Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Exp Eye Res ; 244: 109931, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763353

RESUMO

Gene therapy is one of the strategies that may reduce or reverse progressive neurodegeneration in retinal neurodegenerative diseases. However, efficiently delivering transgenes to retinal ganglion cells (RGCs) remains hard to achieve. In this study, we innovatively investigated transduction efficiency of adeno-associated virus (AAV)-PHP.eB in murine RGCs by retro-orbital venous sinus injection. Five doses of AAV-PHP.eB-EGFP were retro-orbitally injected in venous sinus in adult C57/BL6J mice. Two weeks after administration, RGCs transduction efficiency was quantified by retinal flat-mounts and frozen section co-labeling with RGCs marker Rbpms. In addition, safety of this method was evaluated by RGCs survival rate and retinal morphology. To conform efficacy of this new method, AAV-PHP.eB-CNTF was administrated into mature mice through single retro-orbital venous injection after optic nerve crush injury to evaluate axonal elongation. Results indicated that AAV- PHP.eB readily crossed the blood-retina barrier and was able to transduce more than 90% of RGCs when total dose of virus reached 5 × 1010 vector genomes (vg). Moreover, this technique did not affect RGCs survival rate and retinal morphology. Furthermore, retro-orbital venous delivery of AAV-PHP.eB-CNTF effectively transduced RGCs, robustly promoted axonal regeneration after optic nerve crush injury. Thus, novel AAV-PHP.eB retro-orbital injection provides a minimally invasive and efficient route for transgene delivery in treatment of retinal neurodegenerative diseases.


Assuntos
Dependovirus , Terapia Genética , Vetores Genéticos , Camundongos Endogâmicos C57BL , Células Ganglionares da Retina , Transdução Genética , Animais , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/metabolismo , Camundongos , Dependovirus/genética , Terapia Genética/métodos , Traumatismos do Nervo Óptico/terapia , Traumatismos do Nervo Óptico/metabolismo , Modelos Animais de Doenças , Sobrevivência Celular , Órbita/irrigação sanguínea
2.
Adv Exp Med Biol ; 1452: 21-35, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38805123

RESUMO

Tubulin plays a fundamental role in cellular function and as the subject for microtubule-active agents in the treatment of ovarian cancer. Microtubule-binding proteins (e.g., tau, MAP1/2/4, EB1, CLIP, TOG, survivin, stathmin) and posttranslational modifications (e.g., tyrosination, deglutamylation, acetylation, glycation, phosphorylation, polyamination) further diversify tubulin functionality and may permit additional opportunities to understand microtubule behavior in disease and to develop microtubule-modifying approaches to combat ovarian cancer. Tubulin-based structures that project from suspended ovarian cancer cells known as microtentacles may contribute to metastatic potential of ovarian cancer cells and could represent an exciting novel therapeutic target.


Assuntos
Microtúbulos , Metástase Neoplásica , Neoplasias Ovarianas , Processamento de Proteína Pós-Traducional , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Feminino , Microtúbulos/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Animais , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/tratamento farmacológico
3.
Curr Opin Cell Biol ; 88: 102360, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640790

RESUMO

Cells generate a highly diverse microtubule network to carry out different activities. This network is comprised of distinct tubulin isotypes, tubulins with different post-translational modifications, and many microtubule-based structures. Defects in this complex system cause numerous human disorders. However, how different microtubule subtypes in this network regulate cellular architectures and activities remains largely unexplored. Emerging tools such as photosensitive pharmaceuticals, chemogenetics, and optogenetics enable the spatiotemporal manipulation of structures, dynamics, post-translational modifications, and cross-linking with actin filaments in target microtubule subtypes. This review summarizes the design rationale and applications of these new approaches and aims to provide a roadmap for researchers navigating the intricacies of microtubule dynamics and their post-translational modifications in cellular contexts, thereby opening new avenues for therapeutic interventions.


