Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 710
Filtrar
2.
Polymers (Basel) ; 16(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39125177

RESUMO

Pullulan, a natural polysaccharide with unique biocompatibility and biodegradability, has gained prominence in nanomedicine. Its application in nanoparticle drug delivery systems showcases its potential for precision medicine. AIM OF STUDY: This scientific review aims to comprehensively discuss and summarize recent advancements in pullulan-based polymeric nanoparticles, focusing on their formulation, characterization, evaluation, and efficacy. METHODOLOGY: A search on Scopus, PubMed, and Google Scholar, using "Pullulan and Nanoparticle" as keywords, identified relevant articles in recent years. RESULTS: The literature search highlighted a diverse range of studies on the pullulan-based polymeric nanoparticles, including the success of high-selectivity hybrid pullulan-based nanoparticles for efficient boron delivery in colon cancer as the active targeting nanoparticle, the specific and high-efficiency release profile of the development of hyalgan-coated pullulan-based nanoparticles, and the design of multifunctional microneedle patches that incorporated pullulan-collagen-based nanoparticle-loaded antimicrobials to accelerate wound healing. These studies collectively underscore the versatility and transformative potential of pullulan-based polymeric nanoparticles in addressing biomedical challenges. CONCLUSION: Pullulan-based polymeric nanoparticles are promising candidates for innovative drug delivery systems, with the potential to overcome the limitations associated with traditional delivery methods.

3.
J Biomater Sci Polym Ed ; : 1-44, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102337

RESUMO

The objective of this study is to collect the significant advancements of 3D printed medical devices in the biomedical area in recent years. Especially related to a range of diseases and the polymers employed in drug administration. To address the existing limitations and constraints associated with the method used for producing 3D printed medical devices, in order to optimize their suitability for degradation. The compilation and use of research papers, reports, and patents that are relevant to the key keywords are employed to improve comprehension. According to this thorough investigation, it can be inferred that the 3D Printing method, specifically Fuse Deposition Modeling (FDM), is the most suitable and convenient approach for preparing medical devices. This study provides an analysis and summary of the development trend of 3D printed implantable medical devices, focusing on the production process, materials specially the polymers, and typical items associated with 3D printing technology. This study offers a comprehensive examination of nanocarrier research and its corresponding discoveries. The FDM method, which is already facing significant challenges in terms of achieving optimal performance and cost reduction, will experience remarkable advantages from this highly valuable technology. The objective of this analysis is to showcase the efficacy and limitations of 3D-printing applications in medical devices through thorough research, highlighting the significant technological advancements it offers. This article provides a comprehensive overview of the most recent research and discoveries on 3D-printed medical devices, offering significant insights into their study.

4.
Biomed Pharmacother ; 177: 117123, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39004062

RESUMO

Sphingosine-1-phosphate (S1P) formed via catalytic actions of sphingosine kinase 1 (SphK1) behaves as a pro-survival substance and activates downstream target molecules associated with various pathologies, including initiation, inflammation, and progression of cancer. Here, we aimed to investigate the SphK1 inhibitory potentials of thymoquinone (TQ), Artemisinin (AR), and Thymol (TM) for the therapeutic management of lung cancer. We implemented docking, molecular dynamics (MD) simulations, enzyme inhibition assay, and fluorescence measurement studies to estimate binding affinity and SphK1 inhibitory potential of TQ, AR, and TM. We further investigated the anti-cancer potential of these compounds on non-small cell lung cancer (NSCLC) cell lines (H1299 and A549), followed by estimation of mitochondrial ROS, mitochondrial membrane potential depolarization, and cleavage of DNA by comet assay. Enzyme activity and fluorescence binding studies suggest that TQ, AR, and TM significantly inhibit the activity of SphK1 with IC50 values of 35.52 µM, 42.81 µM, and 53.68 µM, respectively, and have an excellent binding affinity. TQ shows cytotoxic effect and anti-proliferative potentials on H1299 and A549 with an IC50 value of 27.96 µM and 54.43 µM, respectively. Detection of mitochondrial ROS and mitochondrial membrane potential depolarization shows promising TQ-induced oxidative stress on H1299 and A549 cell lines. Comet assay shows promising TQ-induced oxidative DNA damage. In conclusion, TQ, AR, and TM act as potential inhibitors for SphK1, with a strong binding affinity. In addition, the cytotoxicity of TQ is linked to oxidative stress due to mitochondrial ROS generation. Overall, our study suggests that TQ is a promising inhibitor of SphK1 targeting lung cancer therapy.


