Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 362
Filtrar
1.
Glob Chang Biol ; 30(7): e17423, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39010751

RESUMO

The extreme dry and hot 2015/16 El Niño episode caused large losses in tropical live aboveground carbon (AGC) stocks. Followed by climatic conditions conducive to high vegetation productivity since 2016, tropical AGC are expected to recover from large losses during the El Niño episode; however, the recovery rate and its spatial distribution remain unknown. Here, we used low-frequency microwave satellite data to track AGC changes, and showed that tropical AGC stocks returned to pre-El Niño levels by the end of 2020, resulting in an AGC sink of 0.18 0.14 0.26 $$ {0.18}_{0.14}^{0.26} $$ Pg C year-1 during 2014-2020. This sink was dominated by strong AGC increases ( 0.61 0.49 0.84 $$ {0.61}_{0.49}^{0.84} $$ Pg C year-1) in non-forest woody vegetation during 2016-2020, compensating the forest AGC losses attributed to the El Niño event, forest loss, and degradation. Our findings highlight that non-forest woody vegetation is an increasingly important contributor to interannual to decadal variability in the global carbon cycle.


Assuntos
Carbono , El Niño Oscilação Sul , Clima Tropical , Carbono/metabolismo , Carbono/análise , Ciclo do Carbono , Florestas , Sequestro de Carbono , Mudança Climática
2.
Ecol Evol ; 14(7): e11708, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39011135

RESUMO

The oceanographic conditions of the Southern California Bight (SCB) dictate the distribution and abundance of prey resources and therefore the presence of mobile predators, such as goose-beaked whales (Ziphius cavirostris). Goose-beaked whales are deep-diving odontocetes that spend a majority of their time foraging at depth. Due to their cryptic behavior, little is known about how they respond to seasonal and interannual changes in their environment. This study utilizes passive acoustic data recorded from two sites within the SCB to explore the oceanographic conditions that goose-beaked whales appear to favor. Utilizing optimum multiparameter analysis, modeled temperature and salinity data are used to identify and quantify these source waters: Pacific Subarctic Upper Water (PSUW), Pacific Equatorial Water (PEW), and Eastern North Pacific Central Water (ENPCW). The interannual and seasonal variability in goose-beaked whale presence was related to the variability in El Niño Southern Oscillation events and the fraction and vertical distribution of the three source waters. Goose-beaked whale acoustic presence was highest during the winter and spring and decreased during the late summer and early fall. These seasonal increases occurred at times of increased fractions of PEW in the California Undercurrent and decreased fractions of ENPCW in surface waters. Interannual increases in goose-beaked whale presence occurred during El Niño events. These results establish a baseline understanding of the oceanographic characteristics that correlate with goose-beaked whale presence in the SCB. Furthering our knowledge of this elusive species is key to understanding how anthropogenic activities impact goose-beaked whales.

3.
Mar Environ Res ; 199: 106607, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38879902

RESUMO

The extent to which juvenile abundance can predict future populations of lethrinids at Ningaloo Reef was assessed using size frequency data collected over 13 consecutive years. Annual abundance of juvenile lethrinids (<5 cm TL) was highest in northern Ningaloo during La Niña years, when seawater is warmer and oceanic currents stronger. Juvenile lethrinid abundance explained 35% of the variance in 1-2 year-old Lethrinus nebulosus abundance the following year, a steeper relationship in the north suggesting greater survival of juveniles. Juvenile lethrinid abundance was also positively correlated to abundance of 1-2 year-old L. atkinsoni in the southern region of Ningaloo. Abundance of juvenile lethrinids were however poor predictors of L. nebulosus and L. atkinsoni older than 2 years of age. Post settlement processes likely weaken the link between juvenile supply and abundance of lethrinids >2 years old making it difficult to accurately quantify the overall size of future lethrinid populations.