Assuntos
Microtúbulos , Microtúbulos/metabolismo , Microtúbulos/química , Humanos , Animais , Processamento de Proteína Pós-Traducional , Optogenética , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química
4.
Elife ; 132024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385657

RESUMO

EB1 is a key cellular protein that delivers regulatory molecules throughout the cell via the tip-tracking of growing microtubule plus-ends. Thus, it is important to understand the mechanism for how EB1 efficiently tracks growing microtubule plus-ends. It is widely accepted that EB1 binds with higher affinity to GTP-tubulin subunits at the growing microtubule tip, relative to GDP-tubulin along the microtubule length. However, it is unclear whether this difference in affinity alone is sufficient to explain the tip-tracking of EB1 at growing microtubule tips. Previously, we found that EB1 binds to exposed microtubule protofilament-edge sites at a ~70 fold faster rate than to closed-lattice sites, due to diffusional steric hindrance to binding. Thus, we asked whether rapid protofilament-edge binding could contribute to efficient EB1 tip tracking. A computational simulation with differential EB1 on-rates based on closed-lattice or protofilament-edge binding, and with EB1 off-rates that were dependent on the tubulin hydrolysis state, robustly recapitulated experimental EB1 tip tracking. To test this model, we used cell-free biophysical assays, as well as live-cell imaging, in combination with a Designed Ankyrin Repeat Protein (DARPin) that binds exclusively to protofilament-edge sites, and whose binding site partially overlaps with the EB1 binding site. We found that DARPin blocked EB1 protofilament-edge binding, which led to a decrease in EB1 tip tracking on dynamic microtubules. We conclude that rapid EB1 binding to microtubule protofilament-edge sites contributes to robust EB1 tip tracking at the growing microtubule plus-end.


Assuntos
Proteínas Associadas aos Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Repetição de Anquirina Projetadas , Microtúbulos/metabolismo , Citoesqueleto/metabolismo , Sítios de Ligação , Ligação Proteica
5.
J Mol Cell Biol ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38323478

RESUMO

In eukaryotes, microtubule polymers are essential for cellular plasticity and fate decisions. End-binding (EB) proteins serve as scaffolds for orchestrating microtubule polymer dynamics and are essential for cellular dynamics and chromosome segregation in mitosis. Here, we show that EB1 forms molecular condensates with TIP150 and MCAK through liquid-liquid phase separation to compartmentalize the kinetochore-microtubule plus-end machinery, ensuring accurate kinetochore-microtubule interactions during chromosome segregation in mitosis. Perturbation of EB1-TIP150 polymer formation by a competing peptide prevents phase separation of the EB1-mediated complex and chromosome alignment at the metaphase equator in both cultured cells and Drosophila embryos. Lys220 of EB1 is dynamically acetylated by p300/CBP-associated factor in early mitosis, and persistent acetylation at Lys220 attenuates the phase separation of the EB1-mediated complex, dissolves droplets in vitro, and harnesses accurate chromosome segregation. Our data suggest a novel framework for understanding the organization and regulation of eukaryotic spindle for accurate chromosome segregation in mitosis.

6.
Taiwan J Obstet Gynecol ; 62(6): 830-837, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38008501

RESUMO

OBJECTIVE: The most severe type of male infertility is non-obstructive azoospermia (NOA), where there is no sperm in the ejaculate due to failure of spermatogenesis, affecting 10%-20% of infertile men with azoospermia. Genetic studies have identified dozens of NOA genes. The main aim of the present study is to identify a novel monogenic mutation that may cause NOA. MATERIALS AND METHODS: We studied the pedigree of a consanguineous family with three NOA and one fertile brother by a family-based exome-sequencing, segregation analysis, insilico protein modeling and single-cell RNA sequencing data analysis. RESULTS: Bioinformatics analysis followed by sanger sequencing revealed that three NOA brothers were homozygous for a rare missense variant in Cyclin Dependent Kinase Regulatory Subunit Associated Protein 2 (Centrosomin) CDK5RAP2 (NM_018249:exon26:c.A4003T:p.R1335W, rs761196443). Protein modeling demonstrated that CDK5RAP2, Arg1335Trp resided nearby the Microtubule Associated Protein RP/EB Family Member 1 (EB1/MAPRE1) interaction site. As a consequence of the R1335W mutation, the positively charged Arginine was replaced by to the hydrophobic tryptophan residue, possibly leading to local instability in the structure and perturbation in the CDK5RAP2-MAPRE1 interaction. CONCLUSION: Our study reports a novel missense variant of CDK5RAP2 that segregates in homozygosity with male infertility and NOA in a consanguineous family. In silico structural predictions and gene expression data indicate a potential role of the CDK5RAP2 variant in causing defective centrosomic maturation during spermatogenesis.