Assuntos
Artemisininas , Benzoquinonas , Proliferação de Células , Neoplasias Pulmonares , Simulação de Acoplamento Molecular , Fosfotransferases (Aceptor do Grupo Álcool) , Timol , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Benzoquinonas/farmacologia , Proliferação de Células/efeitos dos fármacos , Timol/farmacologia , Linhagem Celular Tumoral , Células A549 , Artemisininas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Simulação de Dinâmica Molecular , Antineoplásicos/farmacologia
5.
Cancers (Basel) ; 16(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39061221

RESUMO

Curcumin, a polyphenolic compound derived from Curcuma longa, exhibits significant therapeutic potential in cancer management. This review explores curcumin's mechanisms of action, the challenges related to its bioavailability, and its enhancement through modern technology and approaches. Curcumin demonstrates strong antioxidant and anti-inflammatory properties, contributing to its ability to neutralize free radicals and inhibit inflammatory mediators. Its anticancer effects are mediated by inducing apoptosis, inhibiting cell proliferation, and interfering with tumor growth pathways in various colon, pancreatic, and breast cancers. However, its clinical application is limited by its poor bioavailability due to its rapid metabolism and low absorption. Novel delivery systems, such as curcumin-loaded hydrogels and nanoparticles, have shown promise in improving curcumin bioavailability and therapeutic efficacy. Additionally, photodynamic therapy has emerged as a complementary approach, where light exposure enhances curcumin's anticancer effects by modulating molecular pathways crucial for tumor cell growth and survival. Studies highlight that combining low concentrations of curcumin with visible light irradiation significantly boosts its antitumor efficacy compared to curcumin alone. The interaction of curcumin with cytochromes or drug transporters may play a crucial role in altering the pharmacokinetics of conventional medications, which necessitates careful consideration in clinical settings. Future research should focus on optimizing delivery mechanisms and understanding curcumin's pharmacokinetics to fully harness its therapeutic potential in cancer treatment.

6.
Biomed Pharmacother ; 177: 117125, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002444

RESUMO

Active targeting to cancer involves exploiting specific interactions between receptors on the surface of cancer cells and targeting moieties conjugated to the surface of vectors such that site-specific delivery is achieved. Prostate specific membrane antigen (PSMA) has proved to be an excellent target for active targeting to prostate cancer. We report the synthesis and use of a PSMA-specific ligand (Glu-NH-CO-NH-Lys) for the site-specific delivery of brusatol- and docetaxel-loaded poly(lactide-co-glycolide) (PLGA) nanoparticles to prostate cancer. The PSMA targeting ligand covalently linked to PLGA-PEG3400 was blended with methoxyPEG-PLGA to prepare brusatol- and docetaxel-loaded nanoparticles with different surface densities of the targeting ligand. Flow cytometry was used to evaluate the impact of different surface densities of the PSMA targeting ligand in LNCaP prostate cancer cells at 15 min and 2 h. Cytotoxicity evaluations of the targeted nanoparticles reveal differences based on PSMA expression in PC-3 and LNCaP cells. In addition, levels of reactive oxygen species (ROS) were measured using the fluorescent indicator, H2DCFDA, by flow cytometry. PSMA-targeted nanoparticles loaded with docetaxel and brusatol showed increased ROS generation in LNCaP cells compared to PC-3 at different time points. Furthermore, the targeted nanoparticles were evaluated in male athymic BALB/c mice implanted with PSMA-producing LNCaP cell tumors. Evaluation of the percent relative tumor volume show that brusatol-containing nanoparticles show great promise in inhibiting tumor growth. Our data also suggest that the dual drug-loaded targeted nanoparticle platform improves the efficacy of docetaxel in male athymic BALB/c mice implanted with PSMA-producing LNCaP cell tumors.


