blackfan , Mutação da Fase de Leitura , Humanos , Adulto Jovem , Recém-Nascido , Feminino , Adolescente , Criança , Mutação da Fase de Leitura/genética , Proteínas Ribossômicas/genética , Mutação , Anemia de Diamond-Blackfan/complicações , Anemia de Diamond-Blackfan/diagnóstico , Anemia de Diamond-Blackfan/genética , Fenótipo
10.
Children (Basel) ; 10(11)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38002903

RESUMO

Diamond-Blackfan anemia (DBA) is a ribosomopathy characterized by bone marrow erythroid hypoplasia, which typically presents with severe anemia within the first months of life. DBA is typically attributed to a heterozygous mutation in a ribosomal protein (RP) gene along with a defect in the ribosomal RNA (rRNA) maturation or levels. Besides classic DBA, DBA-like disease has been described with variations in 16 genes (primarily in GATA1, followed by ADA2 alias CECR1, HEATR3, and TSR2). To date, more than a thousand variants have been reported in RP genes. Splice variants represent 6% of identifiable genetic defects in DBA, while their prevalence is 14.3% when focusing on pathogenic and likely pathogenic (P/LP) variants, thus highlighting the impact of such alterations in RP translation and, subsequently, in ribosome levels. We hereby present two cases with novel pathogenic splice variants in RPS17 and RPS26. Associations of DBA-related variants with specific phenotypic features and malignancies and the molecular consequences of pathogenic variations for each DBA-related gene are discussed. The determinants of the spontaneous remission, cancer development, variable expression of the same variants between families, and selectivity of RP defects towards the erythroid lineage remain to be elucidated.

11.
Curr Res Transl Med ; 71(4): 103423, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38016422

RESUMO

Bone marrow failure syndromes are rare disorders characterized by bone marrow hypocellularity and resultant peripheral cytopenias. The most frequent form is acquired, so-called aplastic anemia or idiopathic aplastic anemia, an auto-immune disorder frequently associated with paroxysmal nocturnal hemoglobinuria, whereas inherited bone marrow failure syndromes are related to pathogenic germline variants. Among newly identified germline variants, GATA2 deficiency and SAMD9/9L syndromes have a special significance. Other germline variants impacting biological processes, such as DNA repair, telomere biology, and ribosome biogenesis, may cause major syndromes including Fanconi anemia, dyskeratosis congenita, Diamond-Blackfan anemia, and Shwachman-Diamond syndrome. Bone marrow failure syndromes are at risk of secondary progression towards myeloid neoplasms in the form of myelodysplastic neoplasms or acute myeloid leukemia. Acquired clonal cytogenetic abnormalities may be present before or at the onset of progression; some have prognostic value and/or represent somatic rescue mechanisms in inherited syndromes. On the other hand, the differential diagnosis between aplastic anemia and hypoplastic myelodysplastic neoplasm remains challenging. Here we discuss the value of cytogenetic abnormalities in bone marrow failure syndromes and propose recommendations for cytogenetic diagnosis and follow-up.


Assuntos
Anemia Aplástica , Doenças da Medula Óssea , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Anemia Aplástica/diagnóstico , Anemia Aplástica/genética , Anemia Aplástica/terapia , Doenças da Medula Óssea/diagnóstico , Doenças da Medula Óssea/genética , Doenças da Medula Óssea/terapia , Transtornos da Insuficiência da Medula Óssea/diagnóstico , Transtornos da Insuficiência da Medula Óssea/terapia , Transtornos da Insuficiência da Medula Óssea/complicações , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/terapia , Leucemia Mieloide Aguda/complicações , Aberrações Cromossômicas , Análise Citogenética , Peptídeos e Proteínas de Sinalização Intracelular/genética
12.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37834388