Assuntos
Azoospermia , Infertilidade Masculina , Humanos , Masculino , Azoospermia/genética , Azoospermia/complicações , Infertilidade Masculina/genética , Mutação , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Proteínas de Ciclo Celular/genética
7.
BMC Res Notes ; 16(1): 198, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684684

RESUMO

OBJECTIVE: Microtubules, which are closely related to cell proliferation, have been the promising therapeutic target of cancer. Therefore, it is necessary to understand the intracellular control mechanisms of microtubules, the whole picture of which is still unclear though. Intracellular dynamics of microtubules are regulated by various microtubule-associated proteins, one group of which is microtubule plus-end-tracking proteins (+ TIPs), localizing to the extending tips of microtubules. Here, we report the identification and analysis of Ccser2 as a new + TIP in human breast cancer MCF-7 cells. RESULTS: Ccser2 was found to be a member of + TIPs by microscopic observations including time-lapse imaging. The C-terminal region of Ccser2, including two SxIP motifs, was likely to be important for the tracking function. In MCF-7 cells, endogenous Ccser2 was mainly detected in the peripheral regions of microtubule fibers, suggesting that Ccser2 functions in cell projections.


Assuntos
Proteínas Associadas aos Microtúbulos , Microtúbulos , Humanos , Proliferação de Células , Células MCF-7
8.
ISA Trans ; 142: 427-444, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37573188

RESUMO

To improve the accuracy of bearing fault diagnosis in a multisensor monitoring environment, it is necessary to obtain more accurate and effective fault classification features for bearings. Accordingly, a bearing fault classification feature extraction method based on multisensor fusion technology and an enhanced binary one-dimensional ternary pattern (EB-1D-TP) algorithm were proposed in this study. First, an optimal equalization weighting algorithm was established to realize high-precision fusion of bearing signals by introducing an optimal equalization factor and determining the theoretical optimal equalization factor value. Second, an enhanced binary encoding method similar to balanced ternary encoding was developed, which increases the difference between the different fault features of the bearing. Finally, the new sequence obtained after encoding was used as the input to a support vector machine to classify and diagnose the faults of the rolling bearing. The experimental results show that the algorithm can significantly improve the accuracy and speed of rolling-bearing fault classification. Combining fusion-encoding features with other intelligent classification methods, the classification results were improved.

10.
Front Immunol ; 14: 1197289, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520527

RESUMO

The organization of the mitochondrial network is relevant for the metabolic fate of T cells and their ability to respond to TCR stimulation. This arrangement depends on cytoskeleton dynamics in response to TCR and CD28 activation, which allows the polarization of the mitochondria through their change in shape, and their movement along the microtubules towards the immune synapse. This work focus on the role of End-binding protein 1 (EB1), a protein that regulates tubulin polymerization and has been previously identified as a regulator of intracellular transport of CD3-enriched vesicles. EB1-interferred cells showed defective intracellular organization and metabolic strength in activated T cells, pointing to a relevant connection of the cytoskeleton and metabolism in response to TCR stimulation, which leads to increased AICD. By unifying the organization of the tubulin cytoskeleton and mitochondria during CD4+ T cell activation, this work highlights the importance of this connection for critical cell asymmetry together with metabolic functions such as glycolysis, mitochondria respiration, and cell viability.