Assuntos
Antígenos de Superfície , Docetaxel , Glutamato Carboxipeptidase II , Nanopartículas , Neoplasias da Próstata , Masculino , Docetaxel/farmacologia , Docetaxel/administração & dosagem , Animais , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Glutamato Carboxipeptidase II/metabolismo , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Células PC-3 , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra , Camundongos Nus , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Camundongos Endogâmicos BALB C , Sistemas de Liberação de Fármacos por Nanopartículas/química
7.
Carbohydr Res ; 543: 109207, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39018698

RESUMO

Folic acid receptor-targeted drug delivery system is a promising candidate for tumor-targeted delivery because its elevated expression specifically on tumor cells enables the selective delivery of cytotoxic cargo to cancerous tissue, thereby minimizing toxic side effects and increasing the therapeutic index. Pyridine bisfolate-chitosan (PyBFA@CS NPs) and folate-chitosan nanocomposite (FA@CS NPs) were synthesized with suitable particle size (256.0 ± 15.0 and 161.0 ± 5.0 nm), high stability (ζ = -27.0 ± 0.1 and -30.0 ± 0.2 mV), respectively, and satisfactory biocompatibility to target cells expressing folate receptors and try to answer the question: Is the metal center always important for activity? Since almost all pharmaceuticals work by binding to specific proteins or DNA, the in vitro binding of human serum albumin (HSA) to PyBFA@CS NPs and FA@CS NPs has been investigated and compared with PyBFA. Strong affinity to HSA is shown by quenching and binding constants in the range of 105 and 104 M-1, respectively with PyBFA@CS NPs showing the strongest. The compounds-HSA kinetic stability, affinity, and association constants were investigated using a stopped-flow method. The findings showed that all formulations bind by a static quenching mechanism that consists of two reversible steps: rapid second-order binding and a more slowly first-order isomerization reaction. The overall coordination affinity of HSA to PyBFA@CS NPs (6.6 × 106 M-1), PyBFA (4.4 × 106 M-1), and FA@CS NPs (1.3 × 106 M-1) was measured and The relative reactivity is roughly (PyBFA@CS NPs)/(PyBFA)/(FA@CS NPs) = 5/3/1. Additionally, in vitro cytotoxicity revealed that, consistent with the binding constants and coordination affinity, active-targeting formulations greatly inhibited FR-positive MCF-7 cells in compared to FRs-negative A549 cells in the following trend: PyBFA@CS NPs > PyBFA > FA@CS NPs. Furthermore, in vitro drug release of PyBFA@CS NPs was found to be stable in PBS at pH 7.4, however, the in pH 5.4 and in pH 5.4 containing 10 mM glutathione (GSH) (mimicking the tumor microenvironment) reached 43 % and 73 %, respectively indicating that the PyBFA@CS NPs system is sensitive to GSH. Folate-modified nanoparticles, PyBFA@CS NPs, are a promising therapeutic for MCF-7 therapy because they not only showed a greater affinity for HSA, but also showed higher cleavage efficiency toward the minor groove of pBR322 DNA via the hydrolytic way, as well as effective antibacterial activity that avoids the usage of extra antibiotics.‬‬‬‬‬‬‬‬‬‬‬‬ ‬‬‬‬‬‬‬‬‬‬‬‬‬‬.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38963550