RESUMO

Mice with a constitutive increase in p53 activity exhibited features of dyskeratosis congenita (DC), a bone marrow failure syndrome (BMFS) caused by defective telomere maintenance. Further studies confirmed, in humans and mice, that germline mutations affecting TP53 or its regulator MDM4 may cause short telomeres and alter hematopoiesis, but also revealed features of Diamond-Blackfan anemia (DBA) or Fanconi anemia (FA), two BMFSs, respectively, caused by defects in ribosomal function or DNA repair. p53 downregulates several genes mutated in DC, either by binding to promoter sequences (DKC1) or indirectly via the DREAM repressor complex (RTEL1, DCLRE1B), and the p53-DREAM pathway represses 22 additional telomere-related genes. Interestingly, mutations in any DC-causal gene will cause telomere dysfunction and subsequent p53 activation to further promote the repression of p53-DREAM targets. Similarly, ribosomal dysfunction and DNA lesions cause p53 activation, and p53-DREAM targets include the DBA-causal gene TSR2, at least 9 FA-causal genes, and 38 other genes affecting ribosomes or the FA pathway. Furthermore, patients with BMFSs may exhibit brain abnormalities, and p53-DREAM represses 16 genes mutated in microcephaly or cerebellar hypoplasia. In sum, positive feedback loops and the repertoire of p53-DREAM targets likely contribute to partial phenotypic overlaps between BMFSs of distinct molecular origins.


Assuntos
Anemia de Diamond-Blackfan , Disceratose Congênita , Anemia de Fanconi , Humanos , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Transtornos da Insuficiência da Medula Óssea , Anemia de Fanconi/genética , Anemia de Diamond-Blackfan/genética , Disceratose Congênita/genética , Telômero/genética , Proteínas Nucleares/genética , Proteínas de Ciclo Celular/genética , Proteínas Proto-Oncogênicas/genética , Exodesoxirribonucleases/genética
13.
Front Oncol ; 13: 1236038, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37752993

RESUMO

Diamond-Blackfan anemia (DBA) is one of the most common inherited causes of bone marrow failure in children. DBA typically presents with isolated erythroid hypoplasia and anemia in infants. Congenital anomalies are seen in 50% of the patients. Over time, many patients experience panhematopoietic defects resulting in immunodeficiency and multilineage hematopoietic cytopenias. Additionally, DBA is associated with increased risk of myelodysplastic syndrome, acute myeloid leukemia and solid organ cancers. As a prototypical ribosomopathy, DBA is caused by heterozygous loss-of-function mutations or deletions in over 20 ribosomal protein genes, with RPS19 being involved in 25% of patients. Corticosteroids are the only effective initial pharmacotherapy offered to transfusion-dependent patients aged 1 year or older. However, despite good initial response, only ~20-30% remain steroid-responsive while the majority of the remaining patients will require life-long red blood cell transfusions. Despite continuous chelation, iron overload and related toxicities pose a significant morbidity problem. Allogeneic hematopoietic cell transplantation (HCT) performed to completely replace the dysfunctional hematopoietic stem and progenitor cells is a curative option associated with potentially uncontrollable risks. Advances in HLA-typing, conditioning regimens, infection management, and graft-versus-host-disease prophylaxis have led to improved transplant outcomes in DBA patients, though survival is suboptimal for adolescents and adults with long transfusion-history and patients lacking well-matched donors. Additionally, many patients lack a suitable donor. To address this gap and to mitigate the risk of graft-versus-host disease, several groups are working towards developing autologous genetic therapies to provide another curative option for DBA patients across the whole age spectrum. In this review, we summarize the results of HCT studies and review advances and potential future directions in hematopoietic stem cell-based therapies for DBA.

14.
Curr Osteoporos Rep ; 21(5): 527-539, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37436584

RESUMO

PURPOSE OF REVIEW: Recently, there has been an increasing number of studies on the crosstalk between the bone and the bone marrow and how it pertains to anemia. Here, we discuss four heritable clinical syndromes contrasting those in which anemia affects bone growth and development, with those in which abnormal bone development results in anemia, highlighting the multifaceted interactions between skeletal development and hematopoiesis. RECENT FINDINGS: Anemia results from both inherited and acquired disorders caused by either impaired production or premature destruction of red blood cells or blood loss. The downstream effects on bone development and growth in patients with anemia often constitute an important part of their clinical condition. We will discuss the interdependence of abnormal bone development and growth and hematopoietic abnormalities, with a focus on the erythroid lineage. To illustrate those points, we selected four heritable anemias that arise from either defective hematopoiesis impacting the skeletal system (the hemoglobinopathies ß-thalassemia and sickle cell disease) versus defective osteogenesis resulting in impaired hematopoiesis (osteopetrosis). Finally, we will discuss recent findings in Diamond Blackfan anemia, an intrinsic disorder of both the erythron and the bone. By focusing on four representative hereditary hematopoietic disorders, this complex relationship between bone and blood should lead to new areas of research in the field.


