Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2401188, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39400970

RESUMO

The dual-functional device combining electrochromic properties and energy storage has gained numerous attentions in the field of energy-saving smart electronics. However, achieving simultaneous optimization of coloration efficiency and energy storage capacity of materials poses a significant challenge. This study presents a novel approach by incorporating methyl orange into Prussian blue channels (PB-MO films) to adjust the internal electronic structure of Prussian blue. This modification allows the active layer to simultaneously improve the electrochromic and energy storage performance. The introduction of methyl orange not only alters the ratio of Fe3+/Fe2+ within the framework through the coordination reaction of Fe3+ with methyl orange, but also improves the reaction kinetics after intercalating organic dye molecules, including charge transfer resistance, diffusion capability of ions and capacitive contribution. The PB-MO films demonstrate remarkable properties: high optical contrast (81.4% at 670 nm), excellent coloration efficiency (265 cm2 C-1), and significant specific capacity (84 mAh m-2 at 0.05 A m-2), outperforming pure PB films. The PB-MO films are ideally suited for applications in displays and intelligent energy storage fields, boasting both high coloration efficiency and substantial energy storage capacity, thus advancing promote the development of dual-functional electrochromic devices.

2.
Biosensors (Basel) ; 14(9)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39329818

RESUMO

Current diagnostic and prognostic tests for prostate cancer require specialised laboratories and have low specificity for prostate cancer detection. As such, recent advancements in electrochemical devices for point of care (PoC) prostate cancer detection have seen significant interest. Liquid-biopsy detection of relevant circulating and exosomal nucleic acid markers presents the potential for minimally invasive testing. In combination, electrochemical devices and circulating DNA and RNA detection present an innovative approach for novel prostate cancer diagnostics, potentially directly within the clinic. Recent research in electrochemical impedance spectroscopy, voltammetry, chronoamperometry and potentiometric sensing using field-effect transistors will be discussed. Evaluation of the PoC relevance of these techniques and their fulfilment of the WHO's REASSURED criteria for medical diagnostics is described. Further areas for exploration within electrochemical PoC testing and progression to clinical implementation for prostate cancer are assessed.


Assuntos
Técnicas Eletroquímicas , Sistemas Automatizados de Assistência Junto ao Leito , Neoplasias da Próstata , Humanos , Neoplasias da Próstata/diagnóstico , Masculino , Biópsia Líquida , Prognóstico , Técnicas Biossensoriais , Biomarcadores Tumorais , Ácidos Nucleicos
3.
Talanta ; 278: 126467, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38968657

RESUMO

The combination of CRISPR technology and electrochemical sensors has sparked a paradigm shift in the landscape of point-of-care (POC) diagnostics. This review explores the dynamic convergence between CRISPR and electrochemical sensing, elucidating their roles in rapid and precise biosensing platforms. CRISPR, renowned for its remarkable precision in genome editing and programmability capability, has found a novel application in conjunction with electrochemical sensors, promising highly sensitive and specific detection of nucleic acids and biomarkers associated with diverse diseases. This article navigates through fundamental principles, research developments, and applications of CRISPR-based electrochemical sensors, highlighting their potential to revolutionize healthcare accessibility and patient outcomes. In addition, some key points and challenges regarding applying CRISPR-powered electrochemical sensors in real POC settings are presented. By discussing recent advancements and challenges in this interdisciplinary field, this review evaluates the potential of these innovative sensors as an alternative for decentralized, rapid, and accurate POC testing, offering some insights into their applications across clinical scenarios and their impact on the future of diagnostics.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Técnicas Biossensoriais/métodos , Humanos , Técnicas Eletroquímicas/métodos , Sistemas CRISPR-Cas/genética , Testes Imediatos , Sistemas Automatizados de Assistência Junto ao Leito
4.
Sci Total Environ ; 935: 173360, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777059