RESUMO

Drug targeting for brain malignancies is restricted due to the presence of the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB), which act as barriers between the blood and brain parenchyma. Certainly, the limited therapeutic options for brain malignancies have made notable progress with enhanced biological understanding and innovative approaches, such as targeted therapies and immunotherapies. These advancements significantly contribute to improving patient prognoses and represent a promising shift in the landscape of brain malignancy treatments. A more comprehensive understanding of the histology and pathogenesis of brain malignancies is urgently needed. Continued research focused on unraveling the intricacies of brain malignancy biology holds the key to developing innovative and tailored therapies that can improve patient outcomes. Lipid nanocarriers are highly effective drug delivery systems that significantly improve their solubility, bioavailability, and stability while also minimizing unwanted side effects. Surface-modified lipid nanocarriers (liposomes, niosomes, solid lipid nanoparticles, nanostructured lipid carriers, lipid nanocapsules, lipid-polymer hybrid nanocarriers, lipoproteins, and lipoplexes) are employed to improve BBB penetration and uptake through various mechanisms. This systematic review illuminates and covers various topics related to brain malignancies. It explores the different methods of drug delivery used in treating brain malignancies and delves into the benefits, limitations, and types of brain-targeted lipid-based nanocarriers. Additionally, this review discusses ongoing clinical trials and patents related to brain malignancy therapies and provides a glance into future perspectives for treating this condition.

9.
ChemMedChem ; : e202400292, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38887198

RESUMO

New strategies for the rapid development of broad-spectrum antiviral therapies are urgently required for emerging and re-emerging viruses like the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Host-directed antivirals that target universal cellular metabolic pathways necessary for viral replication present a promising approach with broad-spectrum activity and low potential for development of viral resistance. Dihydroorotate dehydrogenase (DHODH) was identified as one of those universal host factors essential for the replication of many clinically relevant human pathogenic viruses. DHODH is the rate-limiting enzyme catalyzing the fourth step in the de novo pyrimidine synthesis. Therefore, it is also developed as a therapeutic target for many diseases relying on cellular pyrimidine resources, such as cancer, autoimmune diseases and viral or bacterial infection. Thus, several DHODH inhibitors, including vidofludimus calcium (VidoCa, IMU-838), are currently in development or have been investigated in clinical trials for the treatment of virus infections such as SARS-CoV-2-mediated coronavirus disease 19 (COVID-19). Here, we report the medicinal chemistry optimization of VidoCa that resulted in metabolically more stable derivatives with improved DHODH target inhibition in various mammalian species, which translated into improved efficacy against SARS-CoV-2.

10.
Pharmacol Rev ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866560

RESUMO

Drug targets are specific molecules in biological tissues and body fluids that interact with drugs. Drug target discovery is a key component of drug discovery and is essential for the development of new drugs in areas such as cancer therapy and precision medicine. Traditional in vitro or in vivo target discovery methods are time-consuming and labour-intensive, limiting the pace of drug discovery. With the development of modern discovery methods, the discovery and application of various emerging technologies have greatly improved the efficiency of drug discovery, shortened the cycle time and reduced the cost. This review provides a comprehensive overview of various emerging drug target discovery strategies, including computer-assisted approaches, drug affinity response target stability, multiomics analysis, gene editing, and NMD, and discusses the effectiveness and limitations of the various approaches, as well as their application in real cases. Through the review of the above related contents, a general overview of the development of novel drug targets and disease treatment strategies will be provided, and a theoretical basis will be provided for those who are engaged in pharmaceutical science research. Significance Statement Target-based drug discovery has been the main approach to drug discovery in the pharmaceutical industry for the past three decades. Traditional drug target discovery methods based on in vivo or in vitro validation are time-consuming and costly, greatly limiting the development of new drugs. Therefore, the development and selection of new methods in the drug target discovery process is crucial.

11.
Pharmaceutics ; 16(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38931844

RESUMO

Direct nose-to-brain drug delivery, a promising approach for treating neurological disorders, faces challenges due to anatomical variations between adults and children. This study aims to investigate the spatial particle deposition of micron-sized particles in the nasal cavity among adult and pediatric subjects. This study focuses on the olfactory region considering the effect of intrasubject parameters and particle properties. Two child and two adult nose models were developed based on computed tomography (CT) images, in which the olfactory region of the four nasal cavity models comprises 7% to 10% of the total nasal cavity area. Computational Fluid Dynamics (CFD) coupled with a discrete phase model (DPM) was implemented to simulate the particle transport and deposition. To study the deposition of micrometer-sized drugs in the human nasal cavity during a seated posture, particles with diameters ranging from 1 to 100 µm were considered under a flow rate of 15 LPM. The nasal cavity area of adults is approximately 1.2 to 2 times larger than that of children. The results show that the regional deposition fraction of the olfactory region in all subjects was meager for 1-100 µm particles, with the highest deposition fraction of 5.7%. The deposition fraction of the whole nasal cavity increased with the increasing particle size. Crucially, we identified a correlation between regional deposition distribution and nasal cavity geometry, offering valuable insights for optimizing intranasal drug delivery.