Assuntos
Recifes de Corais , Animais , Peixes/fisiologia , Peixes/crescimento & desenvolvimento , Dinâmica Populacional , Monitoramento Ambiental , Densidade Demográfica , El Niño Oscilação Sul
4.
Mar Environ Res ; 199: 106604, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38908113

RESUMO

The edible chiton Chiton articulatus is a commercially important mollusk found in the rocky intertidal zones of the Mexican tropical Pacific. Despite the intense harvesting in Acapulco Bay, Mexico, knowledge of its growth patterns is limited, hindering the development of effective management strategies. This study investigated the growth dynamics of C. articulatus using a multi-model inference approach based on size structure data collected in four sampling periods covering four decades. Results revealed continuous recruitment throughout the year, contributing to population resilience. The species exhibited growth plasticity, highlighting its adaptive potential. We found complex temporal patterns influenced mainly by climatic events. The El Niño event sowed higher growth rates and lower asymptotic length, while La Niña events showed the opposite pattern. This research provides insights into the growth dynamics of C. articulatus, highlighting the need for holistic management strategies for this commercially important species in the face of environmental change.


Assuntos
Poliplacóforos , Dinâmica Populacional , Animais , México , Poliplacóforos/fisiologia , Poliplacóforos/crescimento & desenvolvimento
5.
Ecol Lett ; 27(5): e14443, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38803140

RESUMO

Recent proliferation of GPS technology has transformed animal movement research. Yet, time-series data from this recent technology rarely span beyond a decade, constraining longitudinal research. Long-term field sites hold valuable historic animal location records, including hand-drawn maps and semantic descriptions. Here, we introduce a generalised workflow for converting such records into reliable location data to estimate home ranges, using 30 years of sleep-site data from 11 white-faced capuchin (Cebus imitator) groups in Costa Rica. Our findings illustrate that historic sleep locations can reliably recover home range size and geometry. We showcase the opportunity our approach presents to resolve open questions that can only be addressed with very long-term data, examining how home ranges are affected by climate cycles and demographic change. We urge researchers to translate historical records into usable movement data before this knowledge is lost; it is essential to understanding how animals are responding to our changing world.


Assuntos
Cebus , Mudança Climática , Animais , Costa Rica , Cebus/fisiologia , Comportamento de Retorno ao Território Vital , Sistemas de Informação Geográfica , Dinâmica Populacional , Demografia
6.
Sci Total Environ ; 932: 172914, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697525

RESUMO

Recent research has provided crucial insights on regional heatwaves, including their causal mechanisms and changes under global warming. However, detailed research on global-scale spatially compound heatwaves (SCHs) (concurrent heatwaves over multiple regions) is lacking. Here, we find statistically significant teleconnections in heatwaves and show that the frequency of global-scale SCHs and their areal extent have increased significantly, which has led to 50 % increase in the population exposed to extreme heat stresses in the two most recent decades. Crop yields were reduced in most of the years of anomalous heatwaves, which often happen during El-Niños. The internal climate variability appears to significantly influence the inter-annual variability of regional and global heatwave extents. Insights gained here are critical in better quantifying heat stress risks inflicted on socioecological systems.


Assuntos
Calor Extremo , Aquecimento Global , Mudança Climática , Produção Agrícola/métodos , Humanos , Temperatura Alta , Produtos Agrícolas/crescimento & desenvolvimento
7.
Mar Pollut Bull ; 203: 116487, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744046

RESUMO

Mangroves forests may be important sinks of carbon in coastal areas but upon their death, these forests may become net sources of carbon dioxide (CO2) and methane (CH4) to the atmosphere. Here we assessed the spatial and temporal variability in soil CO2 and CH4 fluxes from dead mangrove forests and paired intact sites in SE-Brazil. Our findings demonstrated that during warmer and drier conditions, CO2 soil flux was 183 % higher in live mangrove forests when compared to the dead mangrove forests. Soil CH4 emissions in live forests were > 1.4-fold higher than the global mangrove average. During the wet season, soil GHG emissions dropped significantly at all sites. During warmer conditions, mangroves were net sources of GHG, with a potential warming effect (GWP100) of 32.9 ± 10.2 (±SE) Mg CO2e ha-1 y-1. Overall, we found that dead mangroves did not release great amounts of GHG after three years of forest loss.