Assuntos
Anemia , Medula Óssea , Humanos , Anemia/genética , Hematopoese/genética , Osso e Ossos
15.
Blood Rev ; 61: 101097, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37263874

RESUMO

Diamond-Blackfan anemia (DBA) is a rare bone marrow failure syndrome, usually caused by loss-of function variants in genes encoding ribosomal proteins. The hallmarks of DBA are anemia, congenital anomalies and cancer predisposition. Although DBA usually presents in childhood, the prevalence in later life is increasing due to an expanding repertoire of implicated genes, improvements in genetic diagnosis and increasing life expectancy. Adult patients uniquely suffer the manifestations of end-organ damage caused by the disease and its treatment, and transition to adulthood poses specific issues in disease management. To standardize and optimize care for this rare disease, in this review we provide updated guidance on the diagnosis and management of DBA, with a specific focus on older adolescents and adults. Recommendations are based upon published literature and our pooled clinical experience from three centres in the United Kingdom (U·K.). Uniquely we have also solicited and incorporated the views of affected families, represented by the independent patient organization, DBA U.K.


Assuntos
Anemia de Diamond-Blackfan , Neoplasias , Adolescente , Humanos , Adulto , Anemia de Diamond-Blackfan/diagnóstico , Anemia de Diamond-Blackfan/epidemiologia , Anemia de Diamond-Blackfan/genética , Doenças Raras , Proteínas Ribossômicas/genética , Suscetibilidade a Doenças , Mutação
16.
J Lab Physicians ; 15(2): 316-320, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37323590

RESUMO

Pure red cell aplasia (PRCA) is characterized by severe anemia with reticulocytopenia and bone marrow erythroblastopenia. The early erythroblasts are markedly decreased; however, in rare instances, they may be normal or raised in number. There are varied etiologies, namely congenital or acquired and primary or secondary. The congenital PRCA is known as "Diamond-Blackfan anemia." Thymomas, autoimmune disease, lymphomas, infections, and drugs also may be familiar associates. However, the etiologies of PRCA are numerous, and many diseases/infections can be associated with PRCA. The diagnosis rests on clinical suspicion and appropriate laboratory workup. We evaluated nine cases of red cell aplasia, having severe anemia with reticulocytopenia. Nearly half of the cases showed adequate erythroid (> 5% of the differential count) but with a maturation arrest. The adequacy of the erythroid could confuse the hematologist and may even delay the diagnosis. Hence, it is empirical that PRCA could be considered a differential in every case of severe anemia with reticulocytopenia, even in the presence of adequate erythroid precursors in the bone marrow.

17.
Int J Lab Hematol ; 45(5): 766-773, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37376976

RESUMO

INTRODUCTION: Diamond-Blackfan anemia (DBA) is a rare congenital bone marrow failure syndrome characterized by erythroid aplasia, physical malformation, and cancer predisposition. Twenty ribosomal protein genes and three non-ribosomal protein genes have been identified associated with DBA. METHODS: To investigate the presence of novel mutations and gain a deeper understanding of the molecular mechanisms of disease, targeted next-generation sequencing was performed in 12 patients with clinically suspected DBA. Literatures were retrieved with complete clinical information published in English by November 2022. The clinical features, treatment, and RPS10/RPS26 mutations were analyzed. RESULTS: Among the 12 patients, 11 mutations were identified and 5 of them were novel (RPS19, p.W52S; RPS10, p.P106Qfs*11; RPS26, p.R28*; RPL5, p.R35*; RPL11, p.T44Lfs*40). Including 2 patients in this study, 13 patients with RPS10 mutations and 38 patients with RPS26 mutations were reported from 4 and 6 countries, respectively. The incidences of physical malformation in patients with RPS10 and RPS26 mutations (22% and 36%, respectively) were lower than the overall incidence in DBA patients (~50%). Patients with RPS26 mutations had a worse response rate of steroid therapy than RPS10 (47% vs. 87.5%), but preferred RBC transfusions (67% vs. 44%, p = 0.0253). CONCLUSION: Our findings add to the DBA pathogenic variant database and demonstrate the clinical presentations of the DBA patients with RPS10/RPS26 mutations. It shows that next-generation sequencing is a powerful tool for the diagnosis of genetic diseases such as DBA.