Assuntos
Linfócitos T CD4-Positivos , Proteínas Associadas aos Microtúbulos , Mitocôndrias , Células Jurkat , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Mitocôndrias/metabolismo , Tubulina (Proteína)/metabolismo , Citoesqueleto/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Antígenos CD28/metabolismo , Potencial da Membrana Mitocondrial , Sinapses Imunológicas
11.
Am J Cancer Res ; 13(5): 2076-2086, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293172

RESUMO

Microtubules are major components of the cellular cytoskeleton, ubiquitously founded in all eukaryotic cells. They are involved in mitosis, cell motility, intracellular protein and organelle transport, and maintenance of cytoskeletal shape. Avanbulin (BAL27862) is a microtubule-targeted agent (MTA) that promotes tumor cell death by destabilization of microtubules. Due to its unique binding to the colchicine site of tubulin, differently from other MTAs, avanbulin has previously shown activity in solid tumor cell lines. Its prodrug, lisavanbulin (BAL101553), has shown early signs of clinical activity, especially in tumors with high EB1 expression. Here, we assessed the preclinical anti-tumor activity of avanbulin in diffuse large B cell lymphoma (DLBCL) and the pattern of expression of EB1 in DLBCL cell lines and clinical specimens. Avanbulin showed a potent in vitro anti-lymphoma activity, which was mainly cytotoxic with potent and rapid apoptosis induction. Median IC50 was around 10 nM in both ABC and GCB-DLBCL. Half of the cell lines tested showed an induction of apoptosis already in the first 24 h of treatment, the other half in the first 48 h. EB1 showed expression in DLBCL clinical specimens, opening the possibility for a cohort of patients that could potentially benefit from treatment with lisavanbulin. These data show the basis for further preclinical and clinical evaluation of lisavanbulin in the lymphoma field.

12.
J Biol Chem ; 299(2): 102853, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36592928

RESUMO

The kinetochore establishes the linkage between chromosomes and the spindle microtubule plus ends during mitosis. In vertebrates, the spindle-kinetochore-associated (Ska1,2,3) complex stabilizes kinetochore attachment with the microtubule plus ends, but how Ska is recruited to and stabilized at the kinetochore-microtubule interface is not understood. Here, our results show that interaction of Ska1 with the general microtubule plus end-associated protein EB1 through a conserved motif regulates Ska recruitment to kinetochores in human cells. Ska1 forms a stable complex with EB1 via interaction with the motif in its N-terminal disordered loop region. Disruption of this interaction either by deleting or mutating the motif disrupts Ska complex recruitment to kinetochores and induces chromosome alignment defects, but it does not affect Ska complex assembly. Atomic-force microscopy imaging revealed that Ska1 is anchored to the C-terminal region of the EB1 dimer through its loop and thereby promotes formation of extended structures. Furthermore, our NMR data showed that the Ska1 motif binds to the residues in EB1 that are the binding sites of other plus end targeting proteins that are recruited to microtubules by EB1 through a similar conserved motif. Collectively, our results demonstrate that EB1-mediated Ska1 recruitment onto the microtubule serves as a general mechanism for the formation of vertebrate kinetochore-microtubule attachments and metaphase chromosome alignment.


Assuntos
Proteínas Cromossômicas não Histona , Cinetocoros , Proteínas Associadas aos Microtúbulos , Humanos , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitose
13.
Fungal Genet Biol ; 165: 103768, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596442