Assuntos
Dióxido de Carbono , Monitoramento Ambiental , Gases de Efeito Estufa , Metano , Solo , Áreas Alagadas , Brasil , Gases de Efeito Estufa/análise , Solo/química , Dióxido de Carbono/análise , Metano/análise , Florestas
8.
Sci Total Environ ; 933: 173071, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38734085

RESUMO

The fluvial transport of dissolved inorganic carbon (DIC) is an important component of the global carbon cycle. Herein, we assessed the dynamics of DIC and the C stable isotopic composition (δ13CDIC) in a watershed with diversified land use in São Paulo State (Brazil), more specifically in the Sorocaba River basin (SRB) and considered the temporal and spatial scales. For this purpose, twelve fluvial samples at each sampling point (e.g., S1, S2, S3, S4 and S5) were collected in the SRB, from June 2009 to May 2010, which represented one complete hydrological cycle that included the extremes of the rainfall and discharge regimes. In addition, the δ13CDIC values were also characterized in the wet and dry season at all sampling points to verify their seasonal variability. The results reflected the seasonal variation in discharges, water temperatures, and electrical conductivities. Most of the DIC was transported in the wet season at all sampling points, where the less negative δ13CDIC values were characterized. The natural sources of DIC are associated with atmospheric/soil CO2 consumption. The anthropogenic impacts on both [DIC] and δ13CDIC are linked to untreated urban sewage that is discharged directly into the Sorocaba River, as well as to aquatic photosynthesis in the Itupararanga Reservoir. From 1970 to 2020, the modeling proposed in this study indicated that the annual flux of DIC (Friver) varied from 9.0 to 78.7 t km-2 a-1, confirming that the El Niño Southern Oscillation (ENSO) controlled Friver in the SRB, with higher and lower Friver values occurring during strong El Niño (EN) and La Niña (LN) years. The average Friver value was 20 t km-2 a-1, which is higher than those obtained in natural several temperate and tropical watersheds due to the influences of urban areas on [DIC] in the SRB.

9.
Sci Rep ; 14(1): 8122, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38582935

RESUMO

Extreme El Niño events have outsized impacts and strongly contribute to the El Niño Southern Oscillation (ENSO) warm/cold phase asymmetries. There is currently no consensus on the respective importance of oceanic and atmospheric nonlinearities for those asymmetries. Here, we use atmospheric and oceanic general circulation models that reproduce ENSO asymmetries well to quantify the atmospheric nonlinearities contribution. The linear and nonlinear components of the wind stress response to Sea Surface Temperature (SST) anomalies are isolated using ensemble atmospheric experiments, and used to force oceanic experiments. The wind stress-SST nonlinearity is dominated by the deep atmospheric convective response to SST. This wind-stress nonlinearity contributes to ~ 40% of the peak amplitude of extreme El Niño events and ~ 55% of the prolonged eastern Pacific warming they generate until the following summer. This large contribution arises because nonlinearities consistently drive equatorial westerly anomalies, while the larger linear component is made less efficient by easterly anomalies in the western Pacific during fall and winter. Overall, wind-stress nonlinearities fully account for the eastern Pacific positive ENSO skewness. Our findings underscore the pivotal role of atmospheric nonlinearities in shaping extreme El Niño events and, more generally, ENSO asymmetry.

