Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Atherosclerosis ; 396: 118531, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38996716

RESUMO

BACKGROUND AND AIMS: Diabetes is one of the major causes of cardiovascular disease (CVD). As high as 29 % of patients with diabetes develop atherosclerosis. Vascular Smooth Muscle Cells (VSMCs) are a key mediator in the pathogenesis of atherosclerosis, generating pro-inflammatory and proliferative characteristics in atherosclerotic lesions. METHODS: We used human atherosclerotic samples, developed diabetes-induced atherosclerotic mice, and generated loss of function and gain of function in Klotho human aortic smooth muscle cells to investigate the function of Klotho in atherosclerosis. RESULTS: We found that Klotho expression is decreased in smooth muscle actin-positive cells in patients with diabetes and atherosclerosis. Consistent with human data, we found that Apoe knockout mice with streptozotocin-induced diabetes fed on a high-fat diet showed decreased expression of Klotho in SMCs. Additionally, these mice showed increased expression of TGF-ß, MMP9, phosphorylation of ERK and Akt. Further, we utilized primary Human Aortic Smooth Muscle Cells (HASMCs) with d-glucose under dose-response and in time-dependent conditions to study the role of Klotho in these cells. Klotho gain of function and loss of function studies showed that Klotho inversely regulated the expression of atherosclerotic markers TGF-ß, MMP2, MMP9, and Fractalkine. Further, High Glucose (HG) induced Akt, and ERK1/2 phosphorylation were enhanced or mitigated by endogenous Klotho deficiency or its overexpression respectively. PI3K/Akt and MAPK/ERK inhibition partially abolished the HG-induced upregulation of TGF-ß, MMP2, MMP9, and Fractalkine. Additionally, Klotho knockdown increased the proliferation of HASMCs and enhanced α-SMA and TGF-ß expression. CONCLUSIONS: Taken together, these results indicate that local vascular Klotho is involved in diabetes-induced atherosclerosis, which is via PI3K/Akt and ERK1/2-dependent signaling pathways.


Assuntos
Aterosclerose , Diabetes Mellitus Experimental , Glucuronidase , Proteínas Klotho , Camundongos Knockout para ApoE , Músculo Liso Vascular , Miócitos de Músculo Liso , Proteínas Klotho/metabolismo , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Glucuronidase/metabolismo , Glucuronidase/genética , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Masculino , Transdução de Sinais , Células Cultivadas , Aorta/patologia , Aorta/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Doenças da Aorta/patologia , Doenças da Aorta/metabolismo , Doenças da Aorta/genética , Doenças da Aorta/enzimologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células
2.
J Mol Cell Cardiol ; 136: 113-124, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31520610

RESUMO

BACKGROUND: Cardiovascular fibrosis is a major contributor to cardiovascular disease, the primary cause of death in patients with chronic kidney disease (CKD). We previously reported expression of endogenous Klotho in human arteries, and that CKD is a state of Klotho deficiency, resulting in vascular calcification, but myocardial expression of Klotho is poorly understood. This study aimed to further clarify endogenous Klotho's functional roles in cardiac fibrosis in patients with underlying CKD. METHODS AND RESULTS: Human atrial appendage specimens were collected during cardiac surgery from individuals with or without CKD. Cardiac fibrosis was quantified using trichrome staining. For endogenous Klotho functional studies, primary human cardiomyocytes (HCMs) were treated with uremic serum from CKD patients or recombinant human TGF-ß1. The effects of endogenous Klotho in HCMs were studied using Klotho-siRNA and Klotho-plasmid transfection. Both gene and protein expression of endogenous Klotho are found in human heart, but decreased Klotho expression is clearly associated with the degree of cardiac fibrosis in CKD patients. Moreover, we show that endogenous Klotho is expressed by HCMs and cardiac fibroblasts (HCFs) but that HCM expression is suppressed by uremic serum or TGF-ß1. Klotho knockdown or overexpression aggravates or mitigates TGF-ß1-induced fibrosis and canonical Wnt signaling in HCMs, respectively. Furthermore, co-culture of HCMs with HCFs increases TGF-ß1-induced fibrogenic proteins in HCFs, but overexpression of endogenous Klotho in HCMs mitigates this effect, suggesting functional crosstalk between HCMs and HCFs. CONCLUSIONS: Our data from analysis of human hearts as well as functional in vitro studies strongly suggests that the loss of cardiac endogenous Klotho in CKD patients, specifically in cardiomyocytes, facilitates intensified TGF-ß1 signaling which enables more vigorous cardiac fibrosis through upregulated Wnt signaling. Upregulation of endogenous Klotho inhibits pathogenic Wnt/ß-catenin signaling and may offer a novel strategy for prevention and treatment of cardiac fibrosis in CKD patients.


Assuntos
Glucuronidase/metabolismo , Miocárdio/patologia , Insuficiência Renal Crônica/complicações , Fator de Crescimento Transformador beta1/metabolismo , Via de Sinalização Wnt , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Feminino , Fibrose , Glucuronidase/genética , Humanos , Proteínas Klotho , Masculino , Pessoa de Meia-Idade , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Insuficiência Renal Crônica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...