RESUMO

In the evolving field of food and agriculture, pesticide utilization is inevitable for food production and poses an increasing threat to the ecosystem and human health. This review systematically investigates and provides a comprehensive overview of recent developments in smart electrochemical devices for detecting pesticides in agricultural food and runoff contaminants. The focus encompasses recent progress in lab-scale and portable electrochemical sensors, highlighting their significance in agricultural pesticide monitoring. This review compares these sensors comprehensively and provides a scientific guide for future sensor development for infield agricultural pesticide monitoring and food safety. Smart devices address challenges related to power consumption, low cost, wearability, and portability, contributing to the advancement of agricultural sustainability. By elucidating the intricate details of these smart devices, this review offers a comprehensive discussion and roadmap for future research aimed at cost-effective, flexible, and smart handy devices, including novel electrocatalysts, to foster the development of next-generation agricultural sensor technology, opportunity and future direction for food security.


Assuntos
Agricultura , Técnicas Eletroquímicas , Monitoramento Ambiental , Praguicidas , Praguicidas/análise , Monitoramento Ambiental/métodos , Monitoramento Ambiental/instrumentação , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Contaminação de Alimentos/análise , Poluentes Químicos da Água/análise
5.
Nanomaterials (Basel) ; 14(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38470729

RESUMO

Metal-organic frameworks and supramolecular metal-organic frameworks (SMOFs) exhibit great potential for a broad range of applications taking advantage of the high surface area and pore sizes and tunable chemistry. In particular, metalloporphyrin-based MOFs and SMOFs are becoming of great importance in many fields due to the bioessential functions of these macrocycles that are being mimicked. On the other hand, during the last years, proton-conducting materials have aroused much interest, and those presenting high conductivity values are potential candidates to play a key role in some solid-state electrochemical devices such as batteries and fuel cells. In this way, using metalloporphyrins as building units we have obtained a new crystalline material with formula [H(bipy)]2[(MnTPPS)(H2O)2]·2bipy·14H2O, where bipy is 4,4'-bipyidine and TPPS4- is the meso-tetra(4-sulfonatephenyl) porphyrin. The crystal structure shows a zig-zag water chain along the [100] direction located between the sulfonate groups of the porphyrin. Taking into account those structural features, the compound was tested for proton conduction by complex electrochemical impedance spectroscopy (EIS). The as-obtained conductivity is 1 × 10-2 S·cm-1 at 40 °C and 98% relative humidity, which is a remarkably high value.

6.
Crit Rev Anal Chem ; : 1-17, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38234139

RESUMO

Per- and polyfluoroalkyl substances (PFASs) have emerged as a prominent environmental pollutant in recent years, primarily due to their tendency to accumulate and magnify in both the environment and living organisms. The entry of PFASs into the environment can have detrimental effects on human health. Hence, it is crucial to actively monitor and detect the presence of PFASs. The current standard detection method of PFAS is the combination of chromatography and mass spectrometry. However, this requires expensive instruments, extra sample pretreatment steps, complicated operation and long analysis time. As a result, new methods that do not rely on chromatography and mass spectrometry have been developed and applied. These alternative methods mainly include optical and electrochemical sensor methods, which offer great potential in terms of real-time field detection, instrument miniaturization, shorter analysis time, and reduced detection cost. This review provides a summary of recent advancements in PFAS detection sensors. We categorize and explain the principles and mechanisms of these sensors, and compare their limits of detection and sensitivity. Finally, we discuss the future challenges and improvements needed for PFAS sensors, such as field application, commercialization, and other related issues.

7.
Proc Natl Acad Sci U S A ; 120(35): e2306272120, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603750

RESUMO

Semiconducting conjugated polymers bearing glycol side chains can simultaneously transport both electronic and ionic charges with high charge mobilities, making them ideal electrode materials for a range of bioelectronic devices. However, heavily glycolated conjugated polymer films have been observed to swell irreversibly when subjected to an electrochemical bias in an aqueous electrolyte. The excessive swelling can lead to the degradation of their microstructure, and subsequently reduced device performance. An effective strategy to control polymer film swelling is to copolymerize glycolated repeat units with a fraction of monomers bearing alkyl side chains, although the microscopic mechanism that constrains swelling is unknown. Here we investigate, experimentally and computationally, a series of archetypal mixed transporting copolymers with varying ratios of glycolated and alkylated repeat units. Experimentally we observe that exchanging 10% of the glycol side chains for alkyl leads to significantly reduced film swelling and an increase in electrochemical stability. Through molecular dynamics simulation of the amorphous phase of the materials, we observe the formation of polymer networks mediated by alkyl side-chain interactions. When in the presence of water, the network becomes increasingly connected, counteracting the volumetric expansion of the polymer film.