12.
Cancers (Basel) ; 16(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38791967

RESUMO

Pseudokinases are catalytically inactive proteins in the human genome that lack the ability to transfer phosphate from ATP to their substrates. The Tribbles family of pseudokinases contains three members: Tribbles 1, 2, and 3. Tribbles 1 has recently gained importance because of its involvement in various diseases, including cancer. It acts as a scaffolding protein that brings about the degradation of its substrate proteins, such as C/EBPα/ß, MLXIPL, and RAR/RXRα, among others, via the ubiquitin proteasome system. It also serves as an adapter protein, which sequesters different protein molecules and activates their downstream signaling, leading to processes, such as cell survival, cell proliferation, and lipid metabolism. It has been implicated in cancers such as AML, prostate cancer, breast cancer, CRC, HCC, and glioma, where it activates oncogenic signaling pathways such as PI3K-AKT and MAPK and inhibits the anti-tumor function of p53. TRIB1 also causes treatment resistance in cancers such as NSCLC, breast cancer, glioma, and promyelocytic leukemia. All these effects make TRIB1 a potential drug target. However, the lack of a catalytic domain renders TRIB1 "undruggable", but knowledge about its structure, conformational changes during substrate binding, and substrate binding sites provides an opportunity to design small-molecule inhibitors against specific TRIB1 interactions.

13.
Int J Pharm X ; 7: 100247, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38706465

RESUMO

Pathogenic bacteria cause chronic bacterial prostatitis (CBP). CPB is characterized by urinary tract infection and persistence of pathogenic bacteria in prostatic secretion. Owing to poor blood supply to the prostate gland and limited drug penetration, CBP treatment is difficult. Transferosomes are ultradeformable vesicles for nanocarrier applications, which have become an important area of nanomedicine. Such carriers are specifically targeted to the pathological area to provide maximum therapeutic efficacy. It consists of a lipid bilayer soybean lecithin phosphatidylcholine (PC), an edge activator Tween 80 with various ratios, and a chloroform/methanol core. Depending on the lipophilicity of the active substance, it can be encapsulated within the core or among the lipid bilayer. Due to their exceptional flexibility, which enables them to squeeze themselves through narrow pores that are significantly smaller than their size, they can be a solution. One formulation (Cipro5 PEG) was selected for further in vitro analysis and was composed of phosphatidylcholine (PC), Tween 80, and polyethylene glycol-6 stearate (PEG-6 stearate) in a ratio of 3:3:1 in a chloroform/methanol mixture (1:2 v/v). In vitro, the results showed that PEGylated transferosomes had faster drug release, higher permeation, and increased bioavailability. The transferosomes were quantified with a particle size of 202.59 nm, a zeta potential of-49.38 mV, and a drug entrapment efficiency of 80.05%. The aim of this study was to investigate drug targeting. Therefore, Monoclonal antibody IgG was coupled with Cipro5 PEG, which has specificity and selectivity for conjugated nanoparticles. In vivo, a total of twenty-five adult Wistar rats were obtained and randomly divided into 5 groups, each of 5 rats at random: the control group, blank group, positive control group, Cipro 5PEG group, and Cipro 5PEG coupled with IgG antibody group. The cytokines levels (IL-1ß, IL-8, and TNF-α) in the serum were detected by analysis kits. Compared with the control group, treatment with Cipro 5PEG coupled with the IgG antibody could significantly inhibit cytokines, according to histological analysis. Cipro 5PEG, coupled with the IgG antibody group, reduced prostate tissue inflammation. Hence, our results show a promising approach to delivering antibiotics for the targeted therapy of CBP.

