Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Water Res ; 226: 119235, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257159

RESUMO

Michigan's water-quality standards specify that E. coli concentrations at bathing beaches must not exceed 300 E. coli per 100 mL, as determined by the geometric mean of culture-based concentrations in three or more representative samples from a given beach on a given day. Culture-based analysis requires 18⁠-⁠24 h to complete, so results are not available on the day of sampling. This one-day delay is problematic because results cannot be used to prevent recreation at beaches that are unsafe on the sampling day, nor do they reliably indicate whether recreation should be prevented the next day, due to high between-day variability in E. coli concentrations demonstrated by previous studies. By contrast, qPCR-based E. coli concentrations can be obtained in 3-4 h, making same-day beach notification decisions possible. Michigan has proposed a qPCR threshold value (qTV) for E. coli of 1.863 log10 gene copies per reaction as a potential equivalent value to the state standard, based on statistical analysis of a set of state-wide training data from 2016 to 2018. The main purpose of the present study is to assess the validity of the proposed qTV by determining whether the implied qPCR-based beach notification decisions agree well with culture-based decisions on two sets of test data from 2016⁠-⁠2018 (6,564 samples) and 2019-2020 (3,205 samples), and whether performance of the proposed qTV is similar on the test and training data. The results show that performance of Michigan's proposed qTV on both sets of test data was consistently good (e.g., 95% agreement with culture-based beach notification decisions during 2019⁠-⁠2020) and was as good as or better than its performance on the training data set. The false-negative rate for the proposed qTV was 25-29%, meaning that beach notification decisions based on the qTV would be expected to permit recreation on the day of sampling in 25-29% of cases where the beach exceeds the state standard for FIB contamination. This false-negative rate is higher than one would hope to see but is well below the corresponding error rate for culture-based decisions, which permit recreation at beaches that exceed the state standard on the day of sampling in 100% of cases because of the one-day delay in obtaining results. The key advantage of qPCR-based analysis is that it permits a large percentage (71-75%) of unsafe beaches to be identified in time to prevent recreation on the day of sampling.


Assuntos
Escherichia coli , Água , Escherichia coli/genética , Microbiologia da Água , Michigan , Fezes , Monitoramento Ambiental/métodos , Praias
2.
J Microbiol Methods ; 184: 106186, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33766609

RESUMO

Fecal pollution remains a challenge for water quality managers at Great Lakes and inland recreational beaches. The fecal indicator of choice at these beaches is typically Escherichia coli (E. coli), determined by culture-based methods that require over 18 h to obtain results. Researchers at the United States Environmental Protection Agency (EPA) have developed a rapid E. coli qPCR methodology (EPA Draft Method C) that can provide same-day results for improving public health protection with demonstrated sensitivity, specificity, and data acceptance criteria. However, limited information is currently available to compare the occurrence of E. coli determined by cultivation and by EPA Draft Method C (Method C). This study provides a large-scale data collection effort to compare the occurrence of E. coli determined by these alternative methods at more than 100 Michigan recreational beach and other sites using the complete set of quantitative data pairings and selected subsets of the data and sites meeting various eligibility requirements. Simple linear regression analyses of composite (pooled) data indicated a correlation between results of the E. coli monitoring approaches for each of the multi-site datasets as evidenced by Pearson R-squared values ranging from 0.452 to 0.641. Theoretical Method C threshold values, expressed as mean log10 target gene copies per reaction, that corresponded to an established E. coli culture method water quality standard of 300 MPN or CFU /100 mL varied only from 1.817 to 1.908 for the different datasets using this model. Different modeling and derivation approaches that incorporated within and between-site variability in the estimates also gave Method C threshold values in this range but only when relatively well-correlated datasets were used to minimize the error. A hypothetical exercise to evaluate the frequency of water impairments based on theoretical qPCR thresholds corresponding to the E. coli water quality standard for culture methods suggested that the methods may provide the same beach notification outcomes over 90% of the time with Method C results differing from culture method results that indicated acceptable and unacceptable water quality at overall rates of 1.9% and 6.6%, respectively. Results from this study provide useful information about the relationships between E. coli determined by culture and qPCR methods across many diverse freshwater sites and should facilitate efforts to implement qPCR-based E. coli detection for rapid recreational water quality monitoring on a large scale in the State of Michigan.


Assuntos
Contagem de Colônia Microbiana/métodos , Monitoramento Ambiental/métodos , Escherichia coli/isolamento & purificação , Lagos/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Michigan , Estados Unidos , United States Environmental Protection Agency , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...