8.
Adv Mater ; 35(44): e2212000, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37452635

RESUMO

Extracellular vesicles (EVs) are secreted by all living cells and are found in body fluids. They exert numerous physiological and pathological functions and serve as cargo shuttles. Due to their safety and inherent bioactivity, they have emerged as versatile therapeutic agents, biomarkers, and potential drug carriers. Despite the growing interest in EVs, current progress in this field is, in part, limited by relatively inefficient isolation techniques. Conventional methods are indeed slow, laborious, require specialized laboratory equipment, and may result in low yield and purity. This work describes an electrochemically controlled "all-in-one" device enabling capturing, loading, and releasing of EVs. The device is composed of a fluidic channel confined within antibody-coated microstructured electrodes. It rapidly isolates EVs with a high level of purity from various biofluids. As a proof of principle, the device is applied to isolate EVs from skin wounds of healthy and diabetic mice. Strikingly, it is found that EVs from healing wounds of diabetic mice are enriched in mitochondrial proteins compared to those of healthy mice. Additionally, the device improves the loading protocol of EVs with polyplexes, and may therefore find applications in nucleic acid delivery. Overall, the electrochemical device can greatly facilitate the development of EVs-based technologies.


Assuntos
Diabetes Mellitus Experimental , Vesículas Extracelulares , Animais , Camundongos , Diabetes Mellitus Experimental/metabolismo , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo , Comunicação Celular , Portadores de Fármacos/metabolismo
9.
Adv Mater ; 35(44): e2300383, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36906920

RESUMO

Metal halide hybrid perovskite solar cells (PSCs) have received considerable attention over the past decade owing to their potential for low-cost, solution-processable, earth-abundant, and high-performance superiority, increasing power conversion efficiencies of up to 25.7%. Solar energy conversion into electricity is highly efficient and sustainable, but direct utilization, storage, and poor energy diversity are difficult to achieve, resulting in a potential waste of resources. Considering its convenience and feasibility, converting solar energy into chemical fuels is regarded as a promising pathway for boosting energy diversity and expanding its utilization. In addition, the energy conversion-storage integrated system can efficiently sequentially capture, convert, and store energy in electrochemical energy storage devices. However, a comprehensive overview focusing on PSC-self-driven integrated devices with a discussion of their development and limitations remains lacking. Here, focus is on the development of representative configurations of emerging PSC-based photo-electrochemical devices including self-charging power packs, unassisted solar water splitting/CO2 reduction. The advanced progresses in this field, including configuration design, key parameters, working principles, integration strategies, electrode materials, and their performance evaluations are also summarized. Finally, scientific challenges and future perspectives for ongoing research in this field are presented.

10.
Anal Bioanal Chem ; 415(18): 3799-3816, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36645457

RESUMO

Since its discovery in 2007, polydopamine nanofilms have been widely used in many areas for surface functionalization. The simple and low-cost preparation method of the nanofilms with tunable thickness can incorporate amine and oxygen-rich chemical groups in virtually any interface. The remarkable advantages of this route have been successfully used in the field of electrochemical sensors. The self-adhesive properties of polydopamine are used to attach nanomaterials onto the electrode's surface and add chemical groups that can be explored to immobilize recognizing species for the development of biosensors. Thus, the combination of 2D materials, nanoparticles, and other materials with polydopamine has been successfully demonstrated to improve the selectivity and sensitivity of electrochemical sensors. In this review, we highlight some interesting properties of polydopamine and some applications where polydopamine plays an important role in the field of electrochemical sensors.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Técnicas Eletroquímicas , Nanoestruturas/química , Polímeros/química , Indóis
11.
Materials (Basel) ; 15(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36556665