14.
Sci Rep ; 14(1): 10499, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714740

RESUMO

Improving the efficacy of chemotherapy remains a key challenge in cancer treatment, considering the low bioavailability, high cytotoxicity, and undesirable side effects of some clinical drugs. Targeted delivery and sustained release of therapeutic drugs to cancer cells can reduce the whole-body cytotoxicity of the agent and deliver a safe localized treatment to the patient. There is growing interest in herbal drugs, such as curcumin, which is highly noted as a promising anti-tumor drug, considering its wide range of bioactivities and therapeutic properties against various tumors. Conversely, the clinical efficacy of curcumin is limited because of poor oral bioavailability, low water solubility, instability in gastrointestinal fluids, and unsuitable pH stability. Drug-delivery colloid vehicles like liposomes and nanoparticles combined with microbubbles and ultrasound-mediated sustained release are currently being explored as effective delivery modes in such cases. This study aimed to synthesize and study the properties of curcumin liposomes (CLs) and optimize the high-frequency ultrasound release and uptake by a human breast cancer cell line (HCC 1954) through in vitro studies of culture viability and cytotoxicity. CLs were effectively prepared with particles sized at 81 ± 2 nm, demonstrating stability and controlled release of curcumin under ultrasound exposure. In vitro studies using HCC1954 cells, the combination of CLs, ultrasound, and Definity microbubbles significantly improved curcumin's anti-tumor effects, particularly under specific conditions: 15 s of continuous ultrasound at 0.12 W/cm2 power density with 0.6 × 107 microbubbles/mL. Furthermore, the study delved into curcumin liposomes' cytotoxic effects using an Annexin V/PI-based apoptosis assay. The treatment with CLs, particularly in conjunction with ultrasound and microbubbles, amplified cell apoptosis, mainly in the late apoptosis stage, which was attributed to heightened cellular uptake within cancer cells.


Assuntos
Curcumina , Sistemas de Liberação de Medicamentos , Lipossomos , Curcumina/farmacologia , Curcumina/química , Curcumina/administração & dosagem , Humanos , Lipossomos/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Microbolhas , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Ondas Ultrassônicas , Liberação Controlada de Fármacos , Apoptose/efeitos dos fármacos
15.
J Pharm Sci ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38754735

RESUMO

The nasal administration of therapeutic fluids and vaccines is used to treat allergic rhinitis, sinusitis, congestion, coronaviruses and even Alzheimer's disease. In the latter, the drug must reach the olfactory region, so it finds its way into the central nervous system. Effective administration techniques able to reach the olfactory region are challenging due to the tortuous anatomy of the nasal cavity, and are frequently evaluated in vitro using transparent anatomical models. Here, the liquid distribution inside a 3D printed human nasal cavity is quantified for model fluids resulting from the discharge of a 1-mL syringe with either a spray-generating nozzle, and a straight tip emitting a collimated fluid stream. Experiments using two model fluids with different viscosities suggest that a simple, correctly positioned straight tip attached to a syringe is able to efficiently deliver most of a therapeutic fluid in the human olfactory region in the side-laying position, avoiding the adoption of head-back and head-down positions that can be difficult for patients in the age range typical of Alzheimer's disease. Furthermore, we demonstrate by computer simulations that the conclusion is valid within a wide range of parameters.

16.
Drug Deliv Transl Res ; 14(8): 2026-2031, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38796665

RESUMO

This note aims to inspire through providing a personal view of the development and potential Drug Delivery Nanocarriers functionalized with polythyleneglycol (PEG). This polymer has been used extensively in Pharmaceutical Technology in a variety of compositions, including polyethylene oxide (PEO)-based surfactants. However, the concept of PEGylation, which started in the 70's, differs from the functionality of a surfactant, already discloses in the 50's. Here, we strictly adhere to the biological functionality of PEGylated nanocarriers intended to have a reduced interaction with proteins and, therefore, modify their biodistribution as well as facilitate their diffusion across mucus and other biological barriers. We analyze how this concept has evolved over the years and the benefit obtained so far in terms of marketed nanomedicines and provide the readers with a prospect view of the topic.