RESUMO

Cytoplasmic microtubule arrays play important and diverse roles within fungal cells, including serving as molecular highways for motor-driven organelle motility. While the dynamic plus ends of cytoplasmic microtubules are free to explore the cytoplasm through their stochastic growth and shrinkage, their minus ends are nucleated at discrete organizing centers, composed of large multi-subunit protein complexes. The location and composition of these microtubule organizing centers varies depending on genus, cell type, and in some instances cell-cycle stage. Despite their obvious importance, our understanding of the nature, diversity, and regulation of microtubule organizing centers in fungi remains incomplete. Here, using three-color fluorescence microscopy based live-cell imaging, we investigate the organization and dynamic behavior of the microtubule cytoskeleton within infection-related cell types of the filamentous fungus,Magnaporthe oryzae, a highly destructive pathogen of rice and wheat. We provide data to support the idea that cytoplasmic microtubules are nucleated at septa, rather than at nuclear spindle pole bodies, within the three-celled blast conidium, and provide new insight into remodeling of the microtubule cytoskeleton during nuclear division and inheritance. Lastly, we provide a more complete picture of the architecture and subcellular organization of the prototypical blast appressorium, a specialized pressure-generating cell type used to invade host tissue. Taken together, our study provides new insight into microtubule nucleation, organization, and dynamics in specialized and differentiated fungal cell types.


Assuntos
Magnaporthe , Oryza , Centro Organizador dos Microtúbulos/metabolismo , Esporos Fúngicos/metabolismo , Divisão Celular , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética
14.
Elife ; 122023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36715499

RESUMO

A challenge in analyzing dynamic intracellular cell biological processes is the dearth of methodologies that are sufficiently fast and specific to perturb intracellular protein activities. We previously developed a light-sensitive variant of the microtubule plus end-tracking protein EB1 by inserting a blue light-controlled protein dimerization module between functional domains. Here, we describe an advanced method to replace endogenous EB1 with this light-sensitive variant in a single genome editing step, thereby enabling this approach in human induced pluripotent stem cells (hiPSCs) and hiPSC-derived neurons. We demonstrate that acute and local optogenetic EB1 inactivation in developing cortical neurons induces microtubule depolymerization in the growth cone periphery and subsequent neurite retraction. In addition, advancing growth cones are repelled from areas of blue light exposure. These phenotypes were independent of the neuronal EB1 homolog EB3, revealing a direct dynamic role of EB1-mediated microtubule plus end interactions in neuron morphogenesis and neurite guidance.


Assuntos
Células-Tronco Pluripotentes Induzidas , Proteínas Associadas aos Microtúbulos , Humanos , Genômica , Cones de Crescimento/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Ligação Proteica
15.
Cells ; 11(14)2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35883570

RESUMO

Centrosome-containing cells assemble their spindles exploiting three main classes of microtubules (MTs): MTs nucleated by the centrosomes, MTs generated near the chromosomes/kinetochores, and MTs nucleated within the spindle by the augmin-dependent pathway. Mammalian and Drosophila cells lacking the centrosomes generate MTs at kinetochores and eventually form functional bipolar spindles. However, the mechanisms underlying kinetochore-driven MT formation are poorly understood. One of the ways to elucidate these mechanisms is the analysis of spindle reassembly following MT depolymerization. Here, we used an RNA interference (RNAi)-based reverse genetics approach to dissect the process of kinetochore-driven MT regrowth (KDMTR) after colcemid-induced MT depolymerization. This MT depolymerization procedure allows a clear assessment of KDMTR, as colcemid disrupts centrosome-driven MT regrowth but not KDMTR. We examined KDMTR in normal Drosophila S2 cells and in S2 cells subjected to RNAi against conserved genes involved in mitotic spindle assembly: mast/orbit/chb (CLASP1), mei-38 (TPX2), mars (HURP), dgt6 (HAUS6), Eb1 (MAPRE1/EB1), Patronin (CAMSAP2), asp (ASPM), and Klp10A (KIF2A). RNAi-mediated depletion of Mast/Orbit, Mei-38, Mars, Dgt6, and Eb1 caused a significant delay in KDMTR, while loss of Patronin had a milder negative effect on this process. In contrast, Asp or Klp10A deficiency increased the rate of KDMTR. These results coupled with the analysis of GFP-tagged proteins (Mast/Orbit, Mei-38, Mars, Eb1, Patronin, and Asp) localization during KDMTR suggested a model for kinetochore-dependent spindle reassembly. We propose that kinetochores capture the plus ends of MTs nucleated in their vicinity and that these MTs elongate at kinetochores through the action of Mast/Orbit. The Asp protein binds the MT minus ends since the beginning of KDMTR, preventing excessive and disorganized MT regrowth. Mei-38, Mars, Dgt6, Eb1, and Patronin positively regulate polymerization, bundling, and stabilization of regrowing MTs until a bipolar spindle is reformed.