10.
Glob Chang Biol ; 30(3): e17240, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38511480

RESUMO

Marine protected areas (MPAs) are important conservation tools that confer ecosystem benefits by removing fishing within their borders to allow stocks to rebuild. Fishing mortality outside a traditionally fixed MPA can exert selective pressure for low movement alleles, resulting in enhanced protection. While evolving to move less may be useful for conservation presently, it could be detrimental in the face of climate change for species that need to move to track their thermal optimum. Here, we build a spatially explicit simulation model to assess the impact of movement evolution in and around static MPAs resulting from both fishing mortality and temperature-dependent natural mortality on conservation benefits across five climate scenarios: (i) linear mean temperature shift, (ii) El Niño/La Niña conditions, (iii) heat waves, (iv) heatwaves with a mean temperature shift, and (v) no climate change. While movement evolution allows populations within MPAs to survive longer, we find that over time, climate change degrades the benefits by selecting for higher movement genotypes. Resulting population declines within MPAs are faster than expected based on climate mortality alone, even within the largest MPAs. Our findings suggest that while static MPAs may conserve species for a time, other strategies, such as dynamic MPA networks or assisted migration, may also be required to effectively incorporate climate change into conservation planning.


Assuntos
Mudança Climática , Ecossistema , Animais , Conservação dos Recursos Naturais/métodos , Temperatura , Peixes , Pesqueiros
11.
Viruses ; 16(3)2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543836

RESUMO

Enterovirus infection and enterovirus infection with severe complications (EVSC) are critical issues in several aspects. However, there is no suitable predictive tool for these infections. A climate factor complex (CFC) containing several climate factors could provide more effective predictions. The ping-year factor (PYF) and El Niño-Southern Oscillation (ENSO) are possible CFCs. This study aimed to determine the relationship between these two CFCs and the incidence of enterovirus infection. Children aged 15 years and younger with enterovirus infection and/or EVSC were enrolled between 2007 and 2022. Each year was categorized into a ping-year or non-ping-year according to the PYF. Poisson regression was used to evaluate the associations between the PYF, ENSO, and the incidence of enterovirus infection. Compared to the ping-year group, the incidence rate of enterovirus infection, the incidence rate of EVSC, and the ratio of EVSC in the non-ping-year group were 1.24, 3.38, and 2.73 times higher, respectively (p < 0.001). For every one-unit increase in La Niña, the incidence rate of enterovirus infection decreased to 0.96 times (p < 0.001). Our study indicated that CFCs could be potential predictors for enterovirus infection, and the PYF was more suitable than ENSO. Further research is needed to improve the predictive model.


Assuntos
El Niño Oscilação Sul , Infecções por Enterovirus , Criança , Humanos , Taiwan/epidemiologia , Mudança Climática , Incidência , Infecções por Enterovirus/epidemiologia
12.
Mar Pollut Bull ; 200: 116097, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38310723

RESUMO

Frequent algal blooms in the nearshore area of the East China Sea (ECS) pose a serious threat to both the marine environment and human health. Climate and environmental changes play an important role in the occurrence of diatoms and dinoflagellates blooms. Using the MODIS-Aqua 1-km satellite observations, the outbreaks of dinoflagellate and diatom blooms in the ECS coast in summer during 2003-2022 were mapped. Our results found that although the bloom frequency of dinoflagellate was consistently higher than diatoms, its bloom intensity showed a slightly decline trend in recent decades. The driving factors analysis showed that river runoff and sediments discharge played different effect on the formation of diatom and dinoflagellate blooms. Besides, our results compared the effect of El Niño and La Niña on bloom occurrences. This study was supposed to provide detailed insights into algal blooms, with important implications for relevant meteorological and climate changes in coastal regions.


Assuntos
Diatomáceas , Dinoflagellida , Humanos , Eutrofização , China , Estações do Ano , Proliferação Nociva de Algas
13.
Acta Trop ; 252: 107131, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38281614