Assuntos
Portadores de Fármacos , Nanopartículas , Polietilenoglicóis , Animais , Humanos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Polietilenoglicóis/química , Polietilenoglicóis/administração & dosagem
17.
J Control Release ; 371: 237-257, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815705

RESUMO

Nanodrug delivery systems (NDDS) continue to be explored as novel strategies enhance therapy outcomes and combat microbial resistance. The need for the formulation of smart drug delivery systems for targeting infection sites calls for the engineering of responsive chemical designs such as dynamic covalent bonds (DCBs). Stimuli response due to DCBs incorporated into nanosystems are emerging as an alternative way to target infection sites, thus enhancing the delivery of antibacterial agents. This leads to the eradication of bacterial infections and the reduction of antimicrobial resistance. Incorporating DCBs on the backbone of the nanoparticles endows the systems with several properties, including self-healing, controlled disassembly, and stimuli responsiveness, which are beneficial in the delivery and release of the antimicrobial at the infection site. This review provides a comprehensive and current overview of conventional DCBs-based nanosystems, stimuli-responsive DCBs-based nanosystems, and targeted DCBs-based nanosystems that have been reported in the literature for antibacterial delivery. The review emphasizes the DCBs used in their design, the nanomaterials constructed, the drug release-triggering stimuli, and the antibacterial efficacy of the reported DCBs-based nanosystems. Additionally, the review underlines future strategies that can be used to improve the potential of DCBs-based nanosystems to treat bacterial infections and overcome antibacterial resistance.


Assuntos
Antibacterianos , Infecções Bacterianas , Sistemas de Liberação de Medicamentos , Infecções Bacterianas/tratamento farmacológico , Humanos , Antibacterianos/administração & dosagem , Antibacterianos/química , Animais , Nanopartículas/química , Nanopartículas/administração & dosagem , Liberação Controlada de Fármacos , Bactérias/efeitos dos fármacos
18.
JBMR Plus ; 8(5): ziae031, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38606146

RESUMO

Nonunion resulting from early bone resorption is common after bone transplantation surgery. In these patients, instability or osteoporosis causes hyperactive catabolism relative to anabolism, leading to graft resorption instead of fusion. Systemic zoledronate administration inhibits osteoclastogenesis and is widely used to prevent osteoporosis; however, evidence on local zoledronate application is controversial due to osteoblast cytotoxicity, uncontrolled dosing regimens, and local release methods. We investigated the effects of zolendronate on osteoclastogenesis and osteogenesis and explored the corresponding signaling pathways. In vitro cytotoxicity and differentiation of MC3T3E1 cells, rat bone marrow stromal cells (BMSCs) and preosteoclasts (RAW264.7 cells) were evaluated with different zolendronate concentrations. In vivo bone regeneration ability was tested by transplanting different concentrations of zolendronate with ß-tricalcium phosphate (TCP) bone substitute into rat femoral critical-sized bone defects. In vitro, zolendronate concentrations below 2.5 × 10-7 M did not compromise viability in the three cell lines and did not promote osteogenic differentiation in MC3T3E1 cells and BMSCs. In RAW264.7 cells, zoledronate inhibited extracellular regulated protein kinases and c-Jun n-terminal kinase signaling, downregulating c-Fos and NFATc1 expression, with reduced expression of fusion-related dendritic cell­specific transmembrane protein and osteoclast-specific Ctsk and tartrate-resistant acid phosphatase (. In vivo, histological staining revealed increased osteoid formation and neovascularization and reduced fibrotic tissue with 500 µM and 2000 µM zolendronate. More osteoclasts were found in the normal saline group after 6 weeks, and sequential osteoclast formation occurred after zoledronate treatment, indicating inhibition of bone resorption during early callus formation without inhibition of late-stage bone remodeling. In vivo, soaking ß-TCP artificial bone with 500 µM or 2000 µM zoledronate is a promising approach for bone regeneration, with potential applications in bone transplantation.