Assuntos
Proteínas de Drosophila , Cinetocoros , Animais , Demecolcina/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Cinesinas/genética , Cinetocoros/metabolismo , Mamíferos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitose , Fuso Acromático/metabolismo
16.
Curr Biol ; 32(5): 1197-1205.e4, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35090591

RESUMO

Chromosome segregation is accomplished by the mitotic spindle, a bipolar micromachine built primarily from microtubules. Different microtubule populations contribute to spindle function: kinetochore microtubules attach and transmit forces to chromosomes, antiparallel interpolar microtubules support spindle structure, and astral microtubules connect spindle poles to the cell cortex.1,2 In mammalian cells, end-binding (EB) proteins associate with all growing microtubule plus ends throughout the cell cycle and serve as adaptors for diverse +TIPs that control microtubule dynamics and interactions with other intracellular structures.3 Because binding of many +TIPs to EB1 and thus microtubule-end association is switched off by mitotic phosphorylation,4-6 the mitotic function of EBs remains poorly understood. To analyze how EB1 and associated +TIPs on different spindle microtubule populations contribute to mitotic spindle dynamics, we use a light-sensitive EB1 variant, π-EB1, that allows local, acute, and reversible inactivation of +TIP association with growing microtubule ends in live cells.7 We find that acute π-EB1 photoinactivation results in rapid and reversible metaphase spindle shortening and transient relaxation of tension across the central spindle. However, in contrast to interphase, π-EB1 photoinactivation does not inhibit microtubule growth in metaphase but instead increases astral microtubule length and number. Yet in the absence of EB1 activity, astral microtubules fail to engage the cortical dynein/dynactin machinery, and spindle poles move away from regions of π-EB1 photoinactivation. In conclusion, our optogenetic approach reveals mitotic EB1 functions that remain hidden in genetic experiments, likely due to compensatory molecular systems regulating vertebrate spindle dynamics.


Assuntos
Proteínas Associadas aos Microtúbulos , Optogenética , Animais , Mamíferos , Metáfase , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo
17.
Cancer Treat Res ; 181: 115-132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34626358

RESUMO

Myelodysplastic syndrome (MDS) is a heterogeneous hematological neoplasm with a wide range of clinical presentations from isolated anemia to pancytopenia and propensity to transform to acute myeloid leukemia. MDS is characterized by morphologic bone marrow dysplasia and ineffective hematopoiesis resulting from a range of cytogenetic abnormalities and somatic gene mutations. Disease management varies from observation alone for low-risk disease to hypomethylating agents and hematopoietic cell transplantation (HCT) for higher risk disease. In this chapter, we review the classification, risk stratification, and optimal management of patients with MDS.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Aberrações Cromossômicas , Humanos , Síndromes Mielodisplásicas/terapia
18.
Cell Rep ; 36(11): 109687, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34525355