RESUMO

Visceral Leishmaniasis (VL) is the most severe of the three forms of Leishmaniasis. In the Americas, Brazil and Colombia present more than 90 % of the cases in the region. Our aim in this research was to estimate the association of the incidence rate of Visceral Leishmaniasis with the following environmental variables: the percentage of area suitable for the vector Lutzomyia longipalpis, the episodes of La Niña and El Niño, the Brazilian and Colombian biomes. Epidemiological data were obtained from the Brazilian Notifiable Diseases Information System and the Colombian National Public Health Surveillance System. Environmental data were downloaded from the NASA Giovanni web app, the Modis Sensor database, and the meteorological agencies of Australia, Japan, and the United States of America. Records of the presence of Lu. longipalpis were obtained from public databases and previous studies. As a result, the incidence per 10,000 inhabitants with LEBS for each El Niño-Southern Oscillation (ENSO) episode showed the largest values during El Niño 2015-2016, mainly in Brazil's Northeast and Central regions and the Northeast region of Colombia. Compared with the Neutral 2012-2014 episode, the episodes of El Niño 2015-2016 and La Niña 2010-2011 showed an average increase in the monthly incidence rate of VL, and the average increase was higher during El Niño 2015-2016 (aIRR = 2.304 vs.1.453) We found a positive association between the incidence rate of VL and the El Niño 2015-2016 episode and an impressive% of area suitable for the vector Lu. longipalpis in the Amazon region.An increase of 1 % in the area suitable for the vector Lu. longipalpis leads to an average rise of 0.8 % in the monthly incidence rate of VL. Our study shows a possible association between VL incidence and ENSO, with the most considerable incidence rates observed during El Niño 2015-2016 in Brazil's Northeast and Central regions and the Northeast region of Colombia. The present study is very important to better understand the Visceral Leishmaniasis transmission dynamics.


Assuntos
Leishmaniose Visceral , Humanos , Incidência , Brasil/epidemiologia , Colômbia/epidemiologia , Leishmaniose Visceral/epidemiologia , El Niño Oscilação Sul
14.
Glob Chang Biol ; 30(1): e17000, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37905471

RESUMO

Montane cloud forests (MCFs) are ecosystems frequently immersed in fog and are vital for the terrestrial hydrological cycle and biodiversity hotspots. However, the potential impacts of climate change, particularly intensified droughts and typhoons, on the persistence of ecosystems remain unclear. Our study conducted cross-scale assessments using 6-year (2016-2021) ground litterfall and 21-year (2001-2021) satellite greenness data (the Enhanced Vegetation Index [EVI] and the EVI anomaly change [ΔEVI% ]), gross primary productivity anomaly change (ΔGPP% ), and meteorological variables (the standardized precipitation index [SPI] and wind speed). We found a positive correlation between summer EVI and ΔGPP% with the SPI-3 (3-month time scale), while winter litterfall showed a negative correlation. Maximum typhoon daily wind speed was negatively correlated with summer and the monthly ΔEVI% and ΔGPP% . These findings suggest vegetation damage and productivity loss were related to drought and typhoon intensities. Furthermore, our analysis highlighted that chronic seasonal droughts had more pronounced impacts on MCFs than severe typhoons, implying that high precipitation and frequent fog immersion do not necessarily mitigate the ramifications of water deficit on MCFs but might render MCFs more sensitive and vulnerable to drought. A significant negative correlation between the summer and winter ΔEVI% and ΔGPP% of the same year, suggesting disturbance severity during summer may facilitate vegetation regrowth and carbon accumulation in the subsequent winter. This finding may be attributed to the ecological resilience of MCFs, which enables them to recover from the previous summer. In the long-term, our results indicated an increase in vegetation resilience over two decades in MCFs, likely driven by rising temperatures and elevated carbon dioxide levels. However, the enhancement of resilience might be overshadowed by the potential intensified droughts and typhoons in the future, potentially causing severe damage and insufficient recovery times for MCFs, thus raising concerns about uncertainties regarding their sustained resilience.


Assuntos
Tempestades Ciclônicas , Resiliência Psicológica , Ecossistema , Secas , Estações do Ano , Florestas , Mudança Climática
15.
Environ Monit Assess ; 195(12): 1461, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37953340

RESUMO

Initial reports signify some specific isolated locations in different latitudes, revealing a paradoxical increase in both heavy and very heavy rainfall events and also an increment in total, i.e., in both rainfall and temperature, over ecologically sensitive areas along the Western Ghats (WG). This paper presents a coherent study of the full-scale of daily rainfall and temperature over 27 well-spaced stations in the study area to determine its extent and investigate whether or not this contradictory behaviour is real. Also, an attempt has been made to assess the differential behaviour of rainfall, temperature, and heavy rainfall events in association with land use and land cover change (LULC). The analysis revealed that rainfall and temperature over the study area are increasing, whereas heavy rainfall events have increased during 1981-2020 with strong peaks after 2000 around 18-19°N (Mumbai metropolitan region), 14-16°N (mining and quarrying regions in Goa), and 9-12°N (a narrow strip of land spanning across the coastal towns of Karnataka and Kerala) latitudes. The majority of the rainfall excess years coincided with El Nino years, indicating that El Nino does not affect rainfall negatively. However, rainfall over the WG is influenced by local relief and cascading topography. The spatial pattern of average annual rainfall shows a decreasing trend from south to north because the elevation and span of rainfall occurrence are higher in the southern part of WG. The findings of the current research will help in building a strategy to address trends and patterns of climatic variables in association with LULC.


Assuntos
El Niño Oscilação Sul , Monitoramento Ambiental , Temperatura , Índia
16.
Proc Biol Sci ; 290(2007): 20231732, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37727090

RESUMO

Identifying the functional traits that enable recovery after extreme events is necessary for assessing forest persistence and functioning. However, the variability of traits mediating responses to disturbances presents a significant limitation, as these relationships may be contingent on the type of disturbance and change over time. This study investigates the effects of traits on tree growth-for short and longer terms-in response to two vastly different extreme climatic events (droughts and hurricanes) in a Puerto Rican forest. I found that trees display a dynamic functional response to extreme climatic events. Leaf traits associated with efficient photosynthesis mediated faster tree growth after hurricanes, while trees with low wood density and high water use efficiency displayed faster growth after drought. In the longer term, over both drought and hurricanes, tree size was the only significant predictor of growth, with faster growth for smaller trees. However, despite finding significant trait-growth relationships, the predictive power of traits was overall low. As the frequency of extreme events increases due to climate change, understanding the dynamic relationships between traits and tree growth is necessary for identifying strategies for recovery.


Assuntos
Tempestades Ciclônicas , Árvores , Secas , Florestas
17.
New Phytol ; 240(6): 2513-2529, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37604200

RESUMO

Understanding the long-term impact of projected climate change on tropical rainforests is critical given their central role in the Earth's system. Palaeoecological records can provide a valuable perspective on this problem. Here, we examine the effects of past climatic changes on the dominant forest type of Southeast Asia - lowland dipterocarp forest. We use a range of proxies extracted from a 1400-yr-old lacustrine sedimentary sequence from north-eastern Philippines to determine long-term vegetation responses of lowland dipterocarp forest, including its dominant tree group dipterocarps, to changes in precipitation, fire and nutrient availability over time. Our results show a positive relationship between dipterocarp pollen accumulation rates (PARs) and leaf wax hydrogen isotope values, which suggests a negative effect of drier conditions on dipterocarp abundance. Furthermore, we find a positive relationship between dipterocarp PARs and the proxy for phosphorus availability, which suggests phosphorus controls the productivity of these keystone trees on longer time scales. Other pollen taxa show widely varying relationships with the abiotic factors, demonstrating a high diversity of plant functional responses. Our findings provide novel insights into lowland dipterocarp forest responses to changing climatic conditions in the past and highlight potential impacts of future climate change on this globally important ecosystem.


Assuntos
Mudança Climática , Ecossistema , Clima Tropical , Florestas , Árvores/fisiologia , Fósforo
18.
Sci Total Environ ; 902: 166176, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562615

RESUMO

India is primarily concerned with comprehending regional carbon source-sink response in the context of changes in atmospheric CO2 concentrations or anthropogenic emissions. Recent advancements in high-resolution satellite's fine-scale XCO2 measurements provide an opportunity to understand unprecedented details of source-sink activity on a regional scale. In this study, we investigated the long-term variations of XCO2 concentration and growth rates as well as its covarying relationship with ENSO and regional climate parameters (temperature, precipitation, soil moisture, and NDVI) over India from 2010 to 2021 using GOSAT and OCO-2 retrievals. The results show since the launch of OCO-2 in 2014, the number of monthly high-quality XCO2 soundings over India has grown nearly 100-fold compared to GOSAT, launched in 2009. Also, the discrepancy in XCO2 increase of 2.54(2.43) ppm/yr was observed in GOSAT (OCO-2) retrieval during an overlapping measurement period (2015-2021). Additionally, wavelet analysis indicated that the OCO-2 retrieval is able to capture a better frequency of local-scale XCO2 variability compared to GOSAT, owing to its high-resolution cloud-free XCO2 soundings, providing more well-defined regional-scale source-sink features. Furthermore, dominant spatial pattern of XCO2 variability observed over south and southeast of India in both satellites, with XCO2 semi-annual and annual variability more distinctly present in OCO-2 compared to GOSAT. A cross-correlation analysis suggested GOSAT XCO2 growth rate positively correlates with ENSO in different homogeneous monsoon regions of India, with ENSO leading the GOSAT XCO2 growth rate in all homogeneous regions by 3-9 months. The South Peninsular region sensitive to ENSO changes, especially during 2015-2016 ENSO event, where a decrease in CO2 uptake was observed is closely linked with precipitation, soil moisture, and temperature anomalies. However, regional climate parameters show a low correlation with XCO2 growth since CO2 is a long-lived well-mixed gas primarily having an imprint of large-scale transport in column CO2.

19.
Folia Parasitol (Praha) ; 702023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37265202

RESUMO

Strange oceanographic events such as El Niño and La Niña may have indirect effects on the local transmission processes of intestinal parasites due to the reduction or increase in populations of potential intermediate or definitive hosts. A total of 713 individuals of Lutjanus inermis (Peters) were collected over an 8-year period (October 2015 to July 2022) from Acapulco Bay, Mexico. Parasite communities in L. inermis were quantified and analysed to determine if they experienced interannual variations in species composition and structure as a result of local biotic and abiotic factors influenced by oceanographic events, such as El Niño-Southern Oscillation (ENSO), or La Niña, the cool phase of the ENSO climate pattern. Twenty-six taxa of metazoan parasites were recovered and identified: two Monogenea, eight Digenea, two Acanthocephala, four Nematoda, one Cestoda, seven Copepoda, and two Isopoda. Species richness at the component community level (8 to 17 species) was similar to reported richness in other species of Lutjanus Bloch. Parasite communities of L. inermis exhibited high inter-annual variation in the abundance of component species of parasite. However, the species richness and diversity were fairly stable over time. Climatic episodes of El Niño and La Niña probably generated notable changes in the structure of local food webs, thus indirectly influencing the transmission rates of intestinal parasite species. Changes in species composition and community structure of parasites possibly were due to variations in feeding behaviour during the events and differences in the host body size.


Assuntos
Acantocéfalos , Nematoides , Parasitos , Perciformes , Humanos , Animais , Perciformes/parasitologia , El Niño Oscilação Sul
20.
Mar Environ Res ; 188: 106037, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37263009

RESUMO

Understanding what determines spatio-temporal changes in echinoderm assemblages from an integrative perspective that considers biodiversity, species evenness, and species' niches could permit superior community-scale characterizations of habitat resilience to disturbance. Such an approach was taken herein by tracking a Central Mexican Pacific echinoderm assemblage between 2012 and 2021, and higher richness, diversity, evenness, and functional entity counts were associated with more heterogeneous benthic assemblages. Echinoderm taxonomic composition was influenced by ENSO events, with higher functional diversity found during La Niña events. Conservation strategies should focus on species with unique functional traits to maintain the balance of coral community functionality.


Assuntos
Antozoários , Recifes de Corais , Animais , Ecossistema , Biodiversidade , Equinodermos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...