19.
Front Bioeng Biotechnol ; 12: 1382085, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572358

RESUMO

In this study, a high-efficiency superparamagnetic drug delivery system was developed for preclinical treatment of bladder cancer in small animals. Two types of nanoparticles with magnetic particle imaging (MPI) capability, i.e., single- and multi-core superparamagnetic iron oxide nanoparticles (SPIONs), were selected and coupled with bladder anti-tumor drugs by a covalent coupling scheme. Owing to the minimal particle size, magnetic field strengths of 270 mT with a gradient of 3.2 T/m and 260 mT with a gradient of 3.7 T/m were found to be necessary to reach an average velocity of 2 mm/s for single- and multi-core SPIONs, respectively. To achieve this, a method of constructing an in vitro magnetic field for drug delivery was developed based on hollow multi-coils arranged coaxially in close rows, and magnetic field simulation was used to study the laws of the influence of the coil structure and parameters on the magnetic field. Using this method, a magnetic drug delivery system of single-core SPIONs was developed for rabbit bladder therapy. The delivery system consisted of three coaxially and equidistantly arranged coils with an inner diameter of Φ50 mm, radial height of 85 mm, and width of 15 mm that were positioned in close proximity to each other. CCK8 experimental results showed that the three types of drug-coupled SPION killed tumor cells effectively. By adjusting the axial and radial positions of the rabbit bladder within the inner hole of the delivery coil structure, the magnetic drugs injected could undergo two-dimensional delivery motions and were delivered and aggregated to the specified target location within 12 s, with an aggregation range of about 5 mm × 5 mm. In addition, the SPION distribution before and after delivery was imaged using a home-made open-bore MPI system that could realistically reflect the physical state. This study contributes to the development of local, rapid, and precise drug delivery and the visualization of this process during cancer therapy, and further research on MPI/delivery synchronization technology is planned for the future.

20.
J Integr Neurosci ; 23(4): 76, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38682216

RESUMO

BACKGROUND: There are current clinical observations that atorvastatin may promote subdural hematoma resorption. We aimed to assess the causal effects of lipid-lowering agents 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) inhibitors, Proproteinconvertase subtilisin/kexin type 9 (PCSK9) inhibitors and Niemann-Pick C1-like protein 1 (NPC1L1) inhibitors on traumatic subdural hematomas. METHODS: We used genetic instruments to proxy lipid-lowering drug exposure, with genetic instruments being genetic variants within or near low-density lipoprotein (LDL cholesterol)-associated drug target genes. These were analyzed by using a two-sample Mendelian randomization (MR) study. RESULTS: A causal relationship was found between HMGCR inhibitors and traumatic subdural hematoma (Inverse variance weighted (ß = -0.7593341 (Odds Ratio (OR) = 0.4679779), p = 0.008366947 < 0.05)). However, no causal relationship was found between PCSK9 inhibitors and NPC1L1 inhibitors and traumatic subdural hematoma (PCSK9 inhibitors: Inverse variance weighted (ß = 0.23897796 (OR = 1.2699505), p = 0.1126327), NPC1L1 inhibitors: Inverse variance weighted (ß = -0.02118558 (OR = 0.9790373), p = 0.9701686)). Sensitivity analysis of the data revealed good stability of the results. CONCLUSIONS: This two-sample MR study suggests a potential causal relationship between HMGCR inhibition (atorvastatin) and traumatic subdural hemorrhage.


Assuntos
Hidroximetilglutaril-CoA Redutases , Inibidores de Hidroximetilglutaril-CoA Redutases , Análise da Randomização Mendeliana , Pró-Proteína Convertase 9 , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hematoma Subdural , Inibidores de PCSK9 , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana/genética , Hipolipemiantes/administração & dosagem , Hipolipemiantes/farmacologia , Atorvastatina/efeitos adversos , Atorvastatina/administração & dosagem , Atorvastatina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...