RESUMO

Prussian Blue (PB) thin films were prepared by DC chronoamperometry (CHA), symmetric pulse, and non-symmetric pulse electrodeposition techniques. The formation of PB was confirmed by infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX) and UV-Vis transmission measurements. X-ray diffraction (XRD) shows the stabilization of the insoluble form of PB. From scanning electron microscopy (SEM) studies, an increase in porosity is obtained for the shorter pulse widths, which tends to improve the total charge exchange and electrochemical stability of the films. While the film prepared by CHA suffered a degradation of 82% after 260 cycles, the degradation reduced to 24% and 34% for the samples prepared by the symmetric and non-symmetric pulse methods, respectively. Additionally, in the non-symmetric pulse film, the improvement in the charge exchange reached ~522% after 260 cycles. According to this study, the deposition time distribution affects the physical/chemical properties of PB films. These results then render pulse electrodeposition methods especially suitable to produce high-quality thin films for electrochemical devices, based on PB.

12.
Anal Chim Acta ; 1232: 340442, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257733

RESUMO

In the present work, we report an innovative approach for immunosensors construction. The experimental strategy is based on the anchoring of biological material at screen-printed carbon electrode (SPE) modified with electrodeposited Graphene Quantum Dots (GQD) and polyhydroxybutyric acid (PHB). It was used as functional substract basis for the recognition site receptor-binding domain (RBD) from coronavirus spike protein (SARS-CoV-2), for the detection of Anti-S antibodies (AbS). SEM images and EDS spectra suggest an interaction of the protein with GQD-PHB sites at the electrode surface. Differential pulse voltametric (DPV) measurements were performed before and after incubation, in presence of the target, shown a decrease in voltametric signal of an electrochemical probe ([Fe(CN)6]3/4-). Using the optimal experimental conditions, analytical curves were performed in PBS and human serum spiked with AbS showing a slight matrix effect and a relationship between voltametric signal and AbS concentration in the range of 100 ng mL-1 and 10 µg mL-1. The selectivity of the proposed sensor was tested against yellow fever antibodies (YF) and the selective layer on the electrode surface did not interact with these unspecific antibodies. Eight samples of blood serum were analyzed and 87.5% of these total investigated provided adequate results. In addition, the present approach showed better results against traditional EDC/NHS reaction with enhancements in time and the possibility to develop an immunosensor in a single drop, since the proteins can be anchored prior to the electrode modification step.


Assuntos
Técnicas Biossensoriais , COVID-19 , Grafite , Pontos Quânticos , Humanos , Grafite/química , Pontos Quânticos/química , SARS-CoV-2 , Técnicas Eletroquímicas/métodos , Glicoproteína da Espícula de Coronavírus , Limite de Detecção , Imunoensaio , Eletrodos , Carbono/química , Anticorpos
13.
3 Biotech ; 12(9): 231, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35996672

RESUMO

Electrochemical biosensors and biofuel cells are finding an ever-increasing practical application due to several advantages. Biosensors are miniature measuring devices, which can be used for on-the-spot analyses, with small assay times and sample volumes. Biofuel cells have dual benefits of environmental cleanup and electric energy generation. Application of nanomaterials in biosensor and biofuel-cell devices increases their functioning efficiency and expands spheres of use. This review discusses the potential of nanomaterials in improving the basic parameters of bioelectrochemical systems, including the sensitivity increase, detection lower-limit decrease, detection-range change, lifetime increase, substrate-specificity control. In most cases, the consideration of the role of nanomaterials links a certain type of nanomaterial with its effect on the bioelectrochemical device upon the whole. The review aims at assessing the effects of nanomaterials on particular analytical parameters of a biosensor/biofuel-cell bioelectrochemical device.