RESUMO

Mammalian cell cytoskeletal reorganization for efficient directional movement requires tight coordination of actomyosin and microtubule networks. In this study, we show that LRAP35a potentiates microtubule stabilization by promoting CLASP2/EB1 interaction besides its complex formation with MRCK/MYO18A for retrograde actin flow. The alternate regulation of these two networks by LRAP35a is tightly regulated by a series of phosphorylation events that dictated its specificity. Sequential phosphorylation of LRAP35a by Protein Kinase A (PKA) and Glycogen Synthase Kinase-3ß (GSK3ß) initiates the association of LRAP35a with CLASP2, while subsequent binding and further phosphorylation by Casein Kinase 1δ (CK1δ) induce their dissociation, which facilitates LRAP35a/MRCK association in driving lamellar actomyosin flow. Importantly, microtubule dynamics is directly moderated by CK1δ activity on CLASP2 to regulate GSK3ß phosphorylation of the SxIP motifs that blocks EB1 binding, an event countered by LRAP35a interaction and its competition for CK1δ activity. Overall this study reveals an essential role for LRAP35a in coordinating lamellar contractility and microtubule polarization in cell migration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Caseína Quinase Idelta/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Caseína Quinase Idelta/antagonistas & inibidores , Caseína Quinase Idelta/genética , Linhagem Celular Tumoral , Movimento Celular , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/química , Mutagênese Sítio-Dirigida , Fosforilação , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética
19.
RNA ; 27(10): 1173-1185, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34215685

RESUMO

RNA binding proteins (RBPs) take part in all steps of the RNA life cycle and are often essential for cell viability. Most RBPs have a modular organization and comprise a set of canonical RNA binding domains. However, in recent years a number of high-throughput mRNA interactome studies on yeast, mammalian cell lines, and whole organisms have uncovered a multitude of novel mRNA interacting proteins that lack classical RNA binding domains. Whereas a few have been confirmed to be direct and functionally relevant RNA binders, biochemical and functional validation of RNA binding of most others is lacking. In this study, we used a combination of NMR spectroscopy and biochemical studies to test the RNA binding properties of six putative RBPs. Half of the analyzed proteins showed no interaction, whereas the other half displayed weak chemical shift perturbations upon titration with RNA. One of the candidates we found to interact weakly with RNA in vitro is Drosophila melanogaster end binding protein 1 (EB1), a master regulator of microtubule plus-end dynamics. Further analysis showed that EB1's RNA binding occurs on the same surface as that with which EB1 interacts with microtubules. RNA immunoprecipitation and colocalization experiments suggest that EB1 is a rather nonspecific, opportunistic RNA binder. Our data suggest that care should be taken when embarking on an RNA binding study involving these unconventional, novel RBPs, and we recommend initial and simple in vitro RNA binding experiments.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Associadas à Distrofina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Tiorredoxinas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Sítios de Ligação , Clonagem Molecular , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Associadas à Distrofina/química , Proteínas Associadas à Distrofina/genética , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Moleculares , Ovário/citologia , Ovário/metabolismo , Poli U/química , Poli U/genética , Poli U/metabolismo , Ligação Proteica , RNA/química , RNA/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tiorredoxinas/química , Tiorredoxinas/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido/química , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
20.
Dev Cell ; 56(14): 2016-2028.e4, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34022132

RESUMO

Microtubules are non-covalent polymers of αß-tubulin dimers. Posttranslational processing of the intrinsically disordered C-terminal α-tubulin tail produces detyrosinated and Δ2-tubulin. Although these are widely employed as proxies for stable cellular microtubules, their effect (and of the α-tail) on microtubule dynamics remains uncharacterized. Using recombinant, engineered human tubulins, we now find that neither detyrosinated nor Δ2-tubulin affect microtubule dynamics, while the α-tubulin tail is an inhibitor of microtubule growth. Consistent with the latter, molecular dynamics simulations show the α-tubulin tail transiently occluding the longitudinal microtubule polymerization interface. The marked differential in vivo stabilities of the modified microtubule subpopulations, therefore, must result exclusively from selective effector recruitment. We find that tyrosination quantitatively tunes CLIP-170 density at the growing plus end and that CLIP170 and EB1 synergize to selectively upregulate the dynamicity of tyrosinated microtubules. Modification-dependent recruitment of regulators thereby results in microtubule subpopulations with distinct dynamics, a tenet of the tubulin code hypothesis.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/química , Proteínas de Neoplasias/metabolismo , Polímeros/química , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/química , Tirosina/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/fisiologia , Proteínas de Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...