Assuntos
Anemia de Diamond-Blackfan , Humanos , Anemia de Diamond-Blackfan/genética , Mutação , Genótipo
18.
Stem Cells ; 41(6): 560-569, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36987811

RESUMO

Diamond Blackfan anemia (DBA) is an inherited bone marrow failure syndrome associated with severe anemia, congenital malformations, and an increased risk of developing cancer. The chromatin-binding special AT-rich sequence-binding protein-1 (SATB1) is downregulated in megakaryocyte/erythroid progenitors (MEPs) in patients and cell models of DBA, leading to a reduction in MEP expansion. Here we demonstrate that SATB1 expression is required for the upregulation of the critical erythroid factors heat shock protein 70 (HSP70) and GATA1 which accompanies MEP differentiation. SATB1 binding to specific sites surrounding the HSP70 genes promotes chromatin loops that are required for the induction of HSP70, which, in turn, promotes GATA1 induction. This demonstrates that SATB1, although gradually downregulated during myelopoiesis, maintains a biological function in early myeloid progenitors.


Assuntos
Anemia de Diamond-Blackfan , Proteínas de Ligação à Região de Interação com a Matriz , Humanos , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Megacariócitos/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Diferenciação Celular/genética , Fatores de Transcrição/metabolismo , Anemia de Diamond-Blackfan/metabolismo , Cromatina/metabolismo , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo
19.
Medicina (Kaunas) ; 59(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36837563

RESUMO

Diamond-Blackfan anemia is a rare (6-7 million live births), inherited condition manifesting as severe anemia due to the impaired bone marrow production of red blood cells. We present the unusual case of a six month old infant with a de novo mutation of the RPS19 gene causing Diamond-Blackfan anemia who additionally suffers from severe sinus bradycardia. The infant was diagnosed with this condition at the age of four months; at the age of 6 months, she presents with severe anemia causing hypoxia which, in turn, caused severe dyspnea and polypnea, which had mixed causes (hypoxic and infectious) as the child was febrile. After correction of the overlapping diarrhea, metabolic acidosis, and severe anemia (hemoglobin < 3 g/dL), she developed severe persistent sinus bradycardia immediately after mild sedation (before central venous catheter insertion), not attributable to any of the more frequent causes, with a heart rate as low as 49 beats/min on 24 h Holter monitoring, less than the first percentile for age, but with a regular QT interval and no arrhythmia. The echocardiogram was unremarkable, showing a small interatrial communication (patent foramen ovale with left-to-right shunting), mild left ventricular hypertrophy, normal systolic and diastolic function, and mild tricuspid regurgitation. After red cell transfusion and appropriate antibiotic and supportive treatment, the child's general condition improved dramatically but the sinus bradycardia persisted. We consider this a case of well-tolerated sinus bradycardia and foresee a good cardiologic prognosis, while the hematologic prognosis remains determined by future corticoid response, treatment-related complications and risk of leukemia.


Assuntos
Anemia de Diamond-Blackfan , Feminino , Humanos , Lactente , Anemia de Diamond-Blackfan/diagnóstico , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/terapia , Medula Óssea , Bradicardia , Proteínas Ribossômicas/genética , Brancos
20.
Front Genet ; 14: 1068923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845397

RESUMO

GATA1 is required for normal erythropoiesis. Exonic/intronic GATA1 mutations causes Diamond-Blackfan Anemia (DBA)-like disease. Herein, we present a case of a 5-year-old boy with anemia of unknown etiology. Whole-exome sequencing revealed a de novo GATA1 c.220 + 1G>C mutation. The reporter gene assay revealed that such mutations did not affect on GATA1 transcriptional activity. The normal transcription of GATA1 was disturbed, as evidenced by increased expression of the shorter GATA1 isoform. RDDS prediction analysis revealed that abnormal GATA1 splicing might be the underlying mechanism disrupting GATA1 transcription, thereby impairing erythropoiesis. Prednisone treatment significantly improved erythropoiesis, evidenced by increased hemoglobin and reticulocyte counts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...