14.
Biosensors (Basel) ; 12(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35884276

RESUMO

The development of precise and efficient diagnostic tools enables early treatment and proper isolation of infected individuals, hence limiting the spread of coronavirus disease 2019 (COVID-19). The standard diagnostic tests used by healthcare workers to diagnose severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection have some limitations, including longer detection time, the need for qualified individuals, and the use of sophisticated bench-top equipment, which limit their use for rapid SARS-CoV-2 assessment. Advances in sensor technology have renewed the interest in electrochemical biosensors miniaturization, which provide improved diagnostic qualities such as rapid response, simplicity of operation, portability, and readiness for on-site screening of infection. This review gives a condensed overview of the current electrochemical sensing platform strategies for SARS-CoV-2 detection in clinical samples. The fundamentals of fabricating electrochemical biosensors, such as the chosen electrode materials, electrochemical transducing techniques, and sensitive biorecognition molecules, are thoroughly discussed in this paper. Furthermore, we summarised electrochemical biosensors detection strategies and their analytical performance on diverse clinical samples, including saliva, blood, and nasopharyngeal swab. Finally, we address the employment of miniaturized electrochemical biosensors integrated with microfluidic technology in viral electrochemical biosensors, emphasizing its potential for on-site diagnostics applications.


Assuntos
Técnicas Biossensoriais , COVID-19 , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , Teste para COVID-19 , Técnicas Eletroquímicas , Humanos , SARS-CoV-2
15.
Crit Rev Anal Chem ; : 1-26, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35522585

RESUMO

Water quality monitoring has become more critical in recent years to ensure the availability of clean and safe water from natural aquifers and to understand the evolution of water contaminants across time and space. The conventional water monitoring techniques comprise of sample collection, preservation, preparation, tailed by laboratory testing and analysis with cumbersome wet chemical routes and expensive instrumentation. Despite the high accuracy of these methods, the high testing costs, laborious procedures, and maintenance associated with them don't make them lucrative for end end-users and field testing. As the participation of ultimate stakeholders, that is, common man for water quality and quantity can play a pivotal role in ensuring the sustainability of our aquifers, thus it is essential to develop and deploy portable and user-friendly technical systems for monitoring water sources in real-time or on-site. The present review emphasizes here on possible approaches including optical (absorbance, fluorescence, colorimetric, X-ray fluorescence, chemiluminescence), electrochemical (ASV, CSV, CV, EIS, and chronoamperometry), electrical, biological, and surface-sensing (SPR and SERS), as candidates for developing such platforms. The existing developments, their success, and bottlenecks are discussed in terms of various attributes of water to escalate the essentiality of water quality devices development meeting ASSURED criterion for societal usage. These platforms are also analyzed in terms of their market potential, advancements required from material science aspects, and possible integration with IoT solutions in alignment with Industry 4.0 for environmental application.

16.
Nanomicro Lett ; 14(1): 100, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35403935

RESUMO

Delayed diagnosis of cancer using conventional diagnostic modalities needs to be addressed to reduce the mortality rate of cancer. Recently, 2D nanomaterial-enabled advanced biosensors have shown potential towards the early diagnosis of cancer. The high surface area, surface functional groups availability, and excellent electrical conductivity of MXene make it the 2D material of choice for the fabrication of advanced electrochemical biosensors for disease diagnostics. MXene-enabled electrochemical aptasensors have shown great promise for the detection of cancer biomarkers with a femtomolar limit of detection. Additionally, the stability, ease of synthesis, good reproducibility, and high specificity offered by MXene-enabled aptasensors hold promise to be the mainstream diagnostic approach. In this review, the design and fabrication of MXene-based electrochemical aptasensors for the detection of cancer biomarkers have been discussed. Besides, various synthetic processes and useful properties of MXenes which can be tuned and optimized easily and efficiently to fabricate sensitive biosensors have been elucidated. Further, futuristic sensing applications along with challenges will be deliberated herein.

17.
Front Chem ; 10: 831200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308789

RESUMO

Aqueous and non-aqueous redox flow batteries (RFBs) have limited energy and current densities, respectively, due to the nature of the electrolytes. New approaches to electrolyte design are needed to improve the performance of RFBs. In this work, we combined a highly conductive aqueous phase and an organic redox-active phase in a microemulsion to formulate a novel RFB electrolyte. As a proof-of-concept, we demonstrate an RFB using this microemulsion electrolyte with maximum current density of 17.5 mA·cm-2 with a 0.19 M posolyte and 0.09 M negolyte at a flow rate of only ∼2.5 ml·min-1, comparable to early vanadium electrolyte RFBs at similar flow rates on a per molar basis. The novel active negolyte component is an inexpensive oil-soluble vitamin (K3). By combining aqueous and organic phases, the solvent potential window and energy density may be increased without sacrificing current density and new redox couples may be accessed. Microemulsion electrolytes show great promise for improved performance and increased energy densities in aqueous RFBs but the path forward is complex. We end with discussion of areas that need work to achieve the potential of these electrolytes.

18.
Molecules ; 26(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34770908

RESUMO

Electrochemical devices, especially energy storage, have been around for many decades. Liquid electrolytes (LEs), which are known for their volatility and flammability, are mostly used in the fabrication of the devices. Dye-sensitized solar cells (DSSCs) and quantum dot sensitized solar cells (QDSSCs) are also using electrochemical reaction to operate. Following the demand for green and safer energy sources to replace fossil energy, this has raised the research interest in solid-state electrochemical devices. Solid polymer electrolytes (SPEs) are among the candidates to replace the LEs. Hence, understanding the mechanism of ions' transport in SPEs is crucial to achieve similar, if not better, performance to that of LEs. In this paper, the development of SPE from basic construction to electrolyte optimization, which includes polymer blending and adding various types of additives, such as plasticizers and fillers, is discussed.

19.
Materials (Basel) ; 14(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34501128

RESUMO

In this work, silver (Ag) decorated reduced graphene oxide (rGO) coated with ultrafine CuO nanosheets (Ag-rGO@CuO) was prepared by the combination of a microwave-assisted hydrothermal route and a chemical methodology. The prepared Ag-rGO@CuO was characterized for its morphological features by field emission scanning electron microscopy and transmission electron microscopy while the structural characterization was performed by X-ray diffraction and Raman spectroscopy. Energy-dispersive X-ray analysis was undertaken to confirm the elemental composition. The electrochemical performance of prepared samples was studied by cyclic voltammetry and galvanostatic charge-discharge in a 2M KOH electrolyte solution. The CuO nanosheets provided excellent electrical conductivity and the rGO sheets provided a large surface area with good mesoporosity that increases electron and ion mobility during the redox process. Furthermore, the highly conductive Ag nanoparticles upon the rGO@CuO surface further enhanced electrochemical performance by providing extra channels for charge conduction. The ternary Ag-rGO@CuO nanocomposite shows a very high specific capacitance of 612.5 to 210 Fg-1 compared against rGO@CuO which has a specific capacitance of 375 to 87.5 Fg-1 and the CuO nanosheets with a specific capacitance of 113.75 to 87.5 Fg-1 at current densities 0.5 and 7 Ag-1, respectively.

20.
Front Chem ; 9: 684256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277568

RESUMO

3D printing is a type of additive manufacturing (AM), a technology that is on the rise and works by building parts in three dimensions by the deposit of raw material layer upon layer. In this review, we explore the use of 3D printers to prototype electrochemical cells and devices for various applications within chemistry. Recent publications reporting the use of Fused Deposition Modelling (fused deposition modeling®) technique will be mostly covered, besides papers about the application of other different types of 3D printing, highlighting the advances in the technology for promising applications in the near future. Different from the previous reviews in the area that focused on 3D printing for electrochemical applications, this review also aims to disseminate the benefits of using 3D printers for research at different levels as well as to guide researchers who want to start using this technology in their research laboratories. Moreover, we show the different designs already explored by different research groups illustrating the myriad of possibilities enabled by 